355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЛО) » Текст книги (страница 23)
Большая Советская Энциклопедия (ЛО)
  • Текст добавлен: 5 октября 2016, 05:24

Текст книги "Большая Советская Энциклопедия (ЛО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 23 (всего у книги 28 страниц)

Лоренс (город в США)

Ло'ренс (Lawrence), город на С.-В. США, в штате Массачусетс, в Новой Англии, на р. Мерримак. 67 тыс. жителей (1970), вместе с соседним г. Хейверилл и общей пригородной зоной 232 тыс. жителей. В промышленности около 40 тыс. занятых (в том числе в пределах Л. около 15 тыс.). Текстильная, швейная, кожевенно-обувная, радиоэлектронная, резиновая, бумажная, военная промышленность, производство оборудования для текстильной и обувной промышленности.

Лоренс Дейвид Герберт

Ло'ренс, Лоуренс (Lawrence) Дейвид Герберт (11.9.1885, Иствуд, – 2.3.1930, м. Ванс, департамент Приморские Альпы, Франция), английский писатель. Родился в семье шахтёра. Получил образование учителя. В 1919 покинул Англию, путешествовал по Европе, Америке, Австралии. В реалистических романах «Белый павлин» (1911), «Сыновья и любовники» (1913, русский перевод 1927), «Радуга» (1915, русский перевод под названием «Семья Брэнгуэнов», 1925) причиной социальных бедствий Л. объявляет механическую цивилизацию, разорвавшую союз человека с природой. Для Л. характерен интерес к «частному бытию» индивида, однако психологический анализ в духе фрейдизма приглушает социальную проблематику романов «Влюблённые женщины» (1920), «Флейта Аарона» (1922, русский перевод 1925), «Кенгуру» (1923), «Пернатый змий» (1926). В романе «Любовник леди Чаттерли» (1928) Л. возвращается к критико-реалистическому изображению действительности. Автор литературно-критических эссе, сборников рассказов, стихотворений и очерков путешествий.

  Соч.: The Phoenix edition. [Ed. By W. Heinemann], L., 1954—57; A D. H. Lawrence miscellany, ed. by H. T. Moore, Carbondale, 1959; в русском переводе – Урсула Брэнгуэн, М., 1925; Джек в дебрях Австралии, Л., 1927.

  Лит.: Мирский Д., Интеллиджентсиа, М., 1934; Аллен У., Традиция и мечта, М., 1970: Leavis F. R., D. H. Lawrence novelist, L., 1955; Moore H. Т., The intelligent heart. The story of D. H. Lawrence, L., 1960.

  H. М. Пальцев.

Лоренс Ларс

Ло'ренс (Lawrence) Ларс (псевдоним; настоящее имя и фамилия Филин Стивенсон, Stevenson) (31.12.1896, Нью-Йорк, – 21.9.1965, Алма-Ата), американский писатель. Сын адвоката. В 30-е годы активный участник американского рабочего движения, секретарь Лиги американских писателей(1937). С 1947 один из редакторов журнала «Мейнстрим». В творчестве Л. выделяются драмы «Декларация» о Т. Джефферсоне и «Контратака» (1942) по пьесе «Победа» (1937) советских драматургов И. Вершинина и М. Рудермана. Широкая панорама общественно-психологических конфликтов Америки 30-х годов развёрнута в драматической трилогии Л. «Буря» и многотомной эпопее «Семена» (1954—61), состоящей из романов «Утро, полдень и ночь» (1954), «Из праха» (1956), «Старый шут закон» (1961), «Провокация» (1961).

  Лит.: 3лобин Г., Семена будущего, «Иностранная литература», 1963, № 2.

Лоренс Томас

Ло'ренс, Лауренс (Lawrence) Томас (13.4.1769, Бристоль, – 7.1.1830, Лондон), английский живописец-портретист. Самоучка. Испытал влияние Дж. Рейнолдса. С 1792 главный художник короля, с 1820 президент Академии Художеств. Начав с поисков индивидуальных особенностей модели, затем всё чаще прибегал к идеализации образа и внешним эффектам; обладал виртуозной техникой (светлая красочная гамма со множеством бликов, лёгкий, текучий мазок). Пользовался широкой известностью в конце 18 – начале 19 вв. Произведения: портреты – королевы Шарлотты (1789, Национальная галерея, Лондон), мисс Э. Фаррен (1790, Метрополитен-музей, Нью-Йорк), политических и военных деятелей Европы (1814—19, галерея Ватерлоо, замок в Виндзоре), М, С. Воронцова (1821, Эрмитаж, Ленинград).

  Лит.: Garlick К., Sir Thomas Lawrence, L., 1954.

Т. Лоренс. Портрет Салли Сиддонс. Музей изобразительных искусств имени А. С. Пушкина. Москва.

Лоренс Эрнест Орландо

Ло'ренс (Lawrence) Эрнест Орландо (1901—1958), американский физик; см. ЛоуренсЭ. О.

Лоренсо Ансельмо

Лоре'нсо (Lorenzo) Ансельмо (21.4.1841, Толедо, – 30.11.1914, Барселона), деятель испанского рабочего движения, один из идеологов анархо-синдикализма. По профессии – рабочий-типограф. Участвовал в создании секций 1-го Интернационала в Испании; был членом Испанского федерального совета (1870—72), делегатом Лондонской конференции 1-го Интернационала (1871). В 1872—73 в рядах Новой мадридской федерации выступал против дезорганизаторской деятельности бакунистов, хотя был близок (в значительной мере под влиянием П. Прудона) к анархизму. Позднее участвовал в так называемом Анархистском интернационале и в ряде анархо-синдикалистских изданий.

Лоренсу-Маркиш

Лоре'нсу-Ма'ркиш, Лоуренсу-Маркиш (Lourenço Marques), административный центр и главный город Мозамбика. 384 тыс. жителей (1970, перепись, с пригородами). Порт на берегу бухты Делагоа Индийского океана (с угольной и нефтяной гаванями) и важный транзитный пункт на пути вокруг Африки; железной дорогой связан с ЮАР и Южной Родезией. Аэропорт. Вывоз угля, древесины, хлопка, сахара, сизаля, копры, фруктов. Производство цемента, керамических изделий, обуви; металлообрабатывающие, деревообрабатывающие, текстильные, химические предприятия. Университет, зоологический, ботанический сады. Морской курорт.

Лоренц – Лоренца формула

Ло'ренц – Ло'ренца фо'рмула связывает преломления показательn вещества с электронной поляризуемостью aэл составляющих его частиц (см. Поляризуемость атомов, ионов и молекул). Получена в 1880 Х. А. Лоренцом и независимо от него датcким физиком Л. Лоренцом. Для вещества, все частицы которого одинаковы, Л. – Л. ф. имеет вид:

      (*)

(N – число поляризующихся частиц в единице объёма). В случае смеси k вещества правая часть (*) заменяется на сумму k членов , (i = 1, 2, …, k), каждый из которых относится лишь к одному из этих веществ (сумма всех Ni равна N).

  Л. – Л. ф. выведена в предположениях, справедливых только для изотропных сред (газы, неполярные жидкости, кубические кристаллы). Однако, как показывает опыт, (*) приближённо выполняется и для многих других веществ (допустимость её применения и степень точности устанавливаются экспериментально в каждом отдельном случае). Л. – Л. ф. неприменима в областях собственных (резонансных) полос поглощения веществ – областях аномальной дисперсии света в них.

  Поляризуемость вещества можно считать чисто электронной лишь при частотах внешнего поля, соответствующих видимому и ультрафиолетовому излучению. Только в этих диапазонах (с указанными выше ограничениями) применима Л. – Л. ф. в виде (*). При более медленных колебаниях поля, в инфракрасной (ИК) области, успевают сместиться более тяжёлые, чем электроны, ионные остовы (атомы) и приходится учитывать их вклад в поляризуемость aат. В ряде случаев достаточно в формуле (*) заменить aэл на полную «упругую» поляризуемость aэл и aат, см.Клаузиуса – Моссотти формула; следует иметь в виду, что диэлектрическая проницаемость e = n2). В полярных диэлектриках в ещё более длинноволновой, чем ИК, области спектра существенна так называемая ориентационная поляризация, обусловленная поворотом «по полю» постоянных дипольных моментов частиц. Её учёт приводит к усложнению зависимости n от a для этих частот (формула Ланжевена – Дебая).

  При всех ограничениях на её применимость Л. – Л. ф. широко используется: она и непосредственно следующее из неё выражение для рефракции молекулярнойявляются основой для рефрактометриичистых веществ и смесей, определения поляризуемости частиц, исследования структуры органических и неорганических соединений.

  Лит.: Ландсберг Г. С., Оптика, 4 издание, М., 1957 (Общий курс физики, том 3); Волькенштейн М. В., Молекулярная оптика, М. – Л., 1951; Бацанов С. С., Структурная рефрактометрия, М., 1959; Борн М., Вольф Э., Основы оптики, перевод с английского, М., 1970.

  В. А. Зубков.

Лоренц Конрад

Ло'ренц (Lorenz) Конрад (р. 7.11.1903, Вена), австрийский зоолог, этолог и зоопсихолог. Учился в Нью-Йоркском и Венском университетах. Профессор в Кёнигсберге (с 1940), с 1950 руководитель института физиологии поведения научного общества Макса Планка (ФРГ) в Бульдерне (с 1955 – в Зевизене, Бавария). Один из создателей науки о поведении животных – этологии. Вместе с Н. Тинбергеном разработал учение об инстинктивном поведениии его развитии в онто– и филогенезе. Л. принадлежат фундаментальные исследования по вопросам раннего научения (запечатления) и его роли в формировании поведения взрослых животных, происхождения, развития и «ритуализации» выразительных поз, телодвижений и других форм общения животных в филогенезе, по вопросам мотивации поведения, взаимодействия обусловливающих его внутренних и внешних факторов и др. В ряде случаев неправомерно распространяет биологические закономерности поведения животных на человека и человеческое общество. Нобелевская премия в области медицины (1973).

  Соч.: Das sogenannte Böse. Zur Naturgeschichte der Aggression, W., 1963; Über tierisches und menschliches Verhalten, Bd 1—2, Münch., [1966]; Evolution and modification of behavior, Chi., [1965]; в русском переводе – Кольцо царя Соломона, М., 1970; Человек находит друга, М., 1971.

  К. Э. Фабри.

Лоренц Хендрик Антон

Ло'ренц, Лорентц (Lorentz) Хендрик Антон (18.7.1853, Арнем, – 4.2.1928, Харлем), нидерландский физик, создатель электронной теории. Учился в Лейденском университете (1870—72), в 1878—1923 профессор этого университета. С 1923 директор исследовательского института Тейлора в Харлеме. В своей докторской диссертации (1875) Л. рассмотрел отражение и преломление света с позиций электромагнитной теории Дж. Максвелла и показал, что на границе 2 сред возникают 4 условия (а не 6, как требовала механическая теория света). Это свидетельствовало о поперечности световых волн и служило доказательством электромагнитной теории света. В 1878 Л. объяснил дисперсию света интерференцией падающих волн и вторичных волн, возникающих при колебаниях заряженных частиц под действием падающих волн. Эта работа была первым шагом к разработке электронной теории, основные положения которой Л. сформулировал в 1892. С точки зрения теории Л. всякое вещество состоит из положительных и отрицательных дискретных зарядов, движением и взаимодействием которых обусловлены электромагнитные явления, а также электрические, магнитные и оптические свойства вещества (см. Лоренца – Максвелла уравнения). Л. вывел выражение для силы, действующей со стороны электромагнитного поля на движущийся заряд (см. Лоренца сила).

  С помощью электронной теории Л. удалось объяснить многие явления (соотношение между коэффициентом преломления вещества и поляризуемостью – Лоренц – Лоренца формула, связь между коэффициентами тепло– и электропроводности металлов, эффекты Холла, Керра и другое). Л. объяснил Зеемана эффект и предсказал поляризацию компонент зеемановского расщепления (Нобелевская премия, 1902, совместно с П. Зееманом). Классическая электронная теория нашла своё завершение в монографии Л. «Теория электронов» (1909). Электронная теория в том виде, в каком она была создана Л., не только полностью сохранила своё значение до настоящего времени, но и явилась фундаментом многих современных физических представлений.

  Л. – автор классических работ по электродинамике движущихся сред. В 1895 он формально ввёл понятие «местного времени» и показал, что уравнения Максвелла приближённо справедливы во всех равномерно и прямолинейно движущихся системах отсчёта. Для объяснения Майкельсона опыта Л. использовал предположение о сокращении продольных размеров в направлении движения тел, высказанное им (и независимо от него ирландским физиком Дж. Ф. Фицджеральдом) в 1892. Ввёл пространственно-временные преобразования, описывающие переход от одной инерциальной системы отсчёта к другой и оставляющие инвариантными уравнения Максвелла (Лоренца преобразования, 1904), а также нашёл зависимость массы от скорости. Эти работы Л. сыграли большую роль в подготовке относительности теории.

  Л. принадлежит также ряд работ по термодинамике и статистической физике (применение теоремы вириала к кинетической теории газов, термодинамика термоэлектрических явлений, молекулярная теория разбавленных растворов, применение статистических методов к электронной теории металлов и так далее). Некоторые работы Л. посвящены квантовой теории излучения, общей теории относительности.

  Л. был председателем комитета по подготовке проекта частичного осушения залива Зёйдер-Зе (1918—26); для этого проекта он разработал новые математические методы гидродинамических расчётов. Был организатором и председателем Сольвеевских конгрессов по физике (1911—27). Член Комитета Лиги Наций по интеллектуальному сотрудничеству (с 1923, президент с 1927). Член многих академий и научных обществ мира.

  Соч.: Collected papers, v. 1—9, Hague, 1934—39; в русском переводе – Принцип относительности, Л., 1935 (совместно с другими); Теория электронов и ее применение к явлениям света и теплового излучения, 2 издание, М., 1953; Старые и новые проблемы физики, М., 1970.

  Лит.: Бройль Л., По тропам науки, перевод с французского, М., 1962; Голдберг С., Электронная теория Лоренца и теория относительности Эйнштейна, «Успехи физических наук», 1970, т. 102, в. 2.

  В. П. Визгин.

Х. А. Лоренц.

Лоренца – Максвелла уравнения

Ло'ренца – Ма'ксвелла уравне'ния, Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические электромагнитные поля, создаваемые отдельными заряженными частицами. Л. – М. у. лежат в основе электронной теории (микроскопической электродинамики), построенной Х. А. Лоренцомв конце 19 – начале 20 вв. В этой теории вещество (среда) рассматривается как совокупность электрически заряженных частиц (электронов и атомных ядер), движущихся в вакууме.

  В Л. – М. у. электромагнитное поле описывается двумя векторами: напряжённостями микроскопических полей – электрического е и магнитного h. Все электрические токи в электронной теории – чисто конвекционные, т. е. обусловлены движением заряженных частиц. Плотность тока j = ru, где r – плотность заряда, а u – его скорость.

  Л. – М. у. были получены в результате обобщения макроскопических Максвелла уравнений. В дифференциальной форме в абсолютной системе единиц Гаусса они имеют вид:

  rot h = ,

  rot е = ,                (1)

  div h = 0

  div е = 4pr

(с – скорость света в вакууме).

  Согласно электронной теории, уравнения (1) точно описывают поля в любой точке пространства (в том числе межатомные и внутриатомные поля и даже поля внутри электрона) в любой момент времени. В вакууме они совпадают с уравнениями Максвелла.

  Микроскопические напряжённости полей е и h очень быстро меняются в пространстве и времени и непосредственно не приспособлены для описания электромагнитных процессов в системах, содержащих большое число заряженных частиц (то есть в макроскопических материальных телах). А именно такие макроскопические процессы представляют интерес, например, для электротехники и радиотехники. Так, при токе в 1 а через поперечное сечение проводника в 1 сек проходит около 1019 электронов. Проследить за движением всех этих частиц и вычислить создаваемые ими поля невозможно. Поэтому прибегают к статистическим методам, которые позволяют на основе определённых модельных представлений о строении вещества установить связь между средними значениями напряжённостей электрических и магнитных полей и усреднёнными значениями плотностей заряда и тока.

  Усреднение микроскопических величин производится по пространственным и временным интервалам, большим по сравнению с микроскопическими интервалами (порядка размеров атомов и времени обращения электронов вокруг ядра), но малым по сравнению с интервалами, на которых макроскопические характеристики электромагнитного поля заметно изменяются (например, по сравнению с длиной электромагнитной волны и её периодом). Подобные интервалы называются «физически бесконечно малыми».

  Усреднение Л. – М. у. приводит к уравнениям Максвелла. При этом оказывается, что среднее значение напряжённости микроскопического электрического поля  равно напряжённости поля в теории Максвелла: = Е, а среднее значение напряжённости микроскопического магнитного поля  – вектору магнитной индукции:  = В.

  В теории Лоренца все заряды разделяются на свободные и связанные (входящие в состав электрически нейтральных атомов и молекул). Можно показать, что плотность связанных зарядов определяется вектором поляризации Р (электрическим дипольным моментом единицы объёма среды):

  rсвяз. = – div Р  (2)

  а плотность тока связанных зарядов, кроме вектора поляризации, зависит также от намагниченности  I (магнитного момента единицы объёма среды):

  jсвяз. = rot I. (3)

  Векторы Р и I характеризуют электромагнитное состояние среды. Вводя два вспомогательных вектора – вектор электрической индукции

  D = E + 4pP (4)

  и вектор напряжённости магнитного поля

  H = B – 4pI (5)

  получают макроскопические уравнения Максвелла для электромагнитного поля в веществе в обычной форме.

  Помимо уравнений (1) для микроскопических полей, к основным уравнениям электронной теории следует добавить выражение для силы, действующей на заряженные частицы в электромагнитном поле. Объёмная плотность этой силы (силы Лоренца) равна:

   (6)

  Усреднённое значение лоренцовых сил, действующих на составляющие тело заряженные частицы, определяет макроскопическую силу, которая действует на тело в электромагнитном поле.

  Электронная теория Лоренца позволила выяснить физический смысл основных постоянных, входящих в уравнения Максвелла и характеризующих электрические и магнитные свойства вещества. На её основе были предсказаны или объяснены некоторые важные электрические и оптические явления (нормальный Зеемана эффект, дисперсия света, свойства металлов и другие).

  Законы классической электронной теории перестают выполняться на очень малых пространственно-временных интервалах. В этом случае справедливы законы квантовой теории электромагнитных процессов – квантовой электродинамики. Основой для квантового обобщения теории электромагнитных процессов являются Л. – М. у.

  Лит.: Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, пер. с английского, 2 издание, М., 1953; Беккер Р., Электронная теория, перевод с немецкого, Л. – М., 1936; Ландау Л. Д. и Лифшиц Е. М., Теория поля, М., 1967 (Теоретическая физика, том 2).

  Г. Я. Мякишев.

Лоренца преобразования

Ло'ренца преобразова'ния, в специальной теории относительности – преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчёта к другой. Получены в 1904 Х. А. Лоренцом как преобразования, по отношению к которым уравнения классической микроскопической электродинамики (Лоренца – Максвелла уравнения) сохраняют свой вид. В 1905 А. Эйнштейн вывел их, исходя из двух постулатов, составивших основу специальной теории относительности: равноправия всех инерциальных систем отсчёта и независимости скорости распространения света в вакууме от движения источника света.

  Рассмотрим частный случай двух инерциальных систем отсчёта å и å’ с осями х и x’, лежащими на одной прямой, и соответственно параллельными другими осями (у и y’, z и z’). Если система å’ движется относительно å с постоянной скоростью u в направлении оси х, то Л. п. при переходе от å к å’ имеют вид:

,

где с – скорость света в вакууме (штрихованные координаты относятся к системе å’, нештрихованные – к å).

  Л. п. приводят к ряду важных следствий, в том числе к зависимости линейных размеров тел и промежутков времени от выбранной системы отсчёта, к закону сложения скоростей в теории относительности и др. При скоростях движения, малых по сравнению со скоростью света (u<<c), Л. п. переходят в преобразования Галилея (см. Галилея принцип относительности), справедливые в классической механике Ньютона.

  Подробнее см. Относительности теория; см. также литературу при этой статье.

Г. А. Зисман.

Рис. к ст. Лоренца преобразования.

Лоренца сила

Ло'ренца си'ла, сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Формула для Л. с. F была впервые получена Х. А. Лоренцом как результат обобщения опыта и имеет вид:

  F = eE +

[ uB].

  Здесь е – заряд частицы, Е – напряжённость электрического поля, Вмагнитная индукция, u – скорость заряженной частицы относительно системы координат, в которой вычисляются величины F, Е, В, а с – скорость света в вакууме. Формула справедлива при любых значениях скорости заряженной частицы. Она является важнейшим соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

  Первый член в правой части формулы – сила, действующая на заряженную частицу в электрическом поле, второй – в магнитном. Магнитная часть Л. с. пропорциональна векторному произведениюu и В, то есть она перпендикулярна скорости частицы (направлению её движения) и вектору магнитной индукции; следовательно, она не совершает механической работы и только искривляет траекторию движения частицы, не меняя её энергии. Величина этой части Л. с. равна Bsina, где a – угол между векторами u и В [множитель 1/с связан с выбором единиц измерения: предполагается, что все величины измеряются в абсолютной (гауссовой) системе единиц (СГС системе единиц); в системе СИ этот множитель отсутствует]. Таким образом, магнитная часть Л. с. максимальна, если направление движения частицы составляет с направлением магнитного поля прямой угол, и равна нулю, если частица движется вдоль направления поля.

  В вакууме в постоянном однородном магнитном поле (В = Н, где Н – напряжённость поля) заряженная частица под действием Л. с. (её магнитной части) движется по винтовой линии с постоянной по величине скоростью u, при этом её движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля Н (со скоростью u||, равной составляющей скорости частицы u в направлении Н) и равномерного вращательного движения в плоскости, перпендикулярной Н (со скоростью u^, равной составляющей u в направлении, перпендикулярном Н). Проекция траектории движения частицы на плоскость, перпендикулярную Н, есть окружность радиуса R = cmu ^ /eH, а частота вращения равна w = eH/mc (так называемая циклотронная частота). Ось винтовой линии совпадает с направлением поля Н, и центр окружности перемещается вдоль силовой линии поля.

  Если электрическое поле Е не равно нулю, то движение носит более сложный характер. Происходит перемещение центра вращения частицы перпендикулярно полю Н, называемое дрейфом. Направление дрейфа определяется вектором [ЕH] и не зависит от знака заряда. Скорость дрейфа и для простейшего случая скрещенных полей (Е^Н) равна u = cE/H.

  Воздействие магнитного поля на движущиеся заряженные частицы приводит к перераспределению тока по сечению проводника, что находит своё проявление в различных термомагнитных и гальваномагнитных явлениях (Нернста – Эттингсхаузена эффект, Холла эффекти других).

 Лит.: Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, перевод с английского, 2 издание, М., 1953; Тамм И. Е., Основы теории электричества, 7 издание, М., 1957; Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, [перевод с английского], в, 6, М., 1966.


    Ваша оценка произведения:

Популярные книги за неделю