355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жак Арсак » Программирование игр и головоломок » Текст книги (страница 14)
Программирование игр и головоломок
  • Текст добавлен: 17 октября 2016, 03:28

Текст книги "Программирование игр и головоломок"


Автор книги: Жак Арсак



сообщить о нарушении

Текущая страница: 14 (всего у книги 16 страниц)

Часть III. И если вы все еще не нашли решения

Многие игры или головоломки уже не требуют никаких дополнительных пояснений. Но некоторые из них еще могут вам сопротивляться. Поэтому следует сказать вам все…


1. Случайные числа

Головоломка 1.

Первая стратегия. Нужно сравнить u2i и ui. Они равны, если 2i = i + kp для целого k, следовательно, если i делится на p. Кроме того, i должно превосходить r. Следовательно, нужно искать наименьшее кратное p, большее или равное r.

Положим vi = u2i. Тогда

vi+1 = u2i+2 = f(f(u2i)) = f(f(vi)).

Если вы начинаете u с u1 = a, то вы начинаете v с v1 = f(а).

Таким образом, получаем начало программы:

u := a; v := f(а)

ПОКА uv ВЫПОЛНЯТЬ

  u := f(u); v := f(f(v))

ВЕРНУТЬСЯ

Теперь вы получили два равных элемента. Чтобы получить период, нужно пройти интервал между полученными числами – например, начиная с u – считая число элементов:

p := 1; w := f(u)

ПОКА wu ВЫПОЛНЯТЬ

  w := f(w); p := p + 1

ВЕРНУТЬСЯ

Мне пришлось рассказать вам все…

Вторая стратегия. Начните с d = 1 и h = 1. Если вы не находите периодичности в интервале от d + 1 до d + h (сравнивая u на этом интервале со значением u на элементе d, сохраняемым в некоторой переменной, например, x), возьмите значение u в d + h в качестве нового значения x, d + h в качестве нового d, и удвойте k.

Вы непосредственно получаете период. Тщательно подсчитайте количество вычислений f в каждом из этих двух алгоритмов. Второй способ определенно лучше,

Игра 4.

Если вы представляете игровое ноле прямоугольной таблицей, то перемещение обозначается изменением координат точки: добавлением или вычитанием чисел 1 или 2. Я разместил эти добавляемые количества (целые числа со знаком) в два вектора DX, DY из 8 элементов. Одно направление перемещения задается номером поля в этой таблице, следовательно, целым числом от 1 до 8.

2. Игры с числами

Головоломка 3.

Остановитесь, когда вы получите 5 в качестве цифры единиц с нулем «в уме».

Головоломка 4.

Представленный здесь алгоритм эквивалентен алгоритму, который можно найти в старых книгах по арифметике, и который действует на целые числа, разбитые на куски но 2 цифры в каждом куске. Вы можете либо разыскать доказательство в этих книгах, либо посмотреть в моей книге «Основы программирования», как можно доказать, что программа, реализующая этот алгоритм, действительно вычисляет квадратный корень. Но это рассуждение слишком сложно, чтобы воспроизводить его здесь.

Лично я работаю по основанию 10. Я представляю числа цепочками цифр. Присоединить 1 справа легко: это просто конкатенация. Сдвинуть вправо легко: используется индекс, сообщающий, начиная с какой позиции нужно урезать. Именно этот индекс и изменяется. Складывать с 2 легко, так как может быть не более одного переноса. Единственная тонкая операция – вычитание, Не проводите сравнения перед вычитанием: оно стоит так же дорого, как и само вычитание. Сделайте копию той части, которая должна была бы быть изменена при вычитании, и если вы обнаружите, что вы не можете осуществить вычитание, – возьмите сохраненное значение.

Головоломка 5.

Задайте три индекса и три значения: i2, i3, i5, x2, x3, x5. Число i2 есть индекс элемента последовательности, который, будучи умноженным на 2, дает подходящего кандидата на роль ближайшего значения (иначе говоря, удвоение числа с индексом i2 − 1 дает число, которое содержится в уже сформированной части последовательности, но удвоение числа с индексом i2 дает число, которое в сформированной части не содержится). Число x2 получается удвоением числа с индексом i2. Вы определяете аналогично i3 и x3 заменяя «удвоение» на «утроение» (произведение на 3 числа с индексом i3 − 1 содержатся в построенной части последовательности, а число x3 – утроенное число с индексом i3 – в ней не содержится). Наконец, вы делаете то же самое для i5 и x5. Ближайшее число в последовательности есть наименьшее из чисел x2, x3, x5. Назовем его х. Если x = x2, то i2 увеличивается на 1 и x2 пересчитывается. То же самое для i3 и i5.

Головоломка 7.

Возьмем n = 3n' + 2. Тогда (2n − 1)/3 = 2n' + 1.

По общему правилу, непосредственно следующий за нечетным числом 2n' + 1 элемент равен (3(2n' + 1) + 1)/2 = 3n' + 2.

Если n дает n' при переходе (p, q), q > 1, т. е. если n имеет вид n = (2p(2qn' + 1)/3p) − 1, то

n'' = (n − 1)/2 = (2p−1(2qn' + 1)/Зp) − 1.

Как и следовало ожидать, это имеет в точности тот смысл, что если деление на Зp можно выполнить нацело, то в связи с этим возникает соотношение между (p, q) и n'.

Если n" увеличить на 1, а затем умножить на 3p−1/2p−1, то получится (2qn' + 1)/3.

Тогда нужно уменьшить результат на 1: получим (2qn' − 2)/3. Но это число делится на 2, так что с помощью перехода (p − 1, 1) число n" дает

(2q−1n' − 1)/3.

По общим правилам получаем

3 ((2q−1n' − 1)/3) + 1 = 2q−1n',

а затем n', что и доказывает наше утверждение.

Если вы примените это правило перехода к 4k + 1, то нужно добавить 1, что дает 4k + 2, делящееся на 2, но не на 4. Делим на 2 и умножаем на 3, что дает 6k + 3. Уменьшаем на 1 и затем делим на 2, и получается Зk + 1.

Если k нечетно, то это – элемент, следующий за k; так что за числом вида 4k + 1 с k нечетным следуют те же величины, что и за k.

Если k четно, то 4k + 1 дает 3k + 1.

Если существует цикл с единственным переходом p, q, т. е.

n = (2p(2qn + 1)/3p) − 1,

то это возможно только в случае, когда существует такая пара p, q, что число

p − 2p)/(2p+q − Зp)

– целое. Мы показали, что такой пары (p, q) нет.

Головоломка 10.

9*АВСДЕ + АВСДЕ = 10*АВСДЕ, что можно записать как АВСДЕ0. Отсюда получаем зашифрованное сложение:

FGHIJ + ABCDE = ABCDE0

Это показывает, что A = 1. Далее, J + E не может быть нулем, следовательно, J + Е = 10 и для I есть кое-что «в уме». Сумма F + A дает AB с A = 1, так что сумма F + 1, к которой, может быть, добавлено что-то «в уме», должна дать число, большее 9. Это может быть только в случаях 1 + 8 + 1 = 10, 9 + 1=10 или 1 + 9 + 1 = 11. Но, так как BA, то B = 0.

Тогда в сумме G + B рассмотрим цифру C как цифру единиц. Так как В = 0, то это означает, что для G «в уме» кое-что есть (потому что GС).

Отсюда получаем схему операции сложения:

Запишем, что A + B + C + D + E + F + G + H + I + J = 45,

А = 1, B = 0.

Запишем пять операций сложения с учетом переносов в старший разряд:

J + E = 10,

1 + I + D = 10k + E,

k + H + C = 10 + D,

1 + G + В = 10k' + С,

k' + F + A = 10.

Сложим их все. Вам остается

C + D + E = 17 − 9(k + k').

Но С + D + E не может быть меньше, чем 2 + 3 + 4 = 9, и не может быть больше, чем 6 + 7 + 9 (если F = 8 и k' = 1). Не может быть, чтобы у вас одновременно выполнялись соотношения k = k' = 1 (что давало бы отрицательную сумму С + D + E). Но не может быть и равенства k + k' = 1, так как тогда было бы С + D + E = 17 − 9 = 8, что слишком мало. Следовательно, k = k' = 0. Составим окончательную систему

J + E = 10,

I + D + 1 = E,

H + C = 10 + D,

G + 1 = С,

F = 9.

Закончите вы с помощью программы.

Головоломка 11.

Обозначим через ai цифры исходного числа, bi – цифры результата, ki – цифры «в уме»:

3ai + ki = bi + 10ki+1.

Сумма всех ai равна 45, как и сумма всех bi. Обозначим через K сумму всех ki:

3*45 + K = 45 + 10*K дает К = 10.

Мы знаем, что дает «в уме» каждая цифра:

1 дает 0, 2 дает 0, 3 дает 0 или 1 в зависимости от того, что хранится «в уме» над 3.

4 дает 1, 5 дает 1, 6 дает 1, потому что не может случиться 3*6 + 2, что давало бы «в уме» 2, но цифру единиц 0;

7, 8 и 9 дают 2.

Для того, чтобы сумма величин «в уме» была равна 10, нужно, чтобы 3 давало 1 «в уме». Так как 3*3 + 1 (с цифрой единиц, равной 0) случиться не может, то нужно, чтобы «в уме» над 3 было 2. Следовательно, 3 стоит слева от 7, 8 или 9. В частности, 3 не может стоять на правом конце.

Остальное просто, если вы будете следовать методу, указанному в разделе «Условия». Вот таблица:

Потребуем, чтобы 9 было справа; следовательно, вычеркнем 9 из этой таблицы, оставив его только в столбце, соответствующей тому, что «в уме» 0. Цифра 3 требует 2 «в уме», чтобы дать 1. Вычеркнем остальные 3 в таблице. Цифра 9 не может быть получена иначе как с помощью 6 и 1 «в уме». Другие 6 вычеркиваем. Цифра 8 получается из 2 при 2 «в уме». Нужно взять 3 числа в первом столбце, так что нужно еще одно не равное ни 2, ни 3. Их нужно 4 в среднем столбце, так что нужно еще 3 числа, ре равных 6, которые нужно взять среди цифр 7, 4, 1, 8, 5. Два последних числа должны быть взяты из столбца с нулем «в уме». Когда эти числа среди всех возможных будут выбраны, останется расположить их в соответствии с тем, что должно быть для них «в уме». Эту программу сделать легко.

Головоломка 12.

Если число a1a2ap (представленное как последовательность цифр) кратно 3, то и a1 + а2 + … + ap кратно 3. Сумма кубов цифр равна

a13 + а23 + … + ap3.

Нужно показать, что это число также кратно 3. Действуйте по индукции по числу слагаемых. Предположим, что для p = n − 1 членов

a13 + а23 + … + ap3 = (a1 + … + ap)3 по модулю 3; тогда равенство

(a1 + … + ap + an)3 = (a1 + … + ap)3 + an3 + 3 (…)

доказывает наше утверждение для n слагаемых.

Возьмите число с k цифрами. Сумма кубов его цифр ограничена величиной k*93. Но исходное число не может быть меньше, чем 10k−1. Следовательно, достаточно, чтобы 10k−1 было больше, чем k*729, что очевидным образом выполняется при k = 5. Но эта оценка слишком пессимистична.

Головоломка 14.

Число, полученное при обращении порядка цифр, равно

1000d + 100c + 10b + a,

и разность этих двух чисел равна

999 (ad) + 90 (bc).

Числа a, b, c, d были расположены в невозрастающем порядке, и они не все равны между собой, так что a строго больше d и ad не равно нулю. Все остальное просто.

Головоломка 16.

Единственное, что до сих пор еще не сказано – это способ определять, становится» ли последовательность периодической. Метод Полларда был основан на первой стратегии. Мы выясняем, существует ли ai с a2i = ai. Но вычисление f(x) = x2 − 1 по модулю n – дорогое вычисление. Брепт улучшил этот метод, предложив использовать вторую стратегию.

Головоломка 17.

Эта программа основана на следующих результатах:

если b нечетно, n четно, то n делится на b тогда и только тогда, когда n/2 делится на b;

нечетное n делится на b тогда и только тогда, когда nb делится на b. Но nb четно.

Для n = 277 − 3 и b = 7 вы получаете:

Число n нечетно. Рассматриваем nb = 277 − 10. Оно делится на 2: получаем 276 − 5.

Это число нечетно: (276 − 5) − 7 = 276 − 12.

Делим на 4: 274 – 3.

Получаем ту же самую задачу, в которой показатель уменьшен на 3. Так как 77 = 3*25 + 2, то мы таким образом доходим до 22 – 3 = 1, которое не делится на 3. Вряд ли вас слишком утомит доказательство того, что 2n − 3 никогда не делится на 7…

Головоломка 18.

Я не в состоянии рассказать вам, как я получил эту программу, это – очень долгая история, связанная с разложением целых чисел на множители. Может быть, когда-нибудь я ее и опубликую. Следовательно, будем разбираться в том, что нам дано – в тексте программы.

Начнем с нечетного n. В соответствии с инициализацией программы n = 4p − 1, где p четно. В противном случае уже последует ответ «НЕТ». Следовательно, рассмотрите нечетное n, являющееся полным квадратом и, следовательно, квадратом нечетного числа 2k + 1;

(2k + 1)2 = 4k2 + 4k + 1 = 4k (k + 1) + 1.

Так как k (k + 1) – произведение двух последовательных целых чисел, и из двух последовательных целых чисел всегда есть хотя бы одно четное число, получаем простой, но интересный результат: любой квадрат нечетного числа сравним с 1 по модулю 8. Таким-образом, при n отличном от 1 по модулю 8 инициализирующая часть программы выводит, что n не является точным квадратом.

Посмотрим теперь, что происходит внутри цикла. Делим p на 2, и если результат четен, мы удовлетворяемся тем, что умножаем a на 2. При этом действии произведение a*p остается постоянным. Поэтому кажется вероятным, что в цикле существует инвариантная величина, запись которой содержит a*p в предположении, что p четно.

Если после деления p на 2 результат оказывается нечетным, то мы вычитаем из этого результата a/2 + b. Обозначим новые значения a, b, p через а', b', p' соответственно:

а' = 2*а, p' = p/2 − а/2 − b, b' = a + b.

Для этих значений получаем:

a'*p' = a*pa2 − 2a*b = а*р − (а + b)2 + b2 = а*рb'2 + b2.

Это, наконец, дает

а'*p' + b'2 = а*р + b2.

Инвариантной величиной цикла оказывается, таким образом, сумма ар + b2, причем p остается четным. Это обеспечивается тем, что в случаях, когда p/2 нечетно, мы вычитаем нечетные b из нечетного p/2. Что касается b, то он нечетен потому, что он начинается со значения 1 и к нему прибавляются только четные значения а.

В начале а = 4, p (целая часть дроби (n − 1)/4) четно, b = 1, так что ар + b2 = n.

Наконец, a, начиная с 4, умножается на 2 при каждом прохождении цикла; b начинается с 1, которое меньше соответствующего начального а = 4.

Тогда при переходе от a, b, p к a', b', p' либо

b' = b, а' = 2*а, так что если b < а, то и b' < а';

либо

b' = а + b, а' = 2*а, что также сохраняет справедливость отношения а' < b'.

Следовательно, вот ситуация, которую цикл оставляет инвариантной:

n = а*p + b2;

а – степень двойки,

p четно,

b нечетно, b < а.

Кроме того, мы знаем, что при выходе из цикла p < а.

Если p равно нулю, то n = b2. Тогда мы видим, что n – квадрат числа b, которое выводится, и все закончено.

Но n может оказаться полным квадратом и тогда, когда p не нуль. Попробуем рассмотреть все возможные случаи. Положим n = r2 (r нечетно). Соотношение

r2 = ар + b дает

r2b2 = ар.

Положим r + b = 2u, rb = 2v (r и b нечетны). Отсюда получаем 4uv = ар.

Поскольку r = u + v, где r нечетно, получаем, что u и v не могут быть числами одинаковой четности, так что одно из них четно, а другое нечетно. Так как а является степенью двойки, то нечетный сомножитель относится к p. Выявим его, полагая р = s2t, где s нечетно, a t ≥ 1 (p четно).

Напомним, что а = 2k. В этих обозначениях 4uv = ар = s2k+t, uv = s2k+t−2.

Возможные решения для пары u, v имеют вид пар

s'2k+t-2, s''

где s's" = s.

Покажем сначала, что s" – меньший из этих двух элементов пары. Вследствие t ≥ 1 имеем ktk + t − 2.

Вследствие p < а последовательно выводим

s2t < 2k,

s's"2t < 2k.

s's" < 2k-t ≤ 2k+t-2s'22k+t-2

(потому что s' нечетен и не меньше 1).

Следовательно, нужно взять u = s'2k+t-2, v = s".

Покажем теперь, что нужно обязательно взять s' =1, s" = s. По выбору u и v

b = 2k+t−2s' − s" < а = 2k.

Отсюда получаем:

s" > 2k+t−2s' − 2k,

и, так как t ≥ 1:

s" > 2k−1s' − 2k,

s = s's" > 2k−1s'2 − 2ks = 2k−1s' (s' − 2).

Вследствие р = s2t < а = 2k выводим s < 2kt ≤ 2k−1.

Объединим два полученных неравенства:

2k−1s' (s' − 2) < x < 2k−1, поэтому s' (s' − 2) < 1.

Единственное нечетное число s', удовлетворяющее этому соотношению, это s' = 1. Следовательно, у нас остается единственная возможность:

u = 2k+t-2, v = s,

b = uv = 2k+t-2s < а = 2k,

s > 2k+t-2 − 2k.

Так как s < 2kt, то t должно быть таким, чтобы

2kt > 2k+t-2 − 2k.

Поскольку t должно быть строго положительно, то его единственными возможными значениями являются t = 1 и t = 2.

При t = 1 имеем

p = 2s, b = 2kts = a/2 − p/2.

Следовательно, если 2b = аp, то n – квадрат числа (а + p)/2 = аb.

При t = 2 имеем

p = 4s, b = 2ks = ap/4.

Следовательно, если p = 4(ab), то n – квадрат числа a + p/4 = 2аb.

Этим исчерпываются случаи, когда n может быть полным квадратом.

Можно спросить себя, могут ли эти различные случаи действительно осуществляться. Заметим, что при вступлении в цикл у нас b = 1, a = 4. После этого b может быть изменено добавлением а, т. е. кратным числа 4. Следовательно, b остается сравнимым с 1 по модулю 4. В трех возможных случаях:

p = 0, r = b,

p = а − 2b, r = ab,

p = 4 (ab), r = 2ab,

первый случай – единственный, в котором квадратный корень из n сравним с 1 по модулю 4; два других дают квадратный корень, сравнимый с 3 по модулю 4. При выходе из цикла равенство

b = ар + b2

с учетом соотношений p < a, b < a дает n < 2a2 и, следовательно, при выходе из цикла a2 > n/2. Равенство

ар = nb2

дает p = (nb2)/a < n/а.

Если окажется, что n/а < a, то непременно p < а и цикл закончен. Чтобы цикл остановился, необходимо, чтобы a2 > n/2, и цикл заведомо останавливается, если a3 > n.

Следовательно, все зависит от положения n по отношению к степеням двойки. Существует такое целое n, что

4q < n < 4q+1.

Возможны два случая. Во-первых, может выполняться неравенство

4q = 22q < n < 22q+1,

и тогда для k = q число a2 = 22q > n/2 может быть значением остановки, но в этом нет уверенности. С другой стороны, если

22q+1 < n < 22q+2,

то единственное значение a, удовлетворяющее условию a2 > n/2, есть a = 2q+1, и для этого значения имеем a2 > n, что гарантирует остановку. Поскольку r = ab, то а = r + b > r и, следовательно, a2 > n.

Во втором случае

r = 2ab и b < а, откуда а < 2ab = r.

Таким образом, все три распознаваемые программой случая являются единственными возможными исходами программы, и каждый из них может произойти.

Таким образом, перед нами – очень забавный алгоритм, который дает значение квадратного корня, и который определяет случай, когда n не является корнем, но в этом случае не дает никакой дополнительной информации.

Программа заведомо останавливается при а = 2q+1, так что число шагов цикла не больше q − 1 (начиная с 4), причем q – логарифм квадратного корня из n по основанию 2. Таким образом, получилась программа порядка In n, что дает ту же сложность, что и обычный алгоритм, действующий кусками по две цифры. Но для этого последнего алгоритма нужен еще первый цикл, чтобы найти порядок величины n.

Головоломка 19.

Соотношение f(a, b) = f(b, a) следует из самой инициализации p и q:

p := max (a, b); q := min (a, b).

Эти две функции симметричны по a и b, и поэтому точно так же симметрична f. При анализе программы мы ограничены действиями, происходящими внутри цикла. Величины r и s являются вспомогательными переменными, которые не оставляют никакой проблемы. Трудность вызывают преобразования, проделываемые над p и q. Чтобы ясно увидеть эту трудность, осуществим введение новых переменных без разрушения старых. Перепишем наш цикл:

ПОКА qeps ВЫПОЛНЯТЬ

r := (q/p)2; s := r/(r + 4)

p' := (2 * s + 1) * p; q' := s * q

p := p'; q := q'

ВЕРНУТЬСЯ

Рассмотрим действия этой программы, производимые над данными a, b с одной стороны и над ac, bc с другой.

Когда мы входим в цикл, то и p, и q умножаются на с при переходе от первого вычисления ко второму.

Это не меняет величины r и, следовательно, не меняет величины s. Таким образом, p и q в этих вычислениях умножаются на одни и те же сомножители, так что значения p', q' во втором вычислении получаются из значений p, q в первом вычислении умножением их обоих на c. Следовательно, мы еще раз входим в цикл при том же соотношении между входными данными; следовательно, это соотношение будет иметь место при каждом входе в цикл, и, следовательно, также и на выходе из цикла. Отсюда получаем, что f(ac, bc) = cf(a, b).

Выполнение программы для вычисления g(x) = f(x, 1) с x = 1 и eps = 10-5 дает мне результат, равный 1.4142.

Дальше считать бесполезно, это √2.

Я немедленно изменяю программу, чтобы она выполняла вывод не только величины g, но также и g2. Я получаю:

x g2(x)

1 2

2 5

3 10

4 17

Нет возможности сомневаться: g(х) = √х2 + 1.

Перенося эту формулу в соотношение между f и g, мы видим, проделав все вычисления, что

f (a, b) = √a2 + b2.

«Осталось только» доказать это. Мы не можем доверять заверениям программистов, утверждающих, что их программа делает то-то и то-то. При входе в цикл p и q имеют значения а и b в каком-то порядке, поэтому

p2 + q2 = a2 + b2.

Что происходит с величиной p2 + q2 после изменений, которым p и q подвергаются в цикле? Вычислим p'2 + q'2:

p'2 + q'2 = (2s + 1)2p2 + s2q2 = s2 (4р2 + q2) + 4sp + р2.

Вычислим s:

r := q2/p2, s = r/(r + 4) = q2(q2 + 4p2),

откуда, наконец,

s (4р2 + q2) = q2.

Возвращаясь отсюда к предыдущему соотношению, получаем

p'2 + q'2 = sq2 + 4sp2 + р2 = s(4р2 + q2) + p2 = p2 + q2.

Таким образом, все кончено… Это соотношение гарантирует, что p2 + q2 является инвариантом цикла. При каждом входе в цикл выполняется соотношение

p2 + q2 = a2 + b2.

При выходе из цикла

p2 + q2 = a2 + b2, причем q < ерs.

Отсюда следует, что

p2 = (a2 + b2) * (1 − q2/(a2 + b2)).

Cpaey получаем, что

p = √a2 + b2

с относительной ошибкой eps2/(2 * (a2 + b2)).

Чтобы получить точность до 10-5, совершенно ненужно брать eps = 10-5; более чем достаточно eps = 0.004. Эта программа сходится очень быстро.


    Ваша оценка произведения:

Популярные книги за неделю