355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фиалков » Как там у вас, на Бета-Лире? » Текст книги (страница 4)
Как там у вас, на Бета-Лире?
  • Текст добавлен: 6 октября 2017, 16:30

Текст книги "Как там у вас, на Бета-Лире?"


Автор книги: Юрий Фиалков



сообщить о нарушении

Текущая страница: 4 (всего у книги 12 страниц)

И в мае бывают морозы, или мы – не Лапласы!

В самом деле, отчего так разнятся химические элементы по своему содержанию? И не предположить ли, что поначалу элементов было поровну, но тяжелые успели уже «скончаться»?

«Смерть» элемента может наступать только в одном случае: при его распаде. Распад же атомного ядра, – это радиоактивность. Не она ли причина того, что последние элементы периодической системы находятся в земной коре в таком мизерном количестве, а ведь они и впрямь все радиоактивны.

Итак, слово произнесено: радиоактивность. Теперь мы просто обязаны разобраться подробнее в некоторых проблемах, связанных с этим свойством материи. И прежде всего необходимо поговорить о том, чем вызвана радиоактивность. Почему атомное ядро внезапно, без каких-либо воздействий извне, разрушается?

В одной из прежних книг я уже приводил ответ великого французского астронома Лапласа на вопрос о том, как он создает свои теории. Ответ настолько удачный, что мне хочется еще раз вспомнить его. Лаплас ответил кратко и остроумно:

– Я беру первую пришедшую мне в голову мысль и опровергаю ее по частям.

Попробую воспользоваться методом Лапласа. Итак, приходите к нам, мысли о причинах радиоактивности, – будем опровергать вас по частям!

Первая мысль долго ждать себя не заставляет. Несомненно, радиоактивность каким-то образом связана с громоздкостью атомного ядра. Оно и понятно: по-видимому, очень уж громоздкие ядра под тяжестью сваленных в кучу без малого сотни протонов и полутора сотен нейтронов разваливаются под собственной тяжестью, как карточный домик. Должен заметить, что мы с вами, можно сказать, походя сформулировали первую из теорий радиоактивного распада, которая господствовала тогда, когда не были еще известны с доскональностью скорости распада разных элементов. Когда же эти скорости стали известны, то… мысль эту не пришлось даже опровергать по частям, она разлетелась сама собой, причем быстрее, чем самый из неустойчивых радиоактивных элементов.

Посудите сами. Если наше предположение было верным, то должна была бы соблюдаться очевидная закономерность: чем тяжелее элемент, тем он быстрее распадается. Но, увы, если периоды полураспада[4]4
  Период полураспада – время, за которое распадается половина атомов радиоактивного элемента.


[Закрыть]
первых тяжелых радиоактивных элементов (полоний, астат, радон и др.) составляют дни, часы, иногда даже минуты, но редко годы, то период полураспада тория – 14 миллиардов лет, а у последнего и, стало быть, самого тяжелого из естественных радиоактивных элементов, урана, период полураспада 4,5 миллиарда лет.

Часто даже самые хитроумные и, казалось бы, в высшей степени прочные научные построения можно развалить двумя-тремя, а нередко и одним вопросом. Мне вспоминается доклад, который довелось слушать лет пятнадцать назад на международной конференции по физике высоких энергий. Честно говоря, мне, химику, на этой конференции можно было тешить лишь свое любопытство (даже не любознательность). Дело в том, что на конференцию съехались самые выдающиеся физики современности, и меня весьма соблазняла возможность увидеть – одновременно! – восемь нобелевских лауреатов.

Шло рядовое заседание. Докладывал о каких-то дремучих физикотеоретических проблемах один очень представительный и, не сомневаюсь, весьма компетентный специалист, фамилии которого я не помню (а помнил – все равно бы не сказал). Профессор водил указкой по строкам формул, которыми была густо исписана громадная доска. У меня не было ни малейших сомнений в том, что разобраться в этом нагромождении уравнений можно только при виртуозном знании математики, да и то ценой многодневных усилий. Да, не мне было вкушать от этого пиршества математики!

Доклад окончился, и докладчик с довольным видом отряхивал руки от мела. Председательствовавший на заседании академик И. Е. Тамм осведомился, кому будет угодно задать вопросы. Вопросов не было, что я посчитал совершенно естественным: кто из слушателей мог разобраться в этих горах математики, что называется, по слуху! Но тут поднялся Л. Д. Ландау – но случаю царившей тогда в Киеве июльской жары он был одет в весьма пеструю рубашку с короткими рукавами – и спросил у плавящегося в темном костюме докладчика:

– Скажите, пожалуйста, в том уравнении, что написано в четвертой строке… нет, не сверху, а снизу, у вас действительно знак «плюс»? Вы уверены в том, что здесь не должен быть «минус»?

Докладчик повернулся к доске и стал изучать уравнение. Он стоял молча минуту, три, десять… Игорь Евгеньевич Тамм еле заметно улыбнулся и объявил перерыв.

Подобные неприятные вопросы были заданы и первой теории радиоактивности. Можно их перечислить в том порядке, в каком они выдвигались оппонентами:

– Почему радиоактивные элементы распадаются с неодинаковой скоростью?

С этим вопросом прежняя теория радиоактивного распада худо-бедно справлялась.

– Потому что, – ответствовала теория, – различные радиоактивные элементы обладают различной устойчивостью.

И хотя было неясно, почему у элементов разная устойчивость, ответ можно было принять. Но далее следовал вопрос посерьезнее:

– Почему эти неустойчивые ядра распадаются постепенно, а не сразу? Почему за единицу времени всегда распадается одна и та же доля имеющихся в наличии атомов радиоактивного элемента?

– Потому что, – не очень уверенно ответствовала теория, – неустойчивость в атомных ядрах накапливается постепенно.

Если ответ на первый вопрос представлялся не очень понятным, то этот был и вовсе темен.

И, наконец, следовал сокрушающий вопрос:

– Известно, что альфа-частица, вылетающая из ядер полония, радона, радия, урана и других радиоактивных элементов, имеет энергию значительно меньшую, чем энергия связи этой частицы с ядром. Это все равно, как если бы прыгун, подпрыгивая на 1,5 метра перед забором высотой в 2,5 метра, все равно перемахивал через препятствие. Что вы ответите на это?

Тут уже теория и вовсе молчала, расписываясь в своей несостоятельности.

Что ж, придется искать новые пути объяснения закономерностей радиоактивного распада. И эти поиски я начну с того, что предложу полюбоваться одной симметричной кривой, форма которой на первый взгляд не содержит ничего необычного. И тем не менее это замечательная кривая! Еще бы, она позволяет предсказать, сколько учащихся вашей школы закончат этот учебный год на круглые пятерки, а сколько, увы, останутся на второй год. И еще с помощью этой кривой вы с большой точностью установите, сколько в мае выпадет дней, которые будут отличаться от средней температуры этого месяца на 5, 10 и даже на 12 градусов, то есть будут необычно холодными или, напротив, столь же необычно жаркими. Эта кривая позволяет с бесспорностью выдать прогноз относительно того, сколько раз на протяжении грядущих десяти лет футбольной команде киевского «Динамо» доведется ликовать по поводу выигрыша у соперников по высшей лиге со счетом 7:0; впрочем, эта кривая позволяет подсчитать и то, сколько раз придется болельщикам киевского «Динамо» сокрушаться по поводу того, что их любимая команда проиграла со счетом 0:5. Эта кривая довольно точно предскажет число гениев XXI века, а также сколько двойняшек родится в будущем году в городе Кологриве.

Как видим, эта кривая – незаменимое подспорье всем специализирующимся на прогнозах и гаданиях: астрологам, метеорологам и прорицателям. Не приходится сомневаться, что располагай Ходжа Насреддин набором таких кривых, он сумел бы показать чудеса еще подиковиннее, чем при пользовании старинной китайской книгой.

Но я привел эту кривую вовсе не для того, чтобы порадовать начинающих чернокнижников. Специалистам-математикам эта фигура, называемая кривой вероятностного распределения, а чаще несколько интимнее «палаткой», известна хорошо, и ее «прорицательные» способности у них никакого удивления не вызывают. «Палатка» – геометрическое выражение зависимости между числом вероятных событий и отклонением этих событий от какой-то средней величины. На оси откладывают процент общего числа событий, например процент дней, которые по температуре в мае совпадают со среднемесячной; естественно, что таких дней будет больше всего, поэтому на кривой вероятностного распределения этим чаще всего встречающимся дням и будет отвечать максимум. Но бывают дни, которые отличаются от среднемесячной на 1 градус, то есть бывают на градус холоднее или на градус теплее. Естественно, что таких дней будет достаточно много. Но вот уже дни, когда температура отличается от среднемесячной на 5 градусов, будут встречаться реже. Совсем редко выпадают дни, когда температура будет на 10 градусов выше или ниже среднемесячной. Что же касается дней, отличающихся по температуре от среднемесячной на 15 градусов, то это именно та самая погода, какой не помнят долгожители.

Читатель, конечно, понял, что предсказывать майскую погоду с помощью «палатки» невозможно. Можно только определить вероятность совпадения температуры завтрашнего дня со среднемесячной (разумеется, эта вероятность будет наибольшей), вероятность отклонения от среднемесячной температуры на 1, 5, 10 и вообще любое число градусов. Вот почему, пророчествуя с помощью «палатки» температуру на завтра, мы должны были бы называть именно среднемесячное значение как наиболее вероятное и ошибались бы не чаще, чем… бюро прогноза погоды.

Столь подробное разъяснение кривой вероятностного распределения я привел, разумеется, не для того, чтобы направить читателя по зыбкому пути предсказателя погоды. Дело в том, что эта кривая очень точно представляет многие физические процессы. Так, «палатка» с предельной точностью описывает, какой процент молекул в данном объеме газа будет обладать так называемой средней скоростью, а сколько молекул будут превышать эту среднюю скорость на определенную (заданную) величину – на 2, 43, 87 или 194 %. Но для нас главное то, что кривая вероятностного распределения позволяет проникнуть и в некоторые из тайн радиоактивности.

Частицы, из которых состоит атомное ядро – протоны и нейтроны, – как и каждое материальное тело, обладают определенной энергией. И энергия эта, прошу учесть, не у всех нуклонов одинакова. Да, в большинстве ядер нуклоны безлико одинаковы, то есть обладают энергией, близкой к среднему значению (максимум на «палатке»). Встречаются ядра, у которых нуклоны обладают энергией меньшей, чем средняя. Но попадаются ядра – и число их можно рассчитать довольно точно, – нуклоны которых по своей активности резко отличаются от «толпы», то есть от нуклонов, энергия которых характеризуется средним значением. Иногда эти нуклоны обладают такой значительной величиной энергии, что они преодолевают узы, притягивающие их к ядру, отрываются от него и покидают атом, то есть происходит радиоактивный распад. (Сразу же ответим на естественно возникающий вопрос о том, как происходит бета-распад, то есть выбрасывание ядром электронов, – ведь атомные ядра электронов не содержат. Все объясняется достаточно просто. В какой-то миг нейтрон, обладающий повышенной энергией, распадается на протон и электрон. Электрон вылетает из ядра, а протон остается. Поскольку при этом количество протонов в ядре возрастает на 1, на столько же увеличивается порядковый номер элемента при бета-распаде. Именно такова первооснова правила изменения порядкового номера элемента при радиоактивном распаде, с которым мы знакомимся в школе.)

Теперь многое становится понятным. Различие в скорости распада каких-либо двух радиоактивных изотопов объясняется неодинаковым содержанием «шустрых» нуклонов в ядрах этих изотопов: чем больше таких нуклонов, тем быстрее распадается радиоактивный элемент.

Нет сомнений, все сказанное точнее объясняет причину радиоактивности, чем невыразительные предположения о «громоздкости» ядер. Полагаю, что читатель вместе со мной испытывает чувство удовлетворения от того, что мы вырубили еще одну ступеньку в гранитной скале Знания. И тут, в самом апогее упоения достигнутым, мы слышим заданный тихим, но достаточно настойчивым и от этого явственно ехидным тоном вопрос:

– Позвольте, но ведь подобными «палатками» характеризуется каждый элемент периодической системы, каждый изотоп. Следовательно, у каждого элемента, каждого изотопа должно быть большее или меньшее относительное содержание, как вы говорите, «шустрых» нуклонов. Тогда каждый элемент, каждый изотоп должен – быстро ли, медленно ли – распадаться. Иными словами, каждый элемент, каждый изотоп должен быть радиоактивным! Но ведь это не так, ведь всем известно, что имеются – и, к счастью, их довольно много, около трехсот, – стабильные изотопы. И вообще, хорош был бы наш мир, если бы все элементы, из которых он состоит, оказались радиоактивными!

Последнее патетическое замечание окончательно сбрасывает нас с вырубленной ступеньки, на которой, казалось, мы достаточно прочно укрепились. Потирая ушибленные места, мы хотя и досадуем, но, в общем, понимаем справедливость происходящего: и впрямь, разве это дело, чтобы все – подумать только, все! – химические элементы были радиоактивными.

И вообще, похоже, что метод Лапласа только для него и был пригоден. А если мы не Лапласы?!

«Есть вещь одна – о ней упоминание запрещено…»

В славном полку гвардейцев-гасконцев можно было говорить обо всем. Следовало обходить, притом как можно тщательнее, лишь один предмет – нос. И все с пониманием относились к этому запрету: у отважнейшего из храбрых офицеров-гасконцев Сирано де Бержерака, тонкого лирического поэта и непостижимого по своему искусству фехтовальщика, означенная часть лица была слишком уж велика[5]5
  Подробности – в замечательной драме Эдмона Ростана «Сирано де Бержерак».


[Закрыть]
.

В 20—30-х годах нашего века в среде химиков также не возбранялись разговоры на любую тему. Но считалось не очень этичным касаться некоторых проблем: зачем вызывать у своих коллег чувство досады, и так известно, что, пытаясь решить эти проблемы, загубила свои лучшие годы не одна сотня химиков и их соратников – физиков и геологов. Проблемы эти, сформулированные кратко и пронумерованные с канцелярской дотошностью, укладываются в три вопроса:

1. Почему аргона в атмосфере в 1000 раз больше, чем остальных инертных газов, вместе взятых?

2. В периодической системе аргон (порядковый номер 18) стоит перед калием (порядковый номер 19). Однако атомная масса аргона (39,9) заметно больше, чем калия (39,1). Но ведь с повышением порядкового номера должна увеличиваться и атомная масса. Почему же все элементы подчиняются общему правилу, а пара аргон – калий ведет себя так вызывающе?

3. Почему у калия, вопреки твердо установленному правилу, преобладает изотоп с массовым числом 39, в то время как калий-40, то есть изотоп типа 4p, которого-то и должно быть больше всего, в природном калии содержится в совсем уж жалком количестве: 0,01 %?

Конечно, в то время эти вопросы задавались отнюдь не столь академически беспристрастно. Звучали в них и недоумение, и раздражение, и даже гнев. Поэтому… Впрочем, тут, пожалуй, без комментариев не обойтись.

Комментарий к проблеме 1.

Попробуем войти в круг забот тех исследователей, которые 40–50 лет назад ломали голову над перечисленными проблемами. Представим себе хотя бы одного из этих ученых. Представим, как он, сидя ночами, в который раз пытается отыскать хоть сколько-нибудь приемлемое «потому» на «почему» первого вопроса:

– Ну хорошо, попытаюсь еще раз… Атому инертного газа тем легче ускользнуть за пределы земного притяжения, чем меньше его масса. Следовательно, меньше всего в атмосфере должно быть гелия – его и впрямь очень немного, – а больше всего в воздухе должно было бы содержаться тяжелого ксенона. Но тут-то и происходит накладка: ксенона в атмосфере содержится во много-много раз меньше, чем аргона.

Тогда, может быть, наоборот? Может быть, по какой-то неведомой причине кинетическая энергия атомов ксенона наибольшая и поэтому этот элемент легче всего покидает атмосферу? Но тогда больше всего в атмосфере должно быть самого легкого газа – гелия. Но и это не так. Больше всего аргона, этого проклятого аргона.

Возможно, содержание инертного газа в атмосфере зависит от какого-либо источника, содержащегося в породах и минералах? Но тогда гелий, безусловно, должен занимать абсолютно первое место, потому что этот элемент выделяется при радиоактивном распаде и полония, и радона, и тория, и урана, и других естественных радиоактивных элементов. А ведь больше всего аргона, этого проклятого аргона.

Но, может быть… А что, если… Ну, да ладно! А, пойду-ка я спать!

Комментарий к проблеме 2.

Тут тоже все непонятно. Хотя, может быть, непоследовательное изменение атомных масс аргона и калия есть исключение из общего правила? Не зря же придумали и очень ценят англичане поговорку: «Каждое уважающее себя правило должно иметь исключения». Но почему исключения приходятся именно на пару аргон – калий? И в чем причина этого исключения? И вообще этак любую загадку природы можно объявить исключением и успокоиться на этом. Нет, не подходит в данном случае нам английская мудрость!

Комментарий к проблеме 3.

А чего здесь комментировать, когда и так все непонятно!

Из приключенческих романов известно, что детектив только тогда добивается успеха, когда уясняет, что насморк проживающей в Лионе тетушки Мирабель, скоропалительная женитьба ее племянника Виктора на приехавшей учиться в Сорбонну наследнице лихтенштейнского престола, неожиданный выигрыш кобылой Айо Большого Рождественского Приза и небывалый по размерам пожар на верфях Сен-Марино – все это тесно связанные друг с другом события, которые и привели к смерти владельца верфей господина Браззака. Обязательное умение связывать друг с другом разрозненные и, казалось бы, не имеющие никакой взаимосвязи факты также относится к числу непременных талантов, которыми должен быть наделен настоящий ученый.

Да, хорошо было известно, что еще в 1906 году Кэмпбелл и Вуд, поместив соединения калия в ионоскоп (прибор для фиксирования радиоактивного излучения), обнаружили хоть и слабую, но несомненную радиоактивность. Известно-то известно, но внимания на это не обратили. И то сказать – в том «доисторическом» по технической оснащенности методов измерения ионизирующего излучения 1906 году радиоактивность, говорят, обнаруживали даже в дистиллированной воле! Л потом, как может быть радиоактивным элемент, находящийся в середине, почти что в начале менделеевской таблицы?!

А если бы калий даже и оказался радиоактивным, то каким образом, скажите, пожалуйста, при радиоактивном распаде из него мог образоваться аргон? Предположим, этот радиоактивный калий испускает альфа-лучи. При выбрасывании альфа-частицы порядковый номер элемента уменьшается на 2, следовательно, при этом типе распада должен был бы образоваться хлор, но никак не аргон. Если же калий обладает бета-радиоактивностью, то и тут никакого аргона не предвидится, потому при бета-распаде порядковый номер элемента увеличивается на единицу, то есть из калия должен был бы образоваться кальций. Нет, радиоактивностью калиево-аргоновую аномалию не объяснишь. С таким же успехом можно было бы объяснить все это влиянием солнечных затмений или противостояниями Марса. Нет, коллега, ваша мысль о радиоактивности очень неудачна.

Приблизительно такие ушаты скептицизма выливались на исследователей, которые отстаивали радиогенное происхождение (то есть образование в результате радиоактивных превращений) аргона. Однако если бы развитие науки шло по предначертаниям скептиков, можно не сомневаться, что человечество сейчас в лучшем случае только-только влезало бы в бронзовый век, а в худшем – еще раскачивалось бы на деревьях, цепляясь за ветви хвостами. Все перечисленные аномалии действительно были связаны с радиоактивностью калия.

Собственно говоря, радиоактивным оказался не весь калий, а лишь один из его изотопов, калий-40, тот самый, что примешан к «главному» изотопу калий-39 в количестве одной сотой доли процента. Самым же интересным в этой истории была та разновидность радиоактивного распада, которому подвергался калий-40. Этот тип радиоактивности очень напоминал воплощение в масштабах микромира гипотезы о падении на Землю в отдаленные геологические эпохи второго спутника нашей планеты (некоторые ученые считают, что Тихий океан – это впадина, образовавшаяся от падения второй Луны). Так и здесь: один из электронов, вращающихся на ближайшей к ядру калия-40 орбите, в какой-то момент захватывается ядром. Разумеется, никакой впадины при этом не возникает, но определенный ущерб ядро претерпевает: электрон немедленно вступает во взаимодействие с одним из протонов ядра. При этом по закону, хорошо известному физикам, протон превращается в нейтральную частицу – нейтрон. Поскольку массы протона и нейтрона, можно сказать, не различаются, то такое превращение не изменяет массы атома и сама катастрофа в значительной степени является, так сказать, «семейным» внутриатомным делом. Вестник, сообщающий внешнему миру о трагедии, – квант энергии, выбрасываемый ядром при захвате электрона.

Впрочем, и без вестника видно, что произошли серьезные события. Количество протонов уменьшилось на единицу. А раз так, то уменьшился на единицу и порядковый номер элемента; иными словами, калий (№ 19) превратился в аргон (№ 18). Это обстоятельство единым махом решает все три аргоново-калиевые проблемы.

Громадное – по сравнению с иными инертными газами – содержание аргона в атмосфере объясняется тем, что его непрерывным поставщиком служит находящийся в земной коре калий. В роли поставщика аргона выступает лишь калий-40, примешанный к «основному» калию в ничтожном количестве, однако самого калия, входящего в компанию элементов-гигантов, в земной коре так много, что в атмосферу ежедневно выбрасывается 500 тонн аргона. Этого количества с лихвой хватает для объяснения аномально… хотя нет, теперь уже следует сказать – нормально большого содержания аргона в атмосфере нашей планеты.

Становится совершенно понятной и «перестановка» с атомными массами. Основной изотоп природного калия имеет массовое число 39. Поэтому и атомная масса калия близка к 39. Аргон же – недаром его порядковый номер меньший, чем у калия, – образуется из калия-40, поэтому и имеет такую же атомную массу, как его «родитель». Таково – очевидное! – решение проблемы 2.

Столь же убедительно мы расправляемся и с третьей проблемой. Легко подсчитать, что в далекое время возникновения нашей планеты калий был совершенно нормальным 4p-ным элементом: безусловно, преобладающим его изотопом был изотоп с массовым числом 40, тот самый изотоп, который за миллиарды лет существования планеты успел из-за своей радиоактивности почти полностью вымереть. Для нас калий-40 – это свидетель отдаленных геологических периодов жизни нашей планеты, еще более далеких, чем те периоды, от которых нам остались папоротники или гигантские секвойи. Будем же дорожить знакомством с этим почтенным и заслуженным реликтом!

Заголовок следует понимать буквально. Ни о каких параллелях с фокусниками, с помощью ручных пассов сотворяющими из воздуха прекрасных дев в расшитых золотом шароварах, здесь речи быть не может.


    Ваша оценка произведения:

Популярные книги за неделю