355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (КВ) » Текст книги (страница 10)
Большая Советская Энциклопедия (КВ)
  • Текст добавлен: 4 октября 2016, 02:47

Текст книги "Большая Советская Энциклопедия (КВ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 10 (всего у книги 18 страниц)

Квантовая химия

Ква'нтовая хи'мия, область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические связи рассматриваются на основе представлений и методов квантовой механики. Квантовая механика в принципе позволяет рассчитывать свойства атомно-молекулярных систем, исходя только из Шрёдингера уровнения, Паули принципа и универсальных физических постоянных. Различные физические характеристики молекулы (энергия, электрические и магнитные дипольные моменты и др.) могут быть получены как собственные значения операторов соответствующих величин, если известен точный вид волновой функции. Однако для систем, содержащих 2 и более электронов, пока не удалось получить точного аналитического решения уравнения Шрёдингера. Если же использовать функции с очень большим числом переменных, то можно получить приближённое решение, по числовой точности аппроксимирующее сколь угодно точно идеальное решение, Тем не менее, несмотря на использование современных ЭВМ с быстродействием порядка сотен тысяч и даже миллионов операций в секунду, подобные «прямые» решения уравнения Шрёдингера пока что осуществлены только для систем с несколькими электронами, например молекул H2 и LiH. Поскольку химиков интересуют системы с десятками и сотнями электронов, приходится идти на упрощения. Поэтому для описания таких систем были выдвинуты различные приближённые квантовохимические теории, более или менее удовлетворительные в зависимости от характера рассматриваемых задач: теория валентных связей, заложенная в 1927 В. Гейтлером и Ф. Лондоном в Германии, а в начале 30-х гг. развитая Дж. Слейтером и Л. Полингом в США; кристаллического поля теория, предложенная немецким учёным Х. Бете в 1929 и в последующие годы разрабатывавшаяся американским учёным Ван Флеком (своё применение в химии она получила в 1950-е гг. как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена). В конце 1920-х гг. появилась теория молекулярных орбиталей (МО), разработанная Дж. Леннардом-Джонсом (Великобритания), Р. Малликеном (США), Ф. Хундом (Германия) и развивавшаяся затем многими др. исследователями (см. Молекулярных орбиталей метод). Долгое время эти приближённые теории сосуществовали и даже дополняли друг друга. Однако теперь, когда достигнуты огромные успехи в синтезе молекул и определении их структуры, а вычислительная техника получила широкое развитие, симпатии исследователей склонились в сторону теории МО. Это объясняется тем что только теория МО выработала универсальный язык, в принципе пригодный для описания любых молекул, строение которых отличается очень большим разнообразием и сложностью. Теория МО включает наиболее общие физические представления об электронном строении молекул и (что не менее важно) использует математический аппарат, наиболее пригодный для проведения количественных расчётов на ЭВМ.

  Теория МО исходит из того, что каждый электрон молекулы находится в поле всех ее атомных ядер и остальных электронов. Теория атомных орбиталей (АО), описывающая электронное строение атомов, включается в теорию МО как частный случай, когда в системе имеется только одно атомное ядро. Далее, теория МО рассматривает все химические связи как многоцентровые (по числу атомных ядер в молекуле) и тем самым полностью делокализованные. С этой точки зрения всякого рода преимущественная локализация электронной плотности около определённой части атомных ядер есть приближение, обоснованность которого должна быть выяснена в каждом конкретном случае. Представления В. Косселя о возникновении в химических соединениях обособленных ионов (изоэлектронных атомам благородных газов) или воззрения Дж. Льюиса (США) об образовании двухцентровых двухэлектронных химических связей (выражаемых символикой валентного штриха) естественно включаются в теорию МО как некоторые частные случаи.

  В основе теории МО лежит одноэлектронное приближение, при котором каждый электрон считается квазинезависимой частицей и описывается своей волновой функцией. Обычно вводится и др. приближение – одноэлектронные МО получаются как линейные комбинации АО (приближение ЛКАО – МО).

  Если принять указанные приближения, то, используя только универсальные физические постоянные и не вводя никаких экспериментальных данных (разве только равновесные межъядерные расстояния, причём в последнее время всё чаще обходятся и без них), можно проводить чисто теоретические расчёты (расчёты ab initio, лат. «от начала») по схеме метода самосогласованного поля (ССП; метода Хартри – Фока). Такие расчёты ССП – ЛКАО – МО сейчас стали возможны уже для систем, содержащих несколько десятков электронов. Здесь основные трудности заключаются в том, что приходится вычислять громадное количество интегралов. Хотя подобные расчёты являются громоздкими и дорогостоящими, получающиеся результаты не всегда удовлетворительны, во всяком случае, с количественной стороны. Это объясняется тем, что, несмотря на различные усовершенствования схемы ССП (например, введение конфигурационного взаимодействия и др. способов учёта корреляции электронов), исследователи в конечном счёте ограничены возможностями одноэлектронного приближения ЛКАО – МО.

  В связи с этим большое развитие получили полуэмпирические квантовохимические расчёты. Эти расчёты также восходят к уравнению Шрёдингера, но вместо того чтобы вычислять огромное количество (миллионы) интегралов, большую часть из них опускают (руководствуясь порядком их малости), а остальные упрощают. Потерю точности компенсируют соответствующей калибровкой параметров, которые берутся из эксперимента. Полуэмпирические расчёты пользуются большой популярностью, ибо оптимальным образом сочетают в себе простоту и точность в решении различных проблем.

  Описанные выше расчёты нельзя непосредственно сравнивать с чисто теоретическими (неэмпирическими) расчётами, так как у них разные возможности, а отсюда и разные задачи. Ввиду специфики используемых параметров при полуэмпирическом подходе нельзя надеяться получить волновую функцию, удовлетворительно описывающую различные (а тем более все) одноэлектронные свойства. В этом состоит коренное отличие полуэмпирических расчётов от расчётов неэмпирических, которые могут, хотя бы в принципе, привести к универсальной волновой функции. Поэтому сила и привлекательность полуэмпирических расчётов заключаются не в получении количественной информации как таковой, а в возможности интерпретации получаемых результатов в терминах физико-химических концепций. Только такая интерпретация и приводит к действительному пониманию, так как без неё на основании расчёта можно лишь констатировать те или иные количественные характеристики явлений (которые надёжнее определить на опыте). Именно в этой специфической особенности полуэмпирических расчётов и заключается их непреходящая ценность, позволяющая им выдерживать конкуренцию с полными неэмпирическими расчётами, которые по мере развития вычислительной техники становятся всё более легко осуществимыми.

  Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.

  Кроме количественных и полуколичественных расчётов, современная К. х. включает ещё большую группу результатов качественного рассмотрения. Зачастую удаётся получать весьма убедительную информацию о строении и свойствах молекул без всяких громоздких расчётов, используя различные фундаментальные концепции, основанные главным образом на рассмотрении симметрии.

  Соображения симметрии играют важную роль в К. х., так как позволяют контролировать физический смысл результатов приближённого рассмотрения многоэлектронных систем. Например, исходя из точечной группы симметрии молекулы, можно вполне однозначно решить вопрос об орбитальном вырождении электронных уровней независимо от выбора расчётного приближения. Знание степени орбитального вырождения часто уже достаточно для суждения о многих важных свойствах молекулы, таких как потенциалы ионизации, магнетизм, конфигурационная устойчивость и ряд других. Принцип сохранения орбитальной симметрии лежит в основе современного подхода к механизмам протекания согласованных химических реакций (правила Вудворда – Гофмана). Указанный принцип может быть, в конечном счёте, выведен из общего топологического рассмотрения областей связывания и антисвязывания в молекуле.

  Следует иметь в виду, что современная химия имеет дело с миллионами соединений и её научный фундамент не является монолитным. В одних случаях успех достигается уже при использовании чисто качественных представлений К. х., в других – весь её арсенал оказывается недостаточным. Поэтому, оценивая современное состояние К. х., всегда можно привести много примеров, свидетельствующих как о силе, так и о слабости современной квантовохимической теории. Ясно лишь одно: если раньше уровень квантовохимических работ ещё мог определяться технической сложностью применённого расчётного аппарата, то теперь доступность ЭВМ выдвигает на первый план физико-химическую содержательность исследований. С точки зрения внутренних интересов К. х. наибольшую ценность, вероятно, представляют попытки выйти за пределы одноэлектронного приближения. В то же время для утилитарных целей в различных областях химии одноэлектронное приближение таит ещё много неиспользованных возможностей. См. также Химическая связь,Валентность.

  Лит. см. при ст. Валентность и Химическая связь.

  Е. М. Шусторович.

Квантовая эволюция

Ква'нтовая эволю'ция, форма эволюции группы организмов, связанная с резким переходом её из одной адаптивной зоны в другую. Термин «К. э.» введён американским биологом Дж. Г. Симпсоном (1944). В этом смысле «квант» – воздействие, которое, будучи ниже какого-то порога, не даёт реакции, а, превысив этот порог, выводит группу из состояния равновесия и в результате действия жёсткого естественного отбора приводит её либо к гибели, либо к резким изменениям в строении организмов и к появлению новых семейств, подотрядов, отрядов и т.д. К. э. объясняет взрывной характер эволюции многих крупных групп организмов, неожиданно достигавших бурного расцвета. Так, образование к началу третичного периода обширных равнин и появление травянистых покрытосеменных растений, особенно злаков, способствовали прогрессивному изменению строения зубной системы и черепа, а также конечностей у копытных млекопитающих, что привело к резкому увеличению их численности, разнообразию форм и повсеместному расселению.

  Лит.: Симпсон Дж, Г., Темпы и формы эволюции, пер. с англ., М., 1948.

  А. В. Ялоков.

Квантовая электродинамика

Ква'нтовая электродина'мика, квантовая теория электромагнитных процессов; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же К. э. лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля – фотоны, фотоны обладают нулевой массой покоя, энергией E = hn и импульсом р = (h/2p) k, где hПланка постоянная, n – частота электромагнитной волны, k — волновой вектор, ориентированный по направлению распространения волны и имеющий величину k = 2pn/c, с— скорость света. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в К. э. как поглощение и испускание частицами фотонов.

  К. э. количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются К. э., относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (Комптона эффект), излучение и поглощение фотонов атомами и более сложными системами, испускание фотонов при рассеянии быстрых электронов во внешних полях (тормозное излучение) и т.п. К. э. с высокой степенью точности описывает эти явления, а также любые др. явления взаимодействия электромагнитного излучения с электронами и позитронами. Меньший успех теории при рассмотрении др. процессов обусловлен тем, что в этих процессах, кроме электромагнитных взаимодействий, играют определяющую роль и взаимодействия иных типов (сильные взаимодействия,слабые взаимодействия).

  Последовательное построение К. э. привело к пересмотру классических представлений о законах движения материи.

  Лит. см. при ст. Квантовая теория поля.

  В. И. Григорьев.

Квантовая электроника

Ква'нтовая электро'ника, область физики, изучающая методы усиления и генерации электромагнитных колебаний, основанные на использовании эффекта вынужденного излучения, а также свойства квантовых усилителей и генераторов и их применения. Практический интерес к квантовым генераторам света (лазерам) обусловлен прежде всего тем, что они, в отличие от др. источников света, излучают световые волны с очень высокой направленностью и высокой монохроматичностью. Квантовые генераторы радиоволн отличаются от др. радиоустройств высокой стабильностью частоты генерируемых колебаний, а квантовые усилители радиоволн – предельно низким уровнем шумов.

  Физические основы квантовой электроники. Свет и радиоволны являются электромагнитным излучением, порции которого кванты (или фотоны) могут испускаться атомами, молекулами и др. квантовыми системами, обладающими некоторой избыточной внутренней энергией (возбуждёнными частицами). Внутренняя энергия атома (или молекулы) может принимать только лишь некоторые строго определённые дискретные значения, называемые уровнями энергии. Уменьшение внутренней энергии означает переход атома с более высокого уровня энергии на более низкий. Если при этом избыток энергии отдаётся в виде кванта излучения, то частота излучаемых волн n определяется условием Бора:

n = ,     (1)

где h = 6,62×10–27эрг×сек – Планка постоянная. Аналогично увеличение внутренней энергии атома означает его переход с нижнего уровня E1 на верхний E2. Если это увеличение связано с поглощением кванта излучения, то частота поглощаемого излучения определяется тем же условием (1). Т. о., условие (1) определяет частоту спектральной линии поглощения или излучения, характерную для данных частиц. Взаимодействие частиц с окружающими их частицами и полями, а также «краткость их жизни на уровне» приводят к «размытию» уровней энергии. В результате условие (1) выполняется не для одного фиксированного значения частоты n, а для интервала значений частот, при этом спектральные линии приобретают ширину (см. Ширина спектральных линий).

  Возбуждённые частицы могут отдавать свою энергию в виде квантов излучения двумя способами. Возбуждённые частицы неустойчивы, и для каждой из них существует определённая вероятность самопроизвольно (спонтанно) испустить квант излучения (рис. 1, а). Акты спонтанного испускания происходят случайно Поэтому спонтанное излучение носит хаотический характер. Фотоны испускаются различными частицами в различные моменты времени, имеют разную частоту, поляризацию и направление распространения. Интенсивность спонтанного излучения пропорциональна кубу частоты и поэтому резко падает при переходе от световых волн к радиоволнам. Все нелазерные источники света (лампы накаливания, газоразрядные лампы и т.п.) излучают свет в результате актов спонтанного излучения. В радиодиапазоне такой же характер имеют шумы электронных устройств и тепловое радиоизлучение нагретых тел.

  Возбуждённые частицы могут испускать фотоны, переходя с верхнего уровня энергии E2 на нижний уровень E1 не только самопроизвольно, но и под воздействием внешнего излучения (вынужденно), если частота этого внешнего излучения удовлетворяет условию (1) (рис. 1, б). Вероятность вынужденного испускания, предсказанного А. Эйнштейном (1917), пропорциональна интенсивности вынуждающего излучения и может превосходить вероятность спонтанного процесса. Т. о., в процесс вынужденного испускания вовлечены два кванта излучения: первичный, вынуждающий, и вторичный, испущенный возбуждённым атомом. Существенно, что вторичные кванты неотличимы от первичных. Они обладают в точности такой же частотой, фазой, поляризацией и направлением распространения. На эту особенность вынужденного излучения, имеющую основополагающее значение для К. э., впервые указал П. Дирак (1927). Тождественные кванты формируют электромагнитную волну, являющуюся точной усиленной копией исходного излучения. С ростом числа актов вынужденного испускания в 1 сек интенсивность волны возрастает, а её частота, фаза, поляризация и направление распространения остаются неизменными. Происходит когерентное усиление электромагнитного излучения (см. Когерентность).

  Для одной частицы вынужденные переходы с верхнего уровня E2 энергии на нижний E1 (испускание фотона, рис. 1, б) и с нижнего на верхний (поглощение фотона, рис. 1, в) одинаково вероятны. Поэтому когерентное усиление волны возможно только при превышении числа возбуждённых частиц над невозбуждёнными. В условиях равновесия термодинамического число возбуждённых частиц меньше числа невозбуждённых, т. е. верхние уровни энергии населены частицами меньше, чем нижние, в соответствии с распределением Больцмана частиц по уровням энергии (рис. 2; см. Больцмана статистика). При взаимодействии излучения с таким веществом произойдёт поглощение излучения.

  Чтобы получить эффект усиления, необходимо принимать специальные меры для того, чтобы число возбуждённых частиц превышало число невозбуждённых. Состояние вещества, при котором хотя бы для двух уровней энергии частиц верхний уровень оказался более населённым, чем нижний, называется состоянием с инверсией населённостей. Такое вещество в К. э. называется активным (активной средой). В К. э. используется вынужденное излучение в активной среде для усиления (квантовый усилитель) и генерации (квантовый генератор) электромагнитных волн. Необходимая для генерации обратная связь осуществляется помещением активной среды в объёмный резонатор, в котором могут возбуждаться стоячие электромагнитные волны. В какой-то точке резонатора неизбежно происходит спонтанный переход частицы активной среды с верхнего уровня на нижний, т. е. самопроизвольно испускается фотон. Если резонатор настроен на частоту этого фотона, то фотон не выходит из резонатора, а, многократно отражаясь от его стенок, порождает множество себе подобных фотонов, которые, в свою очередь, воздействуют на активное вещество, вызывая всё новые акты вынужденного испускания таких же фотонов (обратная связь), В результате такого «размножения» фотонов в резонаторе накапливается электромагнитная энергия, часть которой выводится наружу с помощью специальных устройств (например, полупрозрачного зеркала для световых волн). Если в какой-то момент мощность вынужденного излучения превышает мощность потерь энергии на нагрев стенок резонатора, рассеяние излучения и т.п., а также на полезное излучение во внешнее пространство (т. е. если выполнены условия самовозбуждения), то в резонаторе возникают незатухающие колебания, т. е. возбуждается генерация (см. Генерирование электрических колебаний).

  В силу свойств вынужденного излучения эти колебания монохроматичны. Все частицы активного вещества работают синфазно. Их заставляет работать синфазно обратная связь. Значение частоты такого генератора с высокой степенью точности совпадает с частотой излучения возбуждённых частиц, хотя оно существенно зависит также от расстройки частоты резонатора относительно частоты излучения частиц. Интенсивность генерации определяется числом возбуждаемых частиц в сек в каждом см3 активной среды. Если число таких частиц L, то максимально возможная мощность Р непрерывного излучения в см3 среды составляет:

P = Lhn     (2)

  Исторический очерк. Несмотря на то что положения Эйнштейна и Дирака о вынужденном излучении формировались применительно к оптике, развитие К. э. началось в радиофизике. В условиях термодинамического равновесия оптические (верхние) уровни энергии практически не заселены, возбуждённых частиц в веществе очень мало и на нижние уровни энергии они переходят спонтанно, так как при малых плотностях световой энергии спонтанные переходы более вероятны, чем вынужденные. Поэтому, хотя понятие монохроматичности возникло в оптике (см. Монохроматический свет), именно в оптике отсутствовали строго гармонические колебания и волны, т. е. колебания с постоянными амплитудой, частотой и фазой. В радиофизике, наоборот, вскоре после создания первых искровых радиопередатчиков развивается техника получения гармонических колебаний, создаваемых генераторами с колебательными контурами и регулируемой положительной обратной связью. Немонохроматичность излучений оптического диапазона и отсутствие в оптике методов и концепций, хорошо развитых в радиофизике, в частности понятия обратной связи, послужили причиной того, что мазеры появились раньше лазеров.

  В 1-й половине 20 в. радиофизика и оптикаразвивались разными путями. В оптике развивались квантовые представления, в радиофизике – волновые. Общность радиофизики и оптики, обусловленная общностью квантовой природы электромагнитных волновых процессов, не проявлялась до тех пор, пока не возникла радиоспектроскопия, изучающая спектры молекул, атомов, ионов, попадающие в диапазон СВЧ (1010—1011гц). Важной особенностью радиоспектроскопических исследований (в отличие от оптических) было использование источников монохроматического излучения. Это привело к гораздо более высокой чувствительности, разрешающей способности и точности радиоспектроскопов по сравнению с оптическими спектроскопами. Не менее важным явилось и то обстоятельство, что в радиодиапазоне, в отличие от оптического диапазона, возбуждённые уровни в условиях термодинамического равновесия сильно населены, а спонтанное излучение гораздо слабее. В результате вынужденное излучение непосредственно сказывается на величине наблюдаемого резонансного поглощения радиоволн исследуемым веществом. Причиной заселения возбуждённых уровней является тепловое движение частиц. При комнатных температурах тепловому движению соответствует энергия ~ 4×10–14эрг. Для видимого света с длиной волны l = 0,5 мкм частота колебаний n = 6×1014гц, а энергия кванта hn = 1×10–12эрг. Для радиоизлучения с длиной волны l = 0,5 см частота колебаний n = 6×1010гц, энергия квантов hn = 4×10–16эрг. Следовательно, тепловое движение может сильно населять возбуждённые радиоуровни и не может населять возбуждённые оптические уровни.

  Перечисленные факторы привели к тому, что радиоспектроскопия стала базой работ по К. э. В СССР работы по радиоспектроскопии газов были начаты в лаборатории колебаний Физического института АН СССР (А. М. Прохоров), где наряду с решением чисто спектроскопических задач исследования шли также и в направлении использования спектральных линий СВЧ для создания стандартов частоты.

  Точность стандарта частоты, основанного на измерении положения резонансной линии поглощения, зависит от ширины спектральной линии. Чем уже' линия, тем выше точность. Наиболее узкими линиями обладают газы, так как в газах частицы слабо взаимодействуют друг с другом. Вместе с тем тепловое хаотическое движение частиц газа вызывает в силу Доплера эффекта так называемое доплеровское уширение спектральных линий. Эффективным методом устранения влияния этого уширения является переход от хаотического движения к упорядоченному движению, например переход от газов к молекулярным пучкам. Но в этом случае возможности радиоспектроскопа сильно ограничены малой интенсивностью резонансных линий. В пучке мало частиц и, следовательно, разница в числе возбуждённых и невозбуждённых частиц незначительна. На этом этапе работы возникла мысль о том, что, искусственно изменив соотношение между числом возбуждённых и невозбуждённых частиц, можно существенно повысить чувствительность радиоспектроскопа. Более того, создав инверсию населённостей в пучке, вместо поглощения радиоволн можно получить их усиление. Если же некоторая система усиливает радиоизлучение, то при соответствующей обратной связи она может генерировать это излучение. В радиофизике теория генерирования была хорошо разработана. Существенными элементами радиотехнических генераторов являются колебательные контуры. В области СВЧ роль контуров играют объёмные резонаторы, особенно удобные для работы и с пучками частиц. Т. о., именно в радиофизике существовали все необходимые элементы и предпосылки для создания первого квантового генератора. В первом приборе К. э. – молекулярном генераторе, созданном в 1955 одновременно в СССР (Н. Г. Басов, А. М. Прохоров) и в США (Дж. Гордон, Г. Зейгер, Ч. Таунс), активной средой являлся пучок молекул аммиака NH3. Для создания инверсии населённостей применялся метод электростатической пространственной сортировки. Из пучка молекул MH3 выбирались более возбуждённые молекулы и отбрасывались в сторону молекулы, обладавшие меньшей энергией. Отсортированный пучок пропускался через объёмный резонатор, в котором при выполнении условий самовозбуждения возникала генерация (см. Молекулярный генератор). Частота генератора с высокой степенью точности совпадала с частотой излучения возбуждённых молекул NH3 и поэтому была чрезвычайно стабильна. Относительная стабильность частоты составляет 10–11—10–12. Появление молекулярных генераторов открыло новые возможности в создании сверхточных часов и точных навигационных систем. Их погрешность ~1 сек за 300 000 лет. Аналогичные по принципу действия, созданные позднее водородные генераторы имеют ещё большую стабильность частоты ~10–13 (см. Квантовые стандарты частоты,Квантовые часы).

  То обстоятельство, что К. э. родилась в радиодиапазоне, объясняет возникновение термина «квантовая радиофизика», иногда используемого вместо термина «К. э.», который имеет более общий смысл, охватывая и оптический диапазон.

  Получение инверсии населённостей путём отбора возбуждённых частиц не всегда возможно, в частности это невозможно в твёрдых телах. Кроме того, на высоких оптических уровнях при не слишком высоких температурах возбуждённых частиц практически нет. Поэтому уже в 1955 был предложен новый метод создания инверсии населённостей (Н. Г. Басов, А. М. Прохоров), в котором возбуждённые частицы не отбираются из имеющегося количества, а создаются. Этот метод, известный под названием метода трёх уровней, состоит в том, что на частицы, в энергетическом спектре которых есть три уровня E1, E2, E3(рис. 3, а), воздействуют мощным вспомогательным излучением (накачка), которое, поглощаясь частицами, «перекачивает» их с уровня E1 на уровень E3 Накачка должна быть достаточно интенсивной, тогда на верхний уровень E3 с нижнего E1 перебрасывается столько частиц, что их количество может стать практически одинаковым (рис. 3, б). При этом на уровне E2 может оказаться больше частиц, чем на уровне E1 (либо на уровне E3больше, чем на уровне E2), т. е. для уровней E2, E1 (или E3 и E2) будет иметь место инверсия населённостей. Частота nH излучения накачки соответствует резонансным условиям поглощения, т. е.

nн = (E3 – E1)/h.

  Метод трёх уровней был применен по предложению Н. Бломбергена (1956, США) для создания квантовых усилителей радиодиапазона на парамагнитных кристаллах. Квантовые усилители обычно работают при температуре жидкого гелия (4,2 К), когда практически все частицы находятся на самом нижнем уровне энергии. При накачке половина всех имеющихся в кристалле частиц переводится на верхний уровень E2 и участвует в когерентном усилении. Если молекулярный генератор удовлетворил потребность электроники в высокостабильном источнике монохроматических колебаний, то квантовый усилитель решил др. важнейшую проблему радиофизики – проблему резкого уменьшения шумов, т. е. увеличения чувствительности радиоприёмников СВЧ. Поэтому квантовые усилители нашли применение в радиоастрономии,радиолокации, линиях глобальной и космической связи.

  Успехи К. э. поставили вопрос о её продвижении в сторону более коротких волн. При этом существенную трудность представляла разработка резонаторов. В диапазоне СВЧ применяют закрытые полости с проводящими стенками, размеры которых сравнимы с длиной волны. Для оптического излучения резонаторы такого типа изготовить невозможно. В 1958 был предложен открытый резонатор (А. М. Прохоров). В субмиллиметровом диапазоне резонатор представлял собой два параллельных, хорошо отражающих металлических диска, между которыми возникает система стоячих волн. Для света этот резонатор сводился к двум параллельным зеркалам и подобен интерферометру Фабри – Перо.

  Первым достижением К. э. в оптическом диапазоне явилось создание в 1960 лазера (Т. Мейман, США). В качестве рабочего вещества в нём использовался монокристалл рубина, а для получения инверсии населённости был применен метод трёх уровней. Отражающими зеркалами резонатора служили хорошо отполированные и посеребрённые торцы кристалла рубина. Источником накачки была лампа – вспышка. Рубиновые лазеры наряду с лазерами на стекле с примесью неодима дают рекордные энергии и мощности. В режиме свободной генерации большие кристаллы рубина при мощной накачке дают в импульсе энергию до 1000 дж (мощность до 106вт). Другой режим рубиновых лазеров достигается включением зеркал резонатора лишь в определённые моменты времени, когда инверсия населённостей достигает максимальной величины, Тогда все накопленные на метастабильном уровне частицы излучают практически сразу, и генератор выдаёт гигантский импульс излучения очень короткой длительности (10–8—10–9сек) со сравнительно небольшой энергией (около 3 дж.). Но так как эта энергия излучается в очень короткое время, то пиковая мощность импульса достигает значений 3×106—3×106вт.


    Ваша оценка произведения:

Популярные книги за неделю