355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (КВ) » Текст книги (страница 11)
Большая Советская Энциклопедия (КВ)
  • Текст добавлен: 4 октября 2016, 02:47

Текст книги "Большая Советская Энциклопедия (КВ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 11 (всего у книги 18 страниц)

  Вскоре после рубинового лазера был разработан первый газовый лазер (А. Джаван, У. Беннетт, Д. Гарриот: 1960. США) на смеси атомов неона и гелия. Затем появился полупроводниковый инжекционный лазер (Р. Хол, а также У. Думке с сотрудниками; 1962, США). В газовых лазерах получение инверсии населённости достигается не световой накачкой, а при соударениях атомов или молекул рабочего газа с электронами или ионами, имеющимися в электрическом разряде. Среди газовых лазеров выделяются гелий-неоновый лазер и лазер на смеси углекислого газа, азота и гелия (СО2 – лазер), которые могут работать, как в импульсном, так и в непрерывном режимах. С помощью гелий-неонового лазера получены световые колебания очень высокой стабильности (~ 10–13) и высокой монохроматичности (Dn = 1 гц при частоте 1014гц). Хотя кпд этого лазера крайне невелик (0,01%), именно высокая монохроматичность и направленность его излучения (обусловленные, в частности, однородностью его активной среды) сделали этот лазер незаменимым при всякого рода юстировочных и нивелировочных работах. Мощный СО2 – лазер (К. Пател, 1964, США) генерирует инфракрасное излучение (l = 10,6 мкм). Его кпд, достигающий 30%, превосходит кпд всех существующих лазеров, работающих при комнатной температуре. Особенно перспективен газодинамический лазер на СО2. С его помощью можно получить в непрерывном режиме мощность в десятки квт. Монохроматичность, направленность и высокая мощность делают его весьма перспективным для целого ряда технологических применений.

  В полупроводниковых лазерах инверсия достигается главным образом при инжекции носителей тока через электронно-дырочный переход соответствующим образом легированного полупроводника. Имеется довольно много полупроводниковых материалов, из которых изготовляются лазеры в широком диапазоне длин волн. Наиболее распространённым из них является арсенид галлия (GaAs), который при температуре жидкого азота может излучать в непрерывном режиме в ближней инфракрасной области мощность до 10 вт при кпд = 30%. Изменяя ток инжекции, можно достаточно безынерционно управлять мощностью, генерируемой инжекционными лазерами. Это делает перспективным их применение в быстродействующих вычислительных машинах и в системах связи.

  Для получения инверсии населённости в парамагнитном квантовом усилителе, в рубиновом лазере, в газовых и полупроводниковых лазерах и др. используются совершенно различные физические явления. Но единым и главным фактором для всех методов создания инверсии населённости является необходимость преодоления процессов, направленных к восстановлению равновесной населённости. Препятствовать процессам восстановления равновесной населённости можно, только затрачивая энергию, поступающую от внешнего источника питания. При этом в лазерное излучение преобразуется, как правило, малая доля энергии накачки. В режиме свободной генерации кпд рубинового лазера меньше 1%, в режиме гигантских импульсов ещё меньше. Однако «проигрыш» в количестве энергии излучения компенсируется в К. э. выигрышем в его «качестве», монохроматичности и направленности излучения, обусловленных свойствами вынужденного излучения.

  Монохроматичность и высокая направленность позволяют сфокусировать всю энергию лазерного излучения в пятно с размерами, близкими к длине волны излучения. В этом случае электрическое поле световой волны достигает значений, близких к внутриатомным полям. При взаимодействии таких полей с веществом возникают совершенно новые явления.

  Применения К. э. революционизировали радиофизику СВЧ и оптику. Наиболее глубокие преобразования К. э. внесла в оптику. В радиофизике создание мазеров означало появление радиоустройств хотя принципиально и новых, но вместе с тем обладающих привычными для радиоинженера свойствами. И до появления К. э. в радиофизике существовали когерентные усилители и монохроматические генераторы. К. э. лишь резко улучшила чувствительность усилителей (в 103 раз) и стабильность частоты генераторов (в десятки тысяч раз). В оптике же все источники света до появления лазеров не обладали ни сколько-нибудь заметной направленностью, ни монохроматичностью. Создание лазеров означало появление источников света, обладающих совершенно новыми свойствами. Это дало невиданную ранее в оптике возможность концентрировать энергию излучения как в пространстве, так и в узком частотном интервале.

  Промышленность выпускает различные типы лазеров, которые используются не только как эффективный инструмент научных исследований, но и для решения разного рода практических задач. Основные преимущества лазерного воздействия – малая область распространения тепла, отсутствие переноса электрических зарядов и механического контакта, возможность работать внутри вакуумных баллонов и в агрессивных газах. Одним из первых применений лазеров было измерение расстояния до Луны с большей точностью, чем это было сделано радиофизическим методом. После того как на Луне был установлен уголковый отражатель, расстояние до неё было измерено с точностью до 1,5 м. Существует лазерная локационная служба расстояния Земля – Луна.

  Новые возможности открыло применение лазеров в оптических линиях связи. Развитие оптических линий связи с их задачами модуляции колебаний,детектирования, гетеродинирования, преобразования частоты световых колебаний потребовало переноса в оптику методов радиофизики и теории колебаний.

  Возникла нелинейная оптика, изучающая нелинейные оптические эффекты, характер которых зависит от интенсивности света (самофокусировка света, генерация оптических гармоник, вынужденное рассеяние света, параметрическая генерация света, самопросветление или самозатемнения света). Методами нелинейной оптики создан новый класс перестраиваемых по частоте источников когерентного излучения в ультрафиолетовом диапазоне. Нелинейные явления в оптике существуют только в узком диапазоне интенсивностей лазерного излучения. При малых интенсивностях нелинейные оптические эффекты отсутствуют, затем по мере роста интенсивности они возникают, возрастают, но уже при потоках интенсивности 1014 вт/см2 все известные вещества разрушаются лазерным лучом и превращаются в плазму. Получение и исследование лазерной плазмы является одним из наиболее интересных применений лазеров. Осуществлен термоядерный синтез, инициируемый лазерным излучением.

  Благодаря высокой концентрации электромагнитной энергии в пространстве и по спектру лазеры находят широкое применение в микробиологии, фотохимии, химическом синтезе, диссоциации, катализе. К. э. привела к развитию голографииметода получения объёмных изображений предметов восстановлением структуры световой волны, отражённой предметом.

  Работы по К. э. были отмечены Нобелевской премией 1964 по физике (Н. Г. Басов, А. М. Прохоров, СССР, и Ч. Таунс, США).

  Лит.: Квантовая электроника. Маленькая энциклопедия, М., 1969; Фабрикант В., Классика, кванты и квантовая электроника, «Наука и жизнь», 1965, № 10; Прохоров А. М., Квантовая электроника, «Успехи физических наук», 1965, т. 85, в. 4; Басов Н. Г., Полупроводниковые квантовые генераторы, там же, 1965, т. 85, в. 4; Шавлов А., Современные оптические квантовые генераторы, там же, 1963, т. 81, в. 4; Таунс Ч., Получение когерентного излучения с помощью атомов и молекул, там же, 1966, т. 88, в. 3.

  Н. В. Карлов.

Рис. 3. Метод трех уровней: а – населённости уровней при отсутствии накачки; б – мощное вспомогательное излучение накачки уравнивает населенности уровней Е1 и Е3, создавая тем самым инверсию населенностей уровня Е2 по отношению к уровню Е1.

Рис. 1. a – спонтанное излучение фотона; б – вынужденное излучение; в – резонансное поглощение; Е1 и Е2 – уровни энергии атома.

Рис. 2. Распределение частиц по уровням энергии Е, Е1, Е2, Е3, Е4, Е5 в соответствии со статистикой Больцмана; N – число частиц на уровне.

Квантовые переходы

Ква'нтовые перехо'ды, скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, твёрдого тела) из одного состояния в другое. Наиболее важными являются К. п. между стационарными состояниями, соответствующими различной энергии квантовой системы, – К. п. системы с одного уровня энергии на другой. При переходе с более высокого уровня энергии Ek на более низкий Ei система отдаёт энергию Ek – Ei, при обратном переходе – получает её (рис.). К. п. могут быть излучательными и безызлучательными. При излучательных К. п. система испускает (переход Ek ® Ei) или поглощает (переход Ei ® Ek) квант электромагнитного излучения – фотон — энергии hn (n – частота излучения, hПланка постоянная), удовлетворяющей фундаментальному соотношению

Ek – Ei = hn,     (1)

(которое представляет собой закон сохранения энергии при таком переходе). В зависимости от разности энергий состояний системы, между которыми происходит К. п., испускаются или поглощаются фотоны радиоизлучения, инфракрасного, видимого, ультрафиолетового, рентгеновского излучения, g-излучения. Совокупность излучательных К. п. с нижних уровней энергии на верхние образует спектр поглощения данной квантовой системы, совокупность обратных переходов – её спектр испускания (см. Спектры оптические).

  При безызлучательных К. п. система получает или отдаёт энергию при взаимодействии с др. системами. Например, атомы или молекулы газа при столкновениях друг с другом или с электронами могут получать энергию (возбуждаться) или терять её.

  Важнейшей характеристикой любого К. п. является вероятность перехода, определяющая, как часто происходит данный К. п. Вероятность перехода измеряют числом переходов данного типа в рассматриваемой квантовой системе за единицу времени (1 сек); поэтому она может принимать любые значения от 0 до ¥ (в отличие от вероятности единичного события, которая не может превышать 1). Вероятности переходов рассчитываются методами квантовой механики.

  Ниже будут рассмотрены К. п. в атомах и молекулах (о К. п. в твёрдом теле,ядре атомном см. в этих статьях).

  Излучательные квантовые переходы могут быть спонтанными («самопроизвольными»), не зависящими от внешних воздействий на квантовую систему (спонтанное испускание фотона), и вынужденными, индуцированными – под действием внешнего электромагнитного излучения резонансной [удовлетворяющей соотношению (1)] частоты n (поглощение и вынужденное испускание фотона). Поскольку спонтанное испускание возможно, квантовая система находится на возбуждённом уровне энергии Ek некоторое конечное время, а затем скачкообразно переходит на какой-нибудь более низкий уровень. Средняя продолжительность tk пребывания системы на возбуждённом уровне Ek называется временем жизни на уровне. Чем меньше tk, тем больше вероятность перехода системы в состояние с низшей энергией. Величина Ak = 1/tk, определяющая среднее число фотонов, испускаемых одной частицей (атомом, молекулой) в 1 сек (tk выражается в сек), называется вероятностью спонтанного испускания с уровня Ek. Для простейшего случая спонтанного перехода с первого возбуждённого уровня E2 на основной уровень E1 величина A2 = 1/t2 определяет вероятность этого перехода; её можно обозначить A21. С более высоких возбуждённых уровней возможны К. п. на различные нижние уровни (рис.). Полное число Ak фотонов, испускаемых в среднем одной частицей с энергией Ek за 1 сек, равно сумме чисел Aki фотонов, испускаемых при отдельных переходах:

,     (2)

т. е. полная вероятность Ak спонтанного испускания с уровня Ek равна сумме вероятностей Aki отдельных спонтанных переходов Ek ® Ei, величина Aki называется коэффициентом Эйнштейна для спонтанного испускания при таком переходе. Для атома водорода Aki ~ (107– 108) сек–1.

  Для вынужденных К. п. число переходов пропорционально плотности rn излучения частоты n = (Ek – Ei)/h, т. е. энергии фотонов частоты n, находящихся в 1 см3. Вероятности поглощения и вынужденного испускания характеризуются соответственно коэффициентами Эйнштейна Bik и Bki, равными числам фотонов, поглощаемых и соответственно вынужденно испускаемых в среднем одной частицей за 1 сек при плотности излучения, равной единице. Произведения Bikrn и Bkirn определяют вероятности вынужденного поглощения и испускания под действием внешнего электромагнитного излучения плотности rn и, так же как Aki, выражаются в сек–1.

  Коэффициенты Aki, Bik и Bki связаны между собой соотношениями (впервые полученными А. Эйнштейном и строго обоснованными в квантовой электродинамике):

gkBki = giBik,              (3)

,     (4)

где gi(gk) кратность вырождения уровня Ei (Ek), т. е. число различных состояний системы, имеющих одну и ту же энергию Ei (соответственно Ek), с — скорость света. Для переходов между невырожденными уровнями (gi = gk = 1) Bki = Bik, т. е. вероятности вынужденных К. п. – прямого и обратного – одинаковы. Если один из коэффициентов Эйнштейна известен, то по соотношениям (3) и (4) можно определить остальные.

  Вероятности излучательных переходов различны для разных К. п. и зависят от свойств уровней энергии Ei и Ek, между которыми происходит переход. Вероятности К. п. тем больше, чем сильнее изменяются при переходе электрические и магнитные свойства квантовой системы, характеризуемые её электрическими и магнитными моментами. Возможность излучательных К. п. между уровнями Ei и Ek с заданными характеристиками определяется отбора правилами. (Подробнее см. Излучение электромагнитное.)

  Безызлучательные квантовые переходы также характеризуются вероятностями соответствующих переходов Cki и Cik,средними числами процессов отдачи и получения энергии Ek – Ei в 1 сек, рассчитанными на одну частицу с энергией Ek (для процесса отдачи энергии) или энергией Ei (для процесса получения энергии). Если возможны как излучательные, так и безызлучательные К. п., то полная вероятность перехода равна сумме вероятностей переходов обоих типов. Учёт безызлучательных К. п. играет существенную роль, когда его вероятность того же порядка или больше соответствующего К. п. с излучением. Например, если с первого возбуждённого уровня E2возможен спонтанный излучательный переход на основной уровень E1 с вероятностью A21 и безызлучательный переход на тот же уровень с вероятностью C21, то полная вероятность перехода равна A21 + C21, а время жизни на уровне равно t'2 = 1/(A21 + C21) вместо t2 = 1/ A2при отсутствии безызлучательного перехода. Т. о., за счёт безызлучательных К. п. время жизни на уровне уменьшается. При A21 >> C21 время t'2 очень мало по сравнению с t'2, и подавляющее большинство частиц будет терять энергию возбуждения E2 – E1 при безызлучательных процессах – будет происходить тушение спонтанного испускания.

  Лит. см. при ст. Атом,Молекула,Спектры оптические.

  М. А. Ельяшевич.

Часть уровней квантовой системы: Е1 – основной уровень (уровень с наименьшей возможной энергией), Е2, Е3, Е4 – возбуждённые уровни. Стрелками показаны квантовые переходы с поглощением (направление вверх) и с отдачей энергии (направление вниз).

Квантовые стандарты частоты

Ква'нтовые станда'рты частоты', устройства, в которых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые переходы частиц (атомов, молекул, ионов) из одного энергетическое состояния в другое. К. с. ч. позволяют измерять частоту колебаний, а следовательно, и их период, т. е. время, с наибольшей точностью по сравнению с др. стандартами частоты (см. Частоты стандарт,Время). Это привело к их внедрению в метрологию. К. с. ч. служат основой национальных эталонов частоты и времени и вторичных эталонов частоты, которые по классу точности и метрологическим возможностям приближаются к национальному эталону, но подлежат калибровке по нему. К. с. ч. применяются как лабораторные стандарты частоты, имеющие широкий набор выходных частот и снабженные устройством для сравнения измеряемой частоты с частотой стандарта, а также как реперы частоты, которые позволяют наблюдать выбранную спектральную линию, не внося в неё существенных искажений, и сравнивать (с высокой точностью) измеряемую частоту с частотой, фиксируемой спектральной линией. Качество К. с. ч. характеризуется их стабильностью – способностью сохранять выбранное значение частоты неизменным в течение длительного промежутка времени.

  Квантовые законы накладывают весьма жёсткие ограничения на состояние атомов. Под действием внешнего электромагнитного поля определённой частоты атомы могут либо возбуждаться, т. с. скачком переходить из состояния с меньшей энергией E1 в состояние с большей энергией E2, поглощая при этом порцию (квант) энергии электромагнитного поля, равную:

hn = E2E1,

либо переходить в состояние с меньшей энергией, излучая электромагнитные волны той же частоты (см. Атом,Квантовая электроника).

  К. с. ч. принято разделять на два класса. В активных К. с. ч. квантовые переходы атомов и молекул непосредственно приводят к излучению электромагнитных волн, частота которых служит стандартом или опорной частотой. Такие приборы называются также квантовыми генераторами. В пассивных К. с. ч. измеряемая частота колебаний внешнего генератора сравнивается с частотой колебаний, соответствующих определённому квантовому переходу выбранных атомов, т. е. с частотой спектральной линии. Первыми достигли технического совершенства и стали доступными пассивные К. с. ч. на пучках атомов цезия (цезиевые стандарты частоты). В 1967 международным соглашением длительность секунды определена как 9.192.631.770,0 периодов колебаний, соответствующих определённому энергетическому переходу атомов единственного стабильного изотопа цезия 133Cs. Нуль после запятой означает, что это число не подлежит дальнейшему изменению. В цезиевом стандарте частоты наблюдается контур спектральной линии 133Cs, соответствующей переходу между 2 выбранными уровнями энергии E2 и E1. Частота, соответствующая вершине этой линии, фиксируется и с ней при помощи специальных устройств сравниваются измеряемые частоты.

  Главной частью К. с. ч. с пучком атомов Cs является атомнолучевая трубка, в которой поддерживается высокий вакуум. В одном конце трубки расположен источник пучка атомов Cs – полость, в которой находится небольшое количество жидкого Cs (рис. 1). Полость соединена с остальной трубкой узким каналом или набором параллельных каналов. Источник поддерживается при температуре около 100 °С, когда Cs находится в жидком состоянии (температура плавления Cs 29,5 °С), по давление его паров ещё мало, и атомы Cs, вылетая из источника, пролетают через каналы достаточно редко, не сталкиваясь друг с другом. В результате этого в трубке формируется слабо расходящийся пучок атомов Cs.

  В противоположном конце трубки расположен чрезвычайно чувствительный приёмник (детектор) атомов Cs, способный зарегистрировать ничтожные изменения в интенсивности пучка атомов. Детектор состоит из раскалённой вольфрамовой проволочки 5 и коллектора 6, между которыми включен источник напряжения (положительный полюс присоединён к проволочке, а отрицательный – к коллектору). Как только атом Cs касается раскалённой вольфрамовой проволочки, он отдаёт ей свой внешний электрон (энергия ионизации Cs равна 3,27 эв, а работа выхода электрона из вольфрама составляет 4,5 эв; см. Поверхностная ионизация). Ион Cs притягивается к коллектору. Если на раскалённый вольфрам попадает достаточно много атомов Cs, то в цепи между коллектором и вольфрамовой проволочкой возникает электрический ток, измеряя который, можно судить об интенсивности цезиевого пучка, попавшего на детектор.

  По пути от источника к детектору пучок атомов Cs проходит между полюсными наконечниками двух сильных магнитов. Неоднородное магнитное поле H1 первого магнита расщепляет пучок атомов Cs на несколько пучков, в которых летят атомы, обладающие различными энергиями (находящиеся на разных энергетических уровнях). Второй магнит (поле H2) направляет (фокусирует) на детектор только атомы, принадлежащие к одной паре энергетических уровней E1 и E2, отклоняя в стороны остальные.

  В промежутке между магнитами атомы пролетают через объёмный резонатор 3 – полость с проводящими стенками, – в котором возбуждаются (с помощью стабильного кварцевого генератора) электромагнитные колебания определённой частоты. Если под влиянием этих колебаний атом Cs с энергией E1 перейдёт в энергетическое состояние E2, то поле второго магнита отбросит его от детектора, т.к. для атома, перешедшего в состояние E2. поле второго магнита уже не будет фокусирующим и этот атом минует детектор. Т. о., ток через детектор окажется уменьшенным на величину, пропорциональную числу атомов, совершивших энергетические переходы под влиянием электромагнитного резонатора. Таким же образом будут зафиксированы переходы атомов Cs из состояния E2 в состояние E1.

  Число атомов, совершающих вынужденный переход в единицу времени под действием электромагнитного поля, максимально, если частота действующего на атом электромагнитного поля точно совпадает с резонансной частотой n = (E2E1)/h. По мере увеличения несовпадения (расстройки) этих частот число таких атомов уменьшается. Поэтому, плавно меняя частоту поля вблизи n и откладывая по горизонтальной оси частоту n, а по вертикали изменение тока детектора, получим контур спектральной линия, соответствующий переходу E1 ® E2 и обратно E2 ® E1 (рис. 2, а).

  Частота n, соответствующая вершине спектральной линии, и является опорной точкой (репером) на шкале частот, а соответствующий ей период колебаний принят равным 1/9 192 631,0 сек.

  Точность определения частоты, соответствующей вершине спектральной линии, как правило, составляет несколько процентов, а в лучшем случае – доли процента от ширины линии. Она тем выше, чем уже спектральная линия. Этим объясняется стремление устранить или по крайней мере ослабить все причины, приводящие к уширению используемых спектральных линий.

  В цезиевых стандартах уширение спектральной линии (рис. 2, а) обусловлено временем взаимодействия атомов с электромагнитным полем резонатора: чем меньше это время, тем шире линия (см. Неопределённостей соотношение). Время взаимодействия совпадает со временем пролёта атома через резонатор. Оно пропорционально длине резонатора и обратно пропорционально скорости атомов. Но длина резонатора не может быть сделана очень большой (увеличивается рассеяние атомного пучка). Существенно уменьшить скорость атомов, понижая температуру, также невозможно, т.к. при этом падает интенсивность пучка. Увеличение размеров резонатора затруднено и тем, что он должен располагаться в весьма однородном по величине и направлению магнитном поле Н. Последнее необходимо потому, что используемые энергетические переходы в атомах Cs обусловлены изменением ориентации магнитного момента ядра атома Cs относительно магнитного момента его электронной оболочки (см. Электронный парамагнитный резонанс). Переходы такого типа не могут наблюдаться вне магнитного поля, причём частота, соответствующая таким переходам, зависит (хотя и слабо) от величины этого поля. Создавать такое поле в большом объёме затруднительно.

  Получение узкой спектральной линии достигается применением резонатора П-образной формы (рис. 3). В этом резонаторе пучок пролетает через отверстие вблизи его концов и только там взаимодействует с высокочастотным электромагнитным полем. Поэтому только в двух этих небольших областях необходимы однородность и стабильность магнитного поля Н. При этом перед вторым влетом в резонатор атомы «сохраняют» результат первого взаимодействия с полем. В случае П-образного резонатора спектральная линия приобретает более сложную форму (рис. 2, б), отражающую и время пролёта в электромагнитном поле внутри резонатора (широкий пьедестал), и полное время пролёта между обоими концами резонатора (узкий центральный пик). Именно узкий центральный пик служит для фиксации частоты.

  В К. с. ч. с пучком атомов Cs погрешность в значении частоты n имеет место лишь в 13-м знаке для уникальных устройств (эталонов частоты) и в 12-м знаке для серийных приборов высокой точности (вторичных эталонов или стандартов частоты).

  В состав К. с. ч. с пучком атомов Cs наряду с атомнолучевой трубкой и кварцевым генератором входят специальные радиосхемы, позволяющие с высокой точностью сравнивать измеряемую частоту внешних генераторов с частотой, определяемой К. с. ч. Кроме того, обычно цезиевый стандарт дополняют устройствами, вырабатывающими набор «целых» стандартных частот, стабильность которых равна стабильности эталона. Иногда эти системы вырабатывают и сигналы точного времени. В таких случаях К. с. ч. превращается в квантовые часы.

  Уникальные лабораторные образцы К. с. ч. на пучках атомов Cs, входящие в состав национальных эталонов частоты и времени, обеспечивают воспроизведение длительности секунды, а следовательно всей системы измерения частоты и времени с относительной погрешностью, меньшей чем 10–11. Эта относительная погрешность практически не превышает 10–12, но для фиксации этого значения международным соглашением необходимо проведение длительных наблюдений. Существенным преимуществом К. с. ч. на пучках атомов цезия является то, что их промышленные конструкции обеспечивают воспроизведение номинального значения частоты (времени) с погрешностью 10–11, т. е. не уступают по точности эталону. Даже малогабаритные приборы этого типа, пригодные для применения в условиях обычных лабораторий и на подвижных объектах, работают с погрешностью не более 10–10, а некоторые образцы и 10–11.

  Наиболее важным активным К. с. ч. является водородный квантовый генератор (рис. 4). В водородном генераторе пучок атомов водорода выходит из источника 1, где при низком давлении под влиянием электрического разряда молекулы водорода расщепляются на атомы. Размеры каналов, сквозь которые атомы вылетают из источника 1 в вакуумную камеру, меньше, чем расстояние, пролетаемое атомами водорода между их столкновениями. При этом условии атомы водорода вылетают из источника в виде узкого пучка. Этот пучок проходит между полюсными наконечниками многополюсного магнита 2. Действие поля, создаваемого таким магнитом, таково, что оно фокусирует вблизи оси пучка атомы, находящиеся в возбуждённом состоянии, и разбрасывает в стороны атомы, которые находятся в основном (невозбуждённом) состоянии.

  Возбуждённые атомы пролетают через маленькое отверстие в кварцевую колбу 4, находящуюся внутри объёмного резонатора 3, настроенного на частоту, соответствующую переходу атомов водорода из возбуждённого состояния в основное. Под действием электромагнитного поля атомы водорода излучают, переходя в основное состояние. Фотоны, излучаемые атомами водорода в течение сравнительно большого времени, определяемого добротностью резонатора, остаются внутри него, вызывая снова вынужденное испускание таких же фотонов атомами водорода, влетающими позже. Т. о., резонатор создаёт обратную связь, необходимую для самовозбуждения генератора (см. Генерирование электрических колебаний). Однако достижимая интенсивность пучков атомов водорода всё же недостаточна для того, чтобы обеспечить самовозбуждение такого генератора, если используется обычный объёмный резонатор. Поэтому в резонатор помещают кварцевую колбу 4, стенки которой покрыты изнутри тонким слоем фторопласта (тефлона). Возбуждённые атомы водорода могут удариться о плёнку тефлона более десяти тысяч раз, не потеряв при этом свою избыточную энергию. Благодаря этому в колбе скапливается значительное число возбуждённых атомов водорода и среднее время пребывания каждого из них в резонаторе увеличивается примерно до 1 сек. Этого достаточно для того, чтобы условия самовозбуждения были выполнены и водородный генератор начал работать, излучая электромагнитные волны с чрезвычайно стабильной частотой.

  Колба, размеры которой выбираются меньшими, чем генерируемая длина волны, играет ещё одну, чрезвычайно важную роль. Хаотичное движение атомов водорода внутри колбы должно было бы привести к уширению спектральной линии вследствие эффекта Доплера, (см. Доплера эффект). Однако если движение атомов ограничено объёмом, размеры которого меньше длины волны, то спектральная линия приобретает вид узкого пика, возвышающегося над широким низким пьедесталом. В результате этого в водородном генераторе, генерирующем излучение с длиной волны l = 21 см, ширина спектральной линии составляет всего 1 гц.

  Именно чрезвычайно малая ширина спектральной линии обеспечивает малую погрешность частоты водородного генератора, также лежащую в пределах 13-го знака. Погрешность обусловлена взаимодействием атомов водорода с фторпла-стовым покрытием колбы. Значение этой частоты, измеренное при помощи К. с. ч. на пучке атомов Cs (см. выше), равно 1.420.405.751,7860 ± 0,0046 гц. Мощность водородного генератора чрезвычайно мала (~ 10–12вт). Поэтому К. с. ч. на основе водородного генератора включает в себя, помимо схем сравнения и формирования сетки стандартных частот, чрезвычайно чувствительный приёмник.

  Оба описанных К. с. ч. работают в диапазоне сверхвысоких радиочастот (СВЧ). Известен ряд др. атомов и молекул, спектральные линии которых позволяют создавать активные и пассивные К. с. ч. радиодиапазона. Однако они пока не нашли практического применения. Лишь К. с. ч. на атомах рубидия, основанные на методе оптической накачки, широко применяются в качестве вторичного стандарта частоты в лабораторной практике, а также в системах радионавигации и в квантовых часах.

  К. с. ч. оптического диапазона представляют собой лазеры, в которых приняты специальные меры для стабилизации частоты их излучения. В оптическом диапазоне доплеровское уширение спектральных линий очень велико и из-за малой длины световых волн подавить его так, как это сделано в водородном генераторе, не удаётся. Создать же эффективный лазер на пучках атомов или молекул пока также не удаётся. Т. к. в пределах доплеровской ширины спектральной линии помещается несколько относительно узких резонансных линий оптического резонатора, то частота генерации подавляющего большинства лазеров определяется не столько частотой используемой спектральной линии, сколько размерами оптического резонатора, определяющими его резонансные частоты. Но эти частоты не остаются постоянными, а изменяются под влиянием изменений температуры, давления, под действием вибраций, старения и  т.п.

  Наименьшая относительная погрешность частоты у оптического К. с. ч.(~ 10–13) достигнута с помощью гелий-неонового лазера, генерирующего на волне 3,39 мкм (см. Газовый лазер). Внутрь резонатора лазера помещена трубка, наполненная метаном при низком давлении. Метановая ячейка деформирует форму спектральной линии лазера, образуя на ней чрезвычайно узкий и стабильный по частоте резонансный пик. Именно на вершине этого пика происходит самовозбуждение лазера, а частота его излучения определяется главным образом положением вершины пика. Для повышения максимальной стабильности вся конструкция помещается в термостат, стабилизируются источники питания, длина резонатора и т.п.


    Ваша оценка произведения:

Популярные книги за неделю