Текст книги "Большая Советская Энциклопедия (КВ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 8 (всего у книги 18 страниц)
4. Кванты – переносчики взаимодействия. В классической электродинамике взаимодействие между зарядами (и токами) осуществляется через поле: заряд порождает поле и это поле действует на другие заряды. В квантовой теории взаимодействие поля и заряда выглядит как испускание и поглощение зарядом квантов Поля – фотонов. Взаимодействие же между зарядами, например между двумя электронами в К. т. п. является результатом их обмена фотонами: каждый из электронов испускает фотоны (кванты переносящего взаимодействие электромагнитного поля), которые затем поглощаются др. электроном. Это справедливо и для др. физических полей: взаимодействие в К. т. п. – результат обмена квантами поля.
В этой достаточно наглядной картине взаимодействия есть, однако, момент, нуждающийся в дополнительном анализе. Пока взаимодействие не началось, каждая из частиц является свободной, а свободная частица не может ни испускать, ни поглощать квантов. Действительно, рассмотрим свободную неподвижную частицу (если частица равномерно движется, всегда можно перейти к такой инерциальной системе отсчёта, в которой она покоится). Запаса кинетической энергии у такой частицы нет, потенциальной – излучение энергетически невозможно. Несколько более сложные рассуждения убеждают и в неспособности свободной частицы поглощать кванты. Но если приведённые соображения справедливы, то, казалось бы, неизбежен вывод о невозможности появления взаимодействий в К. т. п.
Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые частицы являются квантовыми объектами и что для них существенны неопределённостей соотношения. Эти соотношения связывают неопределённости координаты частицы (Dх) и её импульса (Dр):
(9)
Имеется и второе соотношение – для неопределённостей энергии DE и специфического времени Dt данного физического процесса (т. е. времени, в течение которого процесс протекает):
. (10)
Если рассматривается взаимодействие между частицами посредством обмена квантами поля (это поле часто называется промежуточным), то за Dt естественно принять продолжительность такого акта обмена. Вопрос о возможности испускания кванта свободной частицей отпадает: энергия частицы, согласно (10), не является точно определённой; при наличии же квантового разброса энергий DE законы сохранения энергии и импульса не препятствуют более ни испусканию, ни поглощению переносящих взаимодействие квантов, если только эти кванты имеют энергию ~ DE и существуют в течение промежутка времени .
Проведённые рассуждения не только устраняют указанный выше парадокс, но и позволяют получить важные физические выводы. Рассмотрим взаимодействие частиц в ядрах атомов. Ядра состоят из нуклонов, т. е. протонов и нейтронов. Экспериментально установлено, что вне пределов ядра, т. е. на расстояниях, больших примерно 10–12см, взаимодействие неощутимо, хотя в пределах ядра оно заведомо велико. Это позволяет утверждать, что радиус действия ядерных сил имеет порядок L ~ 10–12см. Именно такой путь пролетают, следовательно, кванты, переносящие взаимодействие между нуклонами в атомных ядрах. Время пребывания квантов «в пути», даже если принять, что они движутся с максимально возможной скоростью (со скоростью света с), не может быть меньше, чем Dt »×L/c. Согласно предыдущему, квантовый разброс энергии DE взаимодействующих нуклонов получается равным DE ~ . В пределах этого разброса и должна лежать энергия кванта – переносчика взаимодействия. Энергия каждой частицы массы m складывается из её энергии покоя, равной mc2, и кинетической энергии, растущей по мере увеличения импульса частицы. При не слишком быстром движении частиц кинетическая энергия мала по сравнению с mc2, так что можно принять DE » mc2. Тогда из предыдущей формулы следует, что квант, переносящий взаимодействия в ядре, должен иметь массу порядка . Если подставить в эту формулу численные значения величин, то оказывается, что масса кванта ядерного поля примерно в 200—300 раз больше массы электрона.
Такое полукачественное рассмотрение привело в 1935 японского физика-теоретика Х. Юкава к предсказанию новой частицы; позже эксперимент подтвердил существование такой частицы, названной пи-мезоном. Этот блистательный результат значительно укрепил веру в правильность квантовых представлений о взаимодействии как об обмене квантами промежуточного поля, веру, сохраняющуюся в значительной степени до сих пор, несмотря на то, что количественную мезонную теорию ядерных сил построить всё ещё не удалось.
Если рассмотреть 2 настолько тяжёлые частицы, что их можно считать классическими материальными точками, то взаимодействие между ними, возникающее в результате обмена квантами массы m, приводит к появлению потенциальной энергии взаимодействия частиц, равной
, (11)
где r — расстояние между частицами, a g – так называемая константа взаимодействия рассматриваемых частиц с полем квантов, переносящих взаимодействие (или иначе – заряд, соответствующий данному виду взаимодействия).
Если применить эту формулу к случаю, когда переносчиками взаимодействия являются кванты электромагнитного поля – фотоны, масса покоя которых m = 0, и учесть, что вместо g должен стоять электрический заряд е, то получится хорошо известная энергия кулоновского взаимодействия двух зарядов: Uэл = е2/r.
5. Графическийметод описания процессов. Хотя в К. т. п. рассматриваются типично квантовые объекты, можно дать процессам взаимодействия и превращения частиц наглядные графические изображения. Такого рода графики впервые были введены американским физиком Р. Фейнманоми носят его имя. Графики, или диаграммы, Фейнмана, внешне похожи на изображение путей движения всех участвующих во взаимодействии частиц, если бы эти частицы были классическими (хотя ни о каком классическом описании не может быть и речи). Для изображения каждой свободной частицы вводят некоторую линию (которая, конечно, есть всего лишь графический символ распространения частицы): так, фотон изображают волнистой линией, электрон – сплошной. Иногда на линиях ставят стрелки, условно обозначающие «направление распространения» частицы. Ниже даны примеры таких диаграмм.
На рис. 1 изображена диаграмма, соответствующая рассеянию фотона на электроне: в начальном состоянии присутствуют один электрон и один фотон; в точке 1 они встречаются и происходит поглощение фотона электроном; в точке 2 появляется (испускается электроном) новый, конечный фотон. Это – одна из простейших диаграмм Комптон-эффекта.
Диаграмма на рис. 2 отражает обмен фотоном между двумя электронами: один электрон в точке 1 испускает фотон, который затем в точке 2 поглощается вторым электроном. Как уже говорилось, такого рода обмен приводит к появлению взаимодействия; т. о., данная диаграмма изображает элементарный акт электромагнитного взаимодействия двух электронов. Более сложные диаграммы, соответствующие такому взаимодействию, должны учитывать возможность обмена несколькими фотонами; одна из них изображена на рис. 3.
В приведённых примерах проявляется некоторое общее свойство диаграмм, описывающих взаимодействие между электронами и фотонами: все диаграммы составляются из простейших элементов – вершинных частей, или вершин, одна из которых (рис. 4) представляет испускание, а другая (рис. 5) – поглощение фотона электроном. Оба эти процесса в отдельности запрещены законами сохранения энергии и импульса. Однако если такая вершина входит как составная часть в некоторую более сложную диаграмму, как это было в рассмотренных примерах, то квантовая неопределённость энергии, возникающая из-за того, что на промежуточном этапе некоторая частица существует короткое время Dt, снимает энергетический запрет.
Частицы, которые рождаются, а затем поглощаются на промежуточных этапах процесса, называются виртуальными (в отличие от реальных частиц, существующих достаточно длительное время). На рис. 1 это – виртуальный электрон, возникающий в точке 1 и исчезающий в точке 2, на рис. 2 – виртуальный фотон и т.д. Часто говорят, что взаимодействие переносится виртуальными частицами. Можно несколько условно принять, что частица виртуальна, если квантовая неопределённость её энергии DE порядка среднего значения энергии частицы, и её можно называть реальной, если DE << (для относительно медленно движущихся частиц с неравной нулю массой покоя m это условие сведется к неравенству DE << mc2).
Диаграммы Фейнмана не только дают наглядное изображение процессов, но и позволяют при помощи определённых математических правил вычислять вероятности этих процессов. Не останавливаясь детально на этих правилах, отметим, что в каждой вершине осуществляется элементарный акт взаимодействия, приводящий к превращению частиц (т. е. к уничтожению одних частиц и рождению других). Поэтому каждая из вершин даёт вклад в амплитуду вероятности процесса, причём этот вклад пропорционален константе взаимодействия тех частиц (или полей), линии которых встречаются в вершине. Во всех приведённых выше диаграммах такой константой является электрический заряд е. Чем больше вершин содержит диаграмма процесса, тем в более высокой степени входит заряд в соответствующее выражение для амплитуды вероятности процесса. Так, амплитуда вероятности, соответствующая диаграммам 1 и 2 с двумя вершинами, квадратична по заряду (~ е2), а диаграмма 3 (содержащая 4 вершины) приводит к амплитуде, пропорциональной четвёртой степени заряда (~ е4). Кроме того, в каждой вершине нужно учитывать законы сохранения (за исключением закона сохранения энергии – его применимость лимитируется квантовым соотношением неопределённостей для энергии и времени): импульса (отвечающий каждой вершине акт взаимодействия может произойти в любой точке пространства, т. е. неопределённость координаты Dх= ¥, и, следовательно, импульс определён точно), электрического заряда и т.д., а также вводить множители, зависящие от спинов частиц.
Выше были рассмотрены лишь простейшие виды диаграмм для некоторых процессов. Эти диаграммы не исчерпывают всех возможностей. Каждую из простейших диаграмм можно дополнить бесконечным числом всё более усложняющихся диаграмм, включающих всё большее число вершин. Например, приведённую на рис. 1 «низшую» диаграмму Комптон-эффекта можно усложнять, выбирая произвольно пары точек на электронных линиях и соединяя эти пары волнистой фотонной линией (рис. 6), т.к. число промежуточных (виртуальных) фотонных линий не лимитировано.
6. Взаимодействие частицы с вакуумом электромагнитного поля. Излучение атома. На приведённых графиках взаимодействия двух электронов (рис. 2 и 3) каждый из фотонов порождается одним и поглощается др. электроном. Однако возможен и др. процесс (рис. 7): фотон, испущенный электроном в точке 1, через некоторое время поглощается им же в точке 2. Поскольку обмен квантами обусловливает взаимодействие, то такой график также является одной из простейших диаграмм взаимодействия, но только взаимодействия электрона с самим собой, или, что то же самое, с собственным полем. Этот процесс можно также назвать взаимодействием электрона с полем виртуальных фотонов, или с фотонным вакуумом (последнее название определяется тем, что реальных фотонов здесь нет). Т. о., собственное электромагнитное (электростатическое) поле электрона создаётся испусканием и поглощением (этим же электроном) фотонов. Такие взаимодействия электрона с вакуумом обусловливают экспериментально наблюдаемые эффекты (что свидетельствует о реальности вакуума). Самый значительный из этих эффектов – излучение фотонов атомами. Согласно квантовой механике, электроны в атомах располагаются на квантовых энергетических уровнях, а излучение фотона происходит при переходе электрона с одного (высшего) уровня на другой, обладающий меньшей энергией. Однако квантовая механика оставляет открытым вопрос о причинах таких переходов, сопровождающихся так называемым спонтанным («самопроизвольным») излучением; более того, каждый уровень выглядит здесь как вполне устойчивый. Физической причиной неустойчивости возбуждённых уровней и спонтанных квантовых переходов, согласно К. т. п., является взаимодействие атома с фотонным вакуумом. Образно говоря, взаимодействие с фотонным вакуумом трясёт, раскачивает атомный электрон – ведь при испускании и поглощении каждого виртуального фотона электрон испытывает толчок, отдачу; без этого электрон двигался бы устойчиво по орбите (ради наглядности, примем этот полуклассический образ). Один из таких толчков заставляет электрон «упасть» на более устойчивую, т. е. обладающую меньшей энергией, орбиту; при этом освобождается энергия, которая идёт на возбуждение электромагнитного поля, т. е. на образование реального фотона.
То, что взаимодействие электронов с фотонным вакуумом обусловливает саму возможность переходов в атомах (и в др. излучающих фотоны системах), а значит, и излучение, – это наибольший по масштабу и по значению эффект в квантовой электродинамике. Однако есть и другие, гораздо более слабые, «вакуумные эффекты», очень важные в принципиальном отношении; некоторые из них будут обсуждены в разделе III.
7. Электронно-позитронныйвакуум. В 1928 английский физик П. Дирак, решая задачу о релятивистском квантовом уравнении движения электрона, предсказал, что у электрона должен быть «двойник» – античастица, отличающаяся от электрона знаком электрического заряда. Такая частица, названная позитроном, вскоре была обнаружена экспериментально. Позитрон не может порождаться в одиночку – это исключается, например, законом сохранения электрического заряда. Электроны и позитроны могут появляться и исчезать (аннигилировать) лишь парами. Для рождения электронно-позитронной пары необходима достаточно большая энергия (не меньше удвоенной энергии покоя электрона), которую может поставить, например, «жёсткий», т. е. имеющий большую энергию, фотон (гамма-квант), налетающий на какую-либо заряженную частицу. Однако рождение пары может происходить и виртуально. Тогда образовавшаяся пара, просуществовав очень недолгое время Dt, аннигилирует. Квантовый разброс энергий DE ~, если Dt очень мало, делает такой процесс энергетически разрешенным.
Графически процесс рождения и аннигиляции виртуальной электронно-позитронной пары изображен на рис. 8: фотон в точке 1 исчезает, порождая пару, которая затем аннигилирует в точке 2, в результате чего вновь образуется фотон. (Позитрон изображается такой же сплошной линией, как и электрон, на которой условно стрелка направлена в противоположную сторону, т. е. «вспять» во времени.)
То обстоятельство, что электроны и позитроны не могут появляться и исчезать порознь, а возникают и уничтожаются только парами, показывает глубокое физическое единство электронно-позитронного поля. Электронное и позитронное поля выглядят как обособленные лишь до тех пор, пока не рассматриваются процессы, связанные с изменением числа электронов и позитронов.
Античастицы есть не только у электронов. Установлено, что каждая частица (кроме так назывемых истинно нейтральных частиц, например фотона и нейтрального пи-мезона) имеет свою античастицу. Процессы, подобные виртуальному рождению и аннигиляции электронно-позитронных пар, существуют для любых пар частица-античастица.
III. Метод возмущений в квантовой теории поля
1. Математическая и физическая частица. Полевая масса. Перенормировка массы. Для описания взаимодействующих полей часто применяется следующий метод (который фактически уже был использован выше). Сначала рассматриваются кванты свободных полей (частицы). Это так называемое нулевое приближение, в котором взаимодействие вообще не учитывается. Затем в рассмотрение вводится взаимодействие – частицы перестают быть независимыми, появляется возможность их рассеяния, порождения и уничтожения в результате взаимодействия. Последовательное увеличение числа учитываемых процессов, обусловленных взаимодействием, математически достигается применением так называемого метода возмущений. Ввиду большой роли, которую играет этот метод в теории, обсудим его физический смысл подробнее. Процедура последовательного уточнения вклада от взаимодействий фактически применяется и в классической электродинамике. Поясним это на примере электрона и создаваемого им электромагнитного поля. Электрон выступает в теории как носитель определённой массы m. Но так как он порождает электромагнитное поле, имеющее энергию Еэл, а следовательно (согласно релятивистскому соотношению E = mc2, и массу Еэл/c2, то, ускоряя электрон, нужно преодолевать и инерцию его электромагнитного (в простейшем случае – кулоновского) поля.
Т. о., вводя в рассмотрение взаимодействие между электроном и электромагнитным полем, к «неполевой», или «затравочной», массе m необходимо добавить «полевую» часть массы mпол = Еэл/c2. Вычисление полевой массы для точечной частицы (а именно такими приходится считать рассматриваемые в нулевом приближении «затравочные» частицы) приводит к лишённому физического смысла результату: mпол оказывается бесконечно большой. Действительно, энергия кулоновского поля частицы, имеющей заряд е и протяжённость а, равна Екул= ke2/a (k — множитель порядка единицы, численное значение которого зависит от распределения заряда); переход к точечной частице (a ® 0) приводит Екул® ¥.
Бесконечное значение (расходимость) полевой массы (хотя и в несколько измененном, «ослабленном» виде) сохраняется и при переходе от классической теории к квантовой. Больше того, появляются и расходимости др. типов. Анализ встречающихся здесь трудностей привёл к появлению идеи так называемых перенормировок. Деление массы на полевую и неполевую возникает (как видно из предыдущего) из-за принятого метода рассмотрения: вначале вводится свободная «затравочная» частица, а затем «включается» взаимодействие. В эксперименте, конечно, нет ни «затравочной», ни полевой массы, там проявляется только общая масса частицы. В теории, что очень существенно, эти массы также выступают лишь в сумме, а не порознь, Объединение полевой и неполевой массы и использование для суммарной массы значения, получаемого не теоретически, а из опыта, называется перенормировкой массы.
Традиционный путь построения теории в рамках метода теории возмущений таков: вначале формулируется теория свободных (не взаимодействующих) частиц, а затем вводится в рассмотрение взаимодействие между ними. Так, например, сначала строится теория свободных электронов (или электронно-позитронного поля), а затем рассматривается взаимодействие этих «математических», или «голых», электронов с электромагнитным полем. Однако реально существующие в природе «физические» электроны, в отличие от «математических», всегда взаимодействуют с фотонами (хотя бы с виртуальными), и «выключить» это взаимодействие можно только умозрительно. Важной частью идеи перенормировок является указание на необходимость построения теории, в которой выступали бы не математические, а физические частицы.
Любопытно, что природа в какой-то мере даёт возможность увидеть различие между частицей со «включенным» и «выключенным» электромагнитным взаимодействием. Например, известны три пи-мезона: с положительным (p+), отрицательным (p–) и нулевым (p°) электрическими зарядами. Это различные зарядовые состояния одной и той же частицы, Заряженные мезоны (p+ и p–) имеют большую массу, чем нейтральный (p°); очевидно, здесь проявляется добавка, обусловленная полевой (электромагнитной) массой, хотя теория пока не может достаточно четко объяснить этого явления количественно.
В К. т. п. процесс «облачения» математической частицы, т. е, её превращение в физическую, выглядит сложнее, чем в классической электродинамике, где всё сводится к «пристёгиванию» к частице кулоновского «шлейфа». В квантовой теории физическая частица отличается от математической «шубой», гораздо более сложной по своему строению: её образуют «облака» рождаемых и вслед затем поглощаемых частицей виртуальных квантов. Это могут быть кванты любого из полей, с которыми частица находится во взаимодействии (электромагнитного, электронно-позитронного, мезонного и т.д.). «Шуба» не есть нечто застывшее, – образующие её кванты непрерывно порождаются и поглощаются. «Шуба» пульсирует, т. е. несущая её частица как бы проводит часть времени в «облачённом», а часть – в «голом» состоянии. Какую именно часть – это определяется степенью интенсивности взаимодействий. Например, мезонные взаимодействия нуклонов более чем в сто раз интенсивнее электромагнитных; это позволяет предполагать, что мезонное «одеяние» протона более чем в сто раз «плотнее» электромагнитного. Это, может быть, позволяет понять, почему квантовая теория электромагнитных процессов даже при далеко не полном учёте вакуумных эффектов блестяще согласуется с экспериментом, тогда как мезонная теория не добилась таких успехов. В квантовой электродинамике можно ограничиться рассмотрением процессов с малым числом виртуальных фотонов и виртуальных электроннопозитронных пар, что соответствует учёту небольшого числа «низших» поправок по методу теории возмущений; в мезонной теории это не приводит к успеху, что и создаёт трудности, которые будут рассмотрены в разделе IV.
Все приведённые выше рассуждения о «шубе» частиц являются, строго говоря, полуинтуитивными и не могут быть пока переведены на язык точной теории. Однако они могут быть полезными хотя бы потому, что помогают уяснить отличие математической частицы от физической и понять, что описание последней является далеко не простой задачей.
2. Поляризация вакуума. Перенормировка заряда. Электрическое (и в первую очередь кулоновское) поле заряженной частицы оказывает влияние на распределение виртуальных электронно-позитронных пар (и пар любых других заряженных частиц-античастиц). Реальный электрон притягивает виртуальные позитроны и отталкивает виртуальные электроны. Это должно приводить к явлениям, напоминающим поляризацию среды, в которую вносится заряженная частица. Для описания таких явлений опять применим метод возмущений.
Поляризация электронно-позитронного вакуума (принято использовать подсказываемый приведённой аналогией термин) является чисто квантовым эффектом, вытекающим из К. т. п. Эта поляризация приводит к тому, что электрон оказывается окруженным плотным слоем позитронов из виртуальных пар, так что эффективный заряд электрона должен существенно изменяться. Возникает экранировка заряда, т. е. его эффективное уменьшение. Если рассматривать «затравочные» частицы как точечные, то экранировка оказывается полной, т. е. эффективный заряд нулевым (проблема «заряда нуль»). Для преодоления этой трудности используется идея перенормировки заряда. Здесь почти дословно повторяются приводившиеся при обсуждении перенормировки массы аргументы. Назовём «затравочным» заряд, который был бы у частицы, если бы исчезло взаимодействие с электронно-позитронным вакуумом (будем говорить только о нём, хотя, конечно, нужно учитывать и влияние виртуальных пар др. полей). Наличие такого взаимодействия приводит к появлению «поправки» к заряду. Корректно вычислять её физики не умеют, как не умеют и определять «затравочный» заряд. Но поскольку эти две части заряда ни в эксперименте, ни в теории не выступают порознь, можно обойти трудность, подставляя на место общего заряда величину, непосредственно взятую из опыта. Эта процедура называется перенормировкой заряда. Перенормировки заряда и массы не решают проблем, возникающих в теории точечных частиц, они лишь изолируют эти проблемы на некотором этапе теории и (что весьма важно) дают возможность выделить конечные наблюдаемые части из бесконечных значений для некоторых величин, характеризующих физические частицы.
3. Некоторые наблюдаемые«вакуумные» эффекты. Существует возможность экспериментально наблюдать влияние«вакуума» на частицы. Оказывается, что «шуба» физических частиц зависит оттого, какие внешние поля действуют на эту частицу. Иначе говоря, полевые добавки к энергии частицы зависят от её состояния. Общая полевая энергия, как уже говорилось, получается в теории точечных частиц бесконечно большой, но из этой бесконечно большой величины можно выделить конечную часть, которая меняется в зависимости от состояния частицы и поэтому может быть обнаружена на опыте.
Лэмбовский сдвиг уровня. В атоме водорода (и некоторых др. лёгких атомах) имеются два состояния – 2S1/2 и 2P1/2, энергии которых, согласно квантовой механике, должны совпадать. В то же время картина движения электронов в этих состояниях различна. Образно говоря, S-электрон (электрон в S-состоянии) проводит основную часть своего времени вблизи ядра, а Р-электрон в среднем находится на большем удалении от ядра. Поэтому S-электрон в среднем находится в более сильном поле, чем Р-электрон. Это приводит к тому, что добавки к энергии за счёт взаимодействия с фотонным вакуумом у Р-электрона и у S-электрона оказываются разными, что можно пояснить наглядно. Как уже говорилось, взаимодействие с вакуумом как бы раскачивает, трясёт электрон. Вместо того чтобы двигаться по некоторой устойчивой, например круговой, орбите радиуса r (примем опять этот классический образ), электрон начинает хаотически отклоняться то в одну, то в другую сторону от этой орбиты. При отклонении в каждую сторону на Dг энергия меняется по-разному. Действительно, кулоновская энергия электрона в поле ядра меняется по закону: Епотенц. ~ 1/r; при увеличении r на Dг энергия изменяется на величину , а при уменьшении r на Dr, на величину , т. е. абсолютное значение больше, чем DE. Это приводит к тому, что «вакуумное дрожание» электрона меняет значение его потенциальной энергии. Особенно заметно это изменение там, где сама потенциальная энергия велика и быстро меняется с изменением r, т. е. вблизи ядра. Т. о., для S-электронов вакуумные добавки к энергии (они называются радиационными поправками) должны быть больше, чем для Р-электронов, что и «раздвигает» уровни их энергии, которые без этого совпадали бы. Величина расщепления, называемая лэмбовским сдвигом уровней (впервые он был теоретически объяснён Х. Бете и обнаружен экспериментально в 1947 американскими физиками У. Лэмбом и Р. Резерфордом), согласно К. т. п., оказывается равной (если выражать её в единицах частоты n): для водорода 1057,77 Мгц, для дейтерия 1058,9 Мгц, для гелия 14046,3 Мгц (переход к энергетическим единицам – эргам – производится по формуле E = hn, где n выражено в гц). Эти значения находятся в таком хорошем соответствии с данными эксперимента, что дальнейшее увеличение экспериментальной точности приведёт уже к обнаружению эффектов, обусловленных не электромагнитными взаимодействиями, а так называемыми сильными взаимодействиями.
Аномальный магнитный момент. Не менее замечательна точность, с которой вычисляется аномальный магнитный момент электрона, также отражающий «вакуумные» (радиационные) влияния на эту частицу. Из квантовой теории электрона П. Дирака следует, что электрон должен обладать магнитным моментом
. (12)
Но это относится к «голому» электрону. Процесс его «облачения» меняет магнитный момент. Включив в рассмотрение взаимодействие электрона с вакуумом, нужно прежде всего заменить заряд (е) и массу (m) идеализированной математической частицы на физические значения этих величин:
m ® m физич., е0 ® ефизич..
Однако этим не исчерпывается учёт наблюдаемых эффектов. Магнитный момент – величина, обусловливающая взаимодействие покоящейся частицы с внешним магнитным полем. Поправки появляющиеся в выражении для энергии такого взаимодействия, естественно интерпретировать как результат появления «вакуумных» добавок к магнитному моменту (эти добавки, впервые теоретически исследованные Ю. Швингером, и называется аномальным магнитным моментом). Аномальный магнитный момент электрона вычислен и измерен с высокой точностью, о чем можно судить по следующим данным:
mтеоретич. = mнормальн. + mанормальн. = m + m = 1,0011596m, (13)
где a – так называемая постоянная тонкой структуры, равная
точнее ; (14)
mэксперим. = (1,0011609±0,0000024) m. (15).
Здесь опять наблюдается поразительное совпадение измеренного магнитного момента электрона и его значения, полученного на основе К. т. п.
Рассеяние света на свете. Существуют и др. описываемые К. т. п. эффекты. Ограничимся рассмотрением ещё одного эффекта, который предсказывается К. т. п. Известно, что для электромагнитных волн справедлив принцип суперпозиции: электромагнитные волны, накладываясь, не оказывают друг на друга никакого влияния. Этот принцип наложения волн без взаимных искажений переходит из классической теории в квантовую, где он принимает форму утверждения об отсутствии взаимодействия между фотонами. Однако положение меняется, если учесть эффекты, обусловленные электронно-позитронным вакуумом.
Диаграмма, изображенная на рис. 9, соответствует следующему процессу: в начальном состоянии имеется два фотона; один из них в точке 1 исчезает, породив виртуальную электронно-позитронную пару; второй фотон поглощается одной из частиц этой пары (на приведённой диаграмме – позитроном) в точке 2. Затем появляются конечные фотоны: один из них рождается в точке 3 виртуальным электроном, а другой возникает в результате аннигиляции пары в точке 4. Эта диаграмма (и бесчисленное множество других, более сложных) показывает, что благодаря виртуальным электронно-позитронным парам должно появляться взаимодействие между фотонами, т. е. принцип суперпозиции должен нарушаться. Нарушения должны проявляться в таких процессах, как рассеяние света на свете (однако эффект этот настолько мал, что его ещё не удалось наблюдать на опыте). Вне экспериментальных возможностей лежит пока и имеющий несколько большую вероятность процесс рассеяния фотонов на внешнем электростатическом поле. Но успехи квантовой электродинамики настолько велики, что не приходится сомневаться в достоверности и этих её предсказаний.
Кроме указанных эффектов, «высшие» поправки, которые вычисляются по методу возмущений (радиационные поправки), появляются в процессах рассеяния заряженных частиц и в некоторых др. явлениях.
IV. Трудности и проблемы квантовойтеории поля
1. Успех, нуждающийся в объяснении. Успехи квантовой электродинамики, о которых говорилось выше, впечатляющи, но не вполне объяснимы. Эти успехи связаны с анализом только простейших, низших диаграмм Фейнмана, учитывающих лишь небольшое число виртуальных частиц, или – на математическом языке – низшие приближения теории возмущений. К каждой из таких диаграмм можно добавлять (рассматривая более высокие приближения) бесчисленное число все более усложняющихся диаграмм высших порядков, включающих всё большее число внутренних линий (каждая такая внутренняя линия отвечает виртуальной частице). Правда, в такие усложненные диаграммы, будет входить всё увеличивающееся число вершин, каждая же вершина вносит в выражение для амплитуды вероятности процесса множитель е, точнее e/. Поскольку внутренние линии имеют два конца (две вершины), добавление каждой внутренней линии, грубо говоря, изменяет амплитуду в e2/ » 1/137 раз. Если записать амплитуду в виде суммы членов с возрастающими степенями величины a = e2/c (математически построение такой суммы, или ряда, и соответствует применению метода теории возмущений), то каждому следующему члену будет соответствовать диаграмма Фейнмана со всё большим числом внутренних линий. Каждый член ряда должен быть поэтому примерно на два порядка (в сто раз) меньше предыдущего. Поэтому, казалось бы, действительно, высшие диаграммы дают ничтожный вклад и могут быть отброшены. Однако более внимательное рассмотрение показывает, что, поскольку число таких отброшенных диаграмм бесконечно велико, оценка их вклада не проста и не очевидна. Задача усложняется ещё и тем, что a выступает в комбинации с множителем, пропорциональным логарифму энергии, так что при высоких энергиях метод возмущений оказывается неэффективным.