Текст книги "Как там у вас, на Бета-Лире?"
Автор книги: Юрий Фиалков
сообщить о нарушении
Текущая страница: 5 (всего у книги 12 страниц)
Элементы из воздуха
Давно известно, что самое трудное – начать. Калий и стал тем самым началом, которое было особенно трудным. Еще бы, появился естественный радиоактивный элемент, стоящий не в конце периодической системы, а в ее середине, точнее – в начале середины, а если быть совсем точным, то в конце начала периодической системы. Игра в слова? Как мы убедимся далее, совсем не игра.
Раз один из нетяжелых элементов может быть радиоактивным, то почему бы не обладать естественной радиоактивностью и другим элементам начала и середины периодической системы? Тем более, что общие законы строения атомного ядра не только не запрещают этого, а искренне и, можно сказать, дружелюбно предлагают.
…Не так давно в одном из журналов были приведены результаты достаточно широкого анкетного опроса поступающих в высшие учебные заведения. Много вопросов, интересных для новой и, судя по всему, важной и увлекательной науки социологии, содержала эта анкета, но нас в данном случае интересует один: мотивы выбора профессии. Так вот, свыше 90 % тех, кто подавал документы на геологические и географические факультеты, в качестве мотива назвали любовь к путешествиям. При этом многие из будущих Ферсманов и Пржевальских не скрывали своего жалостливого отношения к представителям «сидячих», комнатных профессий. К таковым абитуриенты в первую очередь относили архивистов и химиков.
Так вот, я знаком с несколькими химиками, которым доводилось совершать такие служебные командировки, каким позавидовал бы и Лаперуз. Так, например, группа химиков в марте 1961 года на судне «Михайло Ломоносов» вышла из Одессы и, пройдя через Средиземное море, вышла в Атлантический океан, достигла 30° южной широты, а затем вернулась в Калининград.
На протяжении всего рейса химики старательно вели анализ воздуха. Однако их интересовали отнюдь не традиционные компоненты атмосферы – азот, кислород, углекислый газ, инертные газы. Речь шла о совсем других элементах.
Мировое пространство пронизано мчащимися с громадной скоростью, лишь немногим уступающей скорости света, протонами, ядрами некоторых легких химических элементов, электронами. Именно таков состав лучей, которые уже давно получили название космических. Нет ничего удивительного, что, встретив на своем пути Землю, эти лучи вызывают громадные разрушения в естественном щите планеты – земной атмосфере. Да, конечно, обладая исключительно высокой энергией, космические лучи не только ионизируют молекулы газов воздуха, но и разбивают, можно сказать, на осколки атомы газов, входящих в состав атмосферы. Познакомимся с одним из таких процессов. «Главный» газ воздуха, как известно, азот, которого в атмосфере больше всего; именно поэтому основные события по части взаимодействия с космическими лучами происходят именно с этим элементом.
Итак, летящий в когорте других частиц, которые составляют ноток космических лучей, протон с колоссальной скоростью подходит к Земле. Первые километры еще совсем разреженной атмосферы он проходит беспрепятственно: редкие молекулы, встречающиеся на его пути, протону не помеха. И вот где-то приблизительно на высоте 30 километров над уровнем моря протон наконец попадает в цель – атом азота. Последствия этого столкновения можно кратко и, по-моему, достаточно выразительно определить одним словом: «вдребезги». А как еще назвать процесс, в результате которого при столкновении азота и водорода (ведь протон – это ядро атома водорода) образуются два атома гелия и атом бериллия:
N + H = 2He + Be.
Проверим, как сходятся «дебет» и «кредит» этой реакции. Вначале сведем «сальдо» с порядковыми номерами. Сумма порядковых номеров в новой части уравнения составляет 8 (азот-7 и водород-1); справа – та же величина, так как порядковый номер бериллия 4, а дважды два (порядковый номер гелия) также равно 4 (арифметика достаточно убедительная).
Сведение же баланса по массовым числам приводит к довольно интересным выводам. Сумма массовых чисел элементов, вступающих в реакцию, равна 15 (азот-14 + водород-1). Справа, разумеется, должны быть те же 15. Из них 8 единиц приходится на долю гелия (2x4), стало быть, бериллий должен иметь массовое число 7.
Итак, мы выяснили, что при космической катастрофе образуются гелий и изотоп бериллия с массовым числом 7. И тут должен вмешаться дотошный читатель.
«Не очень хорошо получается, – скажет читатель. – Вот справочник, а в нем написано, что бериллий состоит только из одного-единствен-ного изотопа с массовым числом 9. Что-то не припомню такого изотопа бериллий-7».
«Вы и правы и неправы, – отвечу я. – Действительно, известен лишь один стабильный изотоп бериллия. Но разве я говорил, что при нашем ядерном процессе образуется стабильный бериллий? Бериллий-7, который образовался в атмосфере из азота, не стабильный, а радиоактивный изотоп этого элемента».
Радиоактивный изотоп бериллия, конечно же, должен быть отнесен к естественным. Он ведь образовался на нашей планете помимо деятельности человека. Поток космических лучей непрерывен и, как полагают астрономы, постоянен. Поэтому бериллий-7 образовывался на Земле задолго до того, как на ней появился человек, и будет образовываться до тех пор, пока у нашей планеты есть еще атмосфера, содержащая по крайней мере азот.
Как видим, появился еще один естественный радиоактивный элемент, гораздо более легкий, чем калий. Что ж, пока все идет в полном соответствии с прогнозами о принципиальной возможности проявления радиоактивных свойств любым химическим элементом.
Чтобы сразу покончить с этой проблемой – независимости появления радиоактивных свойств от положения элемента в периодической системе, – обращусь к элементу, легче которого быть уже не может: к водороду.
«Шутите! – скажет иной из читателей-скептиков. – Вот уж кто не может быть радиоактивным, так это водород. Ведь в состав его ядра входит один протон. Что же ему, сироте, выбрасывать? Этот один-одинешенек протон? А что тогда останется, что будет выступать в качестве продукта распада? И вообще, не напоминает ли предположение о возможной радиоактивности водорода известную песню, завершающуюся словами: «Если это плов, то где же кошка, если это кошка, то где же плов?»
Песня действительно хороша, особенно в исполнении Рашида Бейбутова. Но кто сказал, что утверждение о радиоактивности элемента № 1, водорода, – это «предположение», да еще «возможное»? Впрочем, к чему вопросы, к чему восклицания? Обратимся к физике.
Околосветовой (то есть летящий со скоростью, близкой к скорости света) протон, сталкиваясь с атомами атмосферных газов, может вышибить из них и нейтроны, которые, в свою очередь, будут обладать энергией, достаточной для того, чтобы прошла реакция взаимодействия нейтронов с азотом: N + n = C + H.
Баланс по зарядам ядер проводить нет нужды: и так ясно, что и справа и слева – по 7 (7+0 = 6+1). Но вот расчет массовых чисел участников этой реакции, как и в прошлый раз, приведет к любопытным результатам. Составим уравнение с «иксом», по сложности, впрочем, не превышающее те уравнения, что нынче без труда решают первоклассники: 14+1 = 12+ х, где х – массовое число водорода. Находим: х=3. Но позвольте, это же какой-то водородный мастодонт, так сказать, сверхтяжелый водород! Насчет «мастодонта» настаивать не буду – термин этот, надо сказать, не очень химический, – а вот что касается сверхтяжелого, то мы тут попали в самую точку, потому что изотоп водорода с массовым числом 3 именно так и называется сверхтяжелым водородом. А еще его называют тритием.
Перегруженность нейтронами не проходит сверхтяжелому водороду даром. Один из нейтронов рано или поздно выбрасывает электрон, превращаясь в протон и переводя тем самым элемент № 1 в элемент № 2. Выбрасывание же электрона есть не что иное, как бета-распад. Поэтому тритий, самый настоящий радиоактивный и, что самое важное, естественный радиоактивный изотоп водорода, откроет список естественных радиоактивных элементов.
Дальнейший рассказ о том, как космические лучи превращают атмосферные газы в естественные радиоактивные изотопы легких элементов (помимо водорода и бериллия, здесь пришлось бы перечислить еще и углерод, и натрий, и кремний и т. п.), будет уже содержать лишенные особой новизны подробности.
Впрочем, и так ясно, что обладающие исключительно высокой энергией частицы космического излучения могут выполнить достаточно серьезную работу.
Впрочем, хотя бы немного, но об одном из этих легких радиоактивных элементов, об углероде-14, надо поговорить.
В атмосфере содержится углекислый газ. Растения днем поглощают углекислый газ, а ночью выдыхают его. Поэтому происходит непрерывный обмен углекислотой между растениями и атмосферой. Утверждение – из числа общеизвестных, но вспомнить о нем необходимо.
Теперь вторая сторона вопроса. Уже несколько миллионов, а может быть, даже десятков миллионов лет состав атмосферы постоянен. Постоянен и уровень космического излучения. Поэтому постоянным будет и количество радиоактивных элементов, образующихся в атмосфере.
Третья сторона. Радиоактивный углерод образуется в верхних слоях атмосферы и перемешивается с «обычной» углекислотой воздуха.
Поэтому атмосферная углекислота нашей планеты характеризуется постоянным содержанием радиоактивного углерода.
Четвертая сторона. Растения ассимилируют углекислый газ, и, следовательно, он переходит в растительные организмы, а так как идет непрерывный обмен углекислотой между воздухом и растениями, то во всей земной флоре устанавливается такое же относительное содержание радиоактивного углерода, как и в воздухе.
Пятая сторона. Животные питаются растениями. Даже если какой-то из представителей фауны – убежденный противник вегетарианской диеты, то он харчуется животными-вегетарианцами. Поэтому радиоуглерод попадает и в организм животных.
И становится ясным, что все живое на Земле – от инфузории до слона, включая в этот промежуток енота, попугая ара, человека и королевского питона, – содержит радиоактивный изотоп углерод-14.
Сторона шестая. Если организм погибает, то прекращается обмен с окружающей средой. И поэтому в органических остатках количественное содержание радиоактивного углерода начинает уменьшаться – этот изотоп распадается наполовину за 5,5 тысячи лет.
Сторона седьмая. Определяя относительное содержание радиоактивного углерода в органических остатках (а измерения радиоактивности, как правило, очень точны и чувствительны), можно, как правило, установить время, когда погибло то или иное растение и животное. Вот почему археологи так радостно взяли на вооружение радиоуглеродный метод: еще бы, они узнали с неслыханной ранее для историков достоверностью и то, в каком веке до нашей эры носили американские аборигены найденные в раскопках сандалии, и когда была сработана погребальная ладья фараона Сезостриса III, и даже когда были написаны кожаные свитки, тексты которых впоследствии были положены в основу Библии. Но об этом пусть и очень интересном применении радиоуглерода здесь рассказывать не место.
Как видим, у радиоуглеродной проблемы столько сторон, что и не понять, какую они образуют фигуру. Оставим размышлять над этим геометров, а сами пойдем дальше.
Геофизики хорошо знают, что плотность силовых линий магнитного поля наиболее высока в районе магнитных полюсов Земли, наименьшая же – в экваториальных областях. Замечание отнюдь не случайное, потому что заряженные частицы космических лучей, приближаясь к нашей планете, начинают перемещаться вдоль линий магнитного поля. Вот отчего концентрация радиоизотопов в воздухе будет различной в различных географических широтах. Рейс «Михайлы Ломоносова», о котором упоминалось ранее, как раз и должен был установить зависимость между радиоактивностью атмосферы и широтой и тем самым подтвердить теорию возникновения естественных радиоактивных элементов в атмосфере.
Стоит ли говорить, что с задачей своей он справился полностью. Иначе этот параграф и не был бы написан.
Долгий век тория и бабочки-однодневки
Если бы мы постоянно закрашивали, скажем, красной краской те клетки таблицы Менделеева, где обнаружено хотя бы по одному естественному радиоактивному изотопу, то, дойдя до этого места книги, мы обнаружили бы, что красной краской покрыты «края» таблицы – начало и конец. Что ж, примемся за середину.
Краски нам потребуется очень много. Пока лишь у единичных элементов середины периодической системы не обнаружены естественные радиоактивные изотопы. «Пока» – здесь очень емкое слово, потому что имеются все основания ожидать, что, пока книга выйдет из печати, придется закрашивать и эти немногие оставшиеся «нерадиоактивными» клетки.
Прежде всего надо ответить на очевидный вопрос: как случилось, что радиоактивные свойства тяжелых элементов были открыты давно, а о естественной радиоактивности подавляющего большинства легких и срединных химических элементов узнали лишь недавно?
Ответ дать легко, и нужды нет доказывать, что легкость эта далась ценой в высшей степени кропотливых экспериментов, обставленных технически с той тщательностью, которая граничит с виртуозностью. Ответ – вот он: все дело в периодах полураспада.
При изучении радиоактивности тяжелых элементов химикам и физикам приходилось иметь дело с «умеренными» периодами полураспада. Этот эпитет относится и к радию, который распадается наполовину за 1600 лет, и к урану-238, период полураспада которого 4,5 миллиарда лет, и даже к торию, который «срабатывается» наполовину за 14 миллиардов лет. Да, по меркам специалистов в области радиоактивности полтора десятка миллиардов лет – срок умеренный.
Периоды полураспада большинства естественных радиоактивных элементов, находящихся в середине таблицы Менделеева, таковы, что могли бы служить великолепной иллюстрацией к разделам книг по занимательной математике, которые повествуют о сверхбольших числах.
Имена этим числам еще не придуманы. Скажу только, что встретить периоды полураспада в 1017, 1018 и даже 1021 лет там не редкость. Что это такое, можно понять разве только из примера.
Примером будет служить самый «короткоживущий» из этих изотопов – олово-124, период полураспада которого всего 21017 лет.
Если взять килограмм олова, то в результате радиоактивного распада за один час в нем будет появляться две бета-частицы. Всего две.
Вот и попробуйте их обнаружить. Попробуйте, если за счет присутствия естественных радиоактивных элементов только в мышцах вашей руки распадается в десятки тысяч раз больше радиоактивных атомов. Попробуйте, если килограмм олова способен поглотить и не допустить к счетчику излучения не какие-то две несчастные бета-частицы, а миллионы. Попробуйте, если даже воздух за счет находящихся там радиоактивных элементов дает в районе счетчика тысячи распадов.
И тем не менее попробовали – и удалось. Хотя нет, плохое в данном случае это слово, наводящее на мысль об удаче. Удача необходима для игры в спортлото. Здесь же, в эксперименте, все решают умение и труд. А эти два существительных помогали решить и не такие проблемы[6]6
Интересен и пример с радиоактивностью свинца. Собственно, как вы сейчас увидите, обнаружить радиоактивность этого элемента – дело пока что непосильное. Однако физики рассчитали, что период полураспада радиосвинца должен составлять 1040 лет. А это означает, что если взять кубический… километр свинца, то в нем за счет собственной радиоактивности распадается 2 атома за 1000 лет. Но радиоактивен и свинец!
[Закрыть].
Не приходится сомневаться, что радиоактивность – такое же общее свойство материи, как, скажем, масса.
Да, любой химический элемент радиоактивен. Каждый атом рано или поздно распадается. Можно было бы по этому поводу поморализировать: ничто, дескать, не вечно под луной. Но поговорка эта здесь как раз «не работает». Потому что иные из элементов хотя и распадаются, но так медленно, что, пока элемент покончит свои счеты с жизнью, исчезнет сама Луна – то ли ее растащут на стройматериалы, то ли она рассыплется от ветхости.
Для нас факт всеобщей радиоактивности важен по другим причинам. Считалось раньше, что представления о непременной изменчивости мира распространяются только на живую, органическую природу. Теперь же мы видим, что эта изменчивость действительно всеобщая. И было бы в высшей степени странно, если бы такой общности не наблюдалось. Это означало бы, что между живой и неживой природой стоит барьер, преодолеть который никогда и ни при каких условиях невозможно. Л раз так, то не могло живое вещество возникнуть из неживого. Следовательно, происхождение жизни – не самопроизвольное возникновение белковой молекулы, а стало возможным лишь в результате чьего-то постороннего вмешательства. Вот ведь до чего договорились.
Итак, весь материальный мир находится в состоянии непрерывной изменчивости. Вот только скорость различных процессов, которые ведут к изменению мира, существенно разнится. Вводя разнообразные системы классификаций, раскладывая наблюдающиеся в природе явления по полочкам научных терминов и представлений, человек вольно или невольно исходит из своего мироощущения, из своего удобства, наконец. Человек различает четыре времени года, и со своей точки зрения, бесспорно, прав. Бабочка-однодневка же считает, что в мире стоит всегда – понимаете, всегда – одинаково ровная температура плюс 16 градусов, и столь же непререкаемо права. С точки зрения человека, и материки стоят на месте, и горы неизменны по своей высоте. Увлекающийся же астрономией подросток четырнадцати с половиной тысяч лет от роду, что проживает на одной из планет далекой-далекой звезды, наблюдает в какой-то там свой прибор Землю и поражается: а все-таки быстро передвигаются на этой планете материки!
Время – назад!
Период полураспада радиоактивного изотопа не может быть изменен никакими внешними воздействиями, поскольку они, эти воздействия, по своей энергии значительно меньше, чем энергия межядерного взаимодействия. Поэтому период полураспада может быть отнесен к числу основных характеристик изотопа». Сказано очень сухо и, согласимся, не очень понятно. Но в формулировках академических изданий «лить воду» не принято (хотя и случается, увы), а что касается доходчивости, то эти издания предназначены для посвященных. Но зато сколько же за этими пусть и не очень понятными словами лежит труда!
Прежде чем прийти к выводу, содержащемуся в цитате, радиоактивные элементы подвергали чудовищному давлению – такому, когда сжимаемое вещество и на себя-то перестает походить; нагревали, если здесь только подходит такое элегическое определение к процессу, при котором радиоактивный металл плавится, а затем кипит, причем образующиеся пары раскаляют еще на две тысячи градусов выше температуры кипения. Все было напрасно – скорость радиоактивного распада оставалась неизменной. Понять это легко (потом понимать всегда легче): величина энергии, которая определяет течение процессов распада атомного ядра, неизмеримо выше, чем энергия, которая доставляется атому нагреванием вещества до каких-то жалких трех-четырех тысяч градусов.
Сейчас трудно установить, кого первого осенила счастливая мысль использовать постоянство скорости радиоактивного распада для создания радиоактивных часов. Можно полагать, что, как это часто бывает, до идеи радиоактивных часов одновременно додумались несколько ученых.
Рисунок, который сейчас перед вами, предельно правильно передает идею радиоактивных часов. Нет, конечно, время с помощью этих часов не определяют буквально так, как изображено на рисунке. А в остальном все сходится. Ведь из урана в самом деле «сыплется» свинец: известно, что уран, проходит несколько стадий, в каждой из которых он выбрасывает альфа-частицу и превращается в конце концов в стабильный (с той степенью приближения, с какой можно применять это слово) свинец. Количество свинца, которое образуется при распаде урана за определенный отрезок времени (год, столетие, миллион лет), строго постоянно. Вот и все вводные положения.
…Когда-то – специально не говорю, когда именно, – в результате достаточно сложных геохимических процессов образовался один из довольно многочисленных урановых минералов. Много позже, когда на Земле возникнет жизнь, которая в конце концов приведет к появлению геологов и геохимиков, этот минерал будет назван уранитом. Допустим, что все время тот образец минерала, о котором идет речь, начиная со своего рождения, находился в очень благоприятных условиях: вода его не размывала, ветер не разрушал и землетрясения ему никакого ущерба не причинили. Но, несмотря на это, минерал изменялся. С каждым днем – нет, не та единица измерения! – с каждым тысячелетием в минерале уменьшалось количество урана, но зато повышалось содержание свинца. Однако минерал лежал и дожидался, когда наступит его день. День наступил, минерал был извлечен из своего убежища и доставлен в лабораторию химиков. Те, вместо того чтобы любоваться красивой находкой – каждый минерал красив по-своему, – растворили его в едких реактивах, а затем сноровисто провели анализ раствора и определили, сколько в минерале было свинца, а сколько урана. На этом их миссия была закончена, и они передали результаты анализа геологу, который принялся изучать их с живейшим интересом.
Геолога можно понять. По результатам химического анализа он совершенно определенно может рассчитать, когда именно сложился этот образец уранита – ведь так важно знать возраст каждого из участков земной коры! Найдя по данным анализа отношение свинца к урану, геолог уверенно утверждает: этот минерал образовался 270 миллионов лет назад.
Как видим, уран, распадаясь, послушно и с регулярностью, недоступной даже лучшим из заводских хронометров, отсчитывал время рождения минерала, следовательно – и того участка земной коры, где был найден наш образец уранита. Чем же не часы? Конечно, на свидание с девушкой с такими часами не поспешишь – можно и опоздать. Но для свидания с прошлым – и каким далеким! – лучше этих часов ничего не придумаешь.
Вовсе не обязательно, чтобы геологические радиоактивные часы работали именно на урановой пружине. Ведь уран, как очевидно, не единственный радиоактивный элемент, соотношение которого с продуктами его распада может быть использовано для датировки различных геологических событий. Поэтому в геохронологии (а именно так и называется датировка по радиоактивным часам) с таким же успехом используют пары торий – свинец, уран – гелий, торий – гелий, калий – аргон.
Первым относительно времени происхождения нашей планеты высказался Ветхий завет. Там сказано хотя кратко, но зато категорично, что Земля, как и весь остальной мир, была сотворена за 4004 года до рождества Христова.
Подправил священную книгу архиепископ Иероним, который уверял, что торжественное событие сотворения Земли произошло не за 4004, а за 3941 год до того, как в заброшенных яслях появился на свет младенец Иисус.
Епископ антиохийский Феофил не мог согласиться с коллегой Иеронимом: с горячностью, явно несовместимой с саном, его преосвященство утверждал, что Земля гораздо старше: всевышний сотворил ее за 5515 лет до того события, в честь которого празднуется рождество.
И все же Августин Блаженный уточнил преподобного Феофила, заметив, что наша планета на 36 лет старше, чем считает его преосвященство.
Но окончательно все уточнил английский архиепископ Асшер, который еще в XVII веке вычислил, что Земля создана в 9 часов утра 26 октября за 4004 года до появления на свет младенца Иисуса. Как видим, у архиепископа не было серьезных расхождений с Ветхим заветом, но каковы были предпосылки, с помощью которых его высокопреосвященство определил с такой точностью время возникновения Земли, этого мы, конечно, уже никогда не узнаем. Надо полагать, что предпосылки эти были достаточно серьезны и основательны, – не верить же злым языкам, которые утверждали, что 26 октября это был день ангела архиепископа, который пожелал его таким образом увековечить.
Первая действительно научная попытка оценить возраст нашей планеты была предпринята во второй половине прошлого века виднейшим английским физиком Вильямом Томсоном (лордом Кельвином). Предположив, что в начале своего существования Земля представляла собой расплавленный шар, и зная размеры этого шара, Томсон рассчитал, сколько времени должно было пройти, чтобы этот шар остыл до нынешней температуры. Вышло 24 миллиона лет. Это было уже намного больше, чем «ветхозаветные» несколько тысяч лет, но все равно не устраивало геологов – они были уверены, что история планеты гораздо более солидная, чем выходило по расчетам Томсона.
И геологи вознамерились определить возраст Земли своим, чисто геологическим путем.
Геологи решили сыграть на солености морей и океанов. Уж они-то наверняка знали, что моря соленые не оттого, что в них селедки плавают, а потому, что реки увлекают в Мировой океан минеральные соли, вымывая их из различных горных пород. Концентрация солей в водах рек была известна. Соленость океанской воды, конечно же, определили давно. Дальше следовало прикинуть годовой сток речной и общий объем океанской воды. А раз известно, сколько солей находится в Мировом океане и сколько ежегодно пост'пает туда из рек, то, поделив первую величину на вторую, можно получить… нет, не возраст Земли, но, по крайней мере, указание, когда на планете образовались реки, моря и океаны. Вышло что-то между тремя стами миллионами и полутора миллиардами лет. Это были уже более правдоподобные величины. Но ведь какая неопределенность! В самом деле, были бы вы довольны, если бы диктор Центрального телевидения объявил: «Встреча по хоккею между сборными командами СССР и Чехословакии будет транслироваться сегодня. Начало передачи между 9 и 20 часами»?
Не приходится сомневаться, что геологи и поныне были бы преисполнены сомнений и колебаний относительно возраста Земли, не будь открыта радиоактивность. И вот в 40-х годах была проведена первая «наладка» радиоактивных часов. Теперь геологи стояли на Земле куда более уверенно, чем прежде!
Ход рассуждения геологов был очевидным: весьма вероятно, что возраст земной коры и планеты в целом не очень разнится. Поэтому необходимо определить возраст как можно большего числа различных пород и минералов. Самый древний из них и будет максимально приближаться к возрасту Земли.
Началась кропотливая работа. В геохронологические лаборатории доставлялись образцы из различных горных районов планеты, из глубинных шахт, со дна морей и океанов. В каждом из этих образцов тщательно определялось соотношение радиоактивного элемента и продукта его распада, и это позволило узнать, что…
…Что возраст гранитов может быть самым различным. Бывают среди гранитов младенцы ясельного возраста, которые едва насчитывают 200 миллионов лет, попадаются и зрелые мужи возрастом около миллиарда лет, а отдельные находки обнаруживали все признаки дряхлости – им было больше 2 миллиардов лет.
…Что встречаются породы (например, гнейсы), возраст которых приближается к 3 миллиардам лет.
…Что попадаются образцы, возраст которых явно больше 3 миллиардов.
…Что можно отыскать уже совершеннейших «мафусаилов» земных недр – возрастом 4,0 миллиарда лет от роду.
Теперь можно было утверждать с полной категоричностью, что возраст планеты не меньше 4,5 миллиарда лет. Не меньше… А сколько в действительности? Пять, семь или, быть может, все десять? Ведь имелись основания подозревать, что земная кора за время существования планеты могла, причем неоднократно, изменить свой состав. Не случайно один из видных геологов заметил, что первичная кора Земли была перемолота на мельнице Нептуна и переплавлена в кузнице Вулкана. Да, действительно, моря, землетрясения и извержения вулканов могли здорово повлиять на химический состав поверхностного слоя Земли. Могли… Но повлияли ли?
Достаточно определенно ответили на этот вопрос метеориты, которые…
«Позвольте, – снова вступит наш старый знакомый оппонент, – при чем здесь метеориты? Ведь речь идет о возрасте Земли, а метеориты – они ведь неземные объекты. Не случайно их красиво и волнующе называют «пришельцы из космоса»!»
Но метеориты как раз «при чем». Потому что у геологов и у их коллег астрономов имелись веские основания предполагать, что наша планета и «небесные странники» метеориты возникли в одно время.
Это просто удивительно, до чего различные метеориты, найденные в разных местах и в разное время, оказались близкими по возрасту! С ничтожной погрешностью, всего в каких-нибудь 100 миллионов лет, можно было утверждать, что все метеориты появились, так сказать, одновременно: 4,5 миллиарда лет назад, это и признали геологи за возраст Земли, точнее, срок, когда она сформировалась как планета.
Немного можно назвать научных открытий нашего века, которые так решительно повлияли бы на формирование материалистического мировоззрения, как определение возраста Земли и метеоритов. Ведь из факта совпадения возраста нашей планеты и метеорного вещества следовал вывод уже совершенно исключительный по важности: метеориты возникли тогда же, когда и остальные тела Солнечной системы. А это самый решающий аргумент в пользу предположения о том, что все планеты – «одногодки». Стало быть, вся Солнечная планетарная система возникла одновременно. А тогда… Но не будем спешить с обобщениями.