Текст книги "Как там у вас, на Бета-Лире?"
Автор книги: Юрий Фиалков
сообщить о нарушении
Текущая страница: 10 (всего у книги 12 страниц)
Сильнейший взрыв, не соизмеримый по силе ни с какими иными процессами, протекающими в природе, разбрасывает вещество звезды, разбивает атомы водорода (а ведь протоны и быстро превращающиеся в них нейтроны – это ядра атомов водорода) и не успевшие разложиться в горячей – на 20 миллиардов градусов – печи элементы. Астрономы с радостью фиксируют появление ярчайшей звезды там, где еще вчера на небосклоне не было видно ничего либо еле-еле мерцала тусклая оболочка умирающей звезды (оболочка-то ведь совсем остыла!), а сегодня ослепительно – даже на расстоянии многих сотен световых лет! – сияет звезда, которую уважительно именуют с большой буквы – Сверхновая.
Каждая Сверхновая – не просто астрономический объект, пусть и очень интересный. Сверхновая – это… Но тут следует сделать отступление, не лирическое, нет – философское.
Прежде всего с признательностью вспомним философов-мате-риалистов, философов-марксистов. Они давно установили два пути развития процессов в природе: эволюционный (постепенный) и революционный (резкое изменение). Медленно, невообразимо медленно, даже по часам Вселенной, стрелка которых отсчитывает не секунды, а миллиарды лет, идет процесс образования химических элементов на звезде. Постепенно происходит переход одних элементов в другие, постепенно расширяется перечень элементов, составляющих звезду, постепенно изменяется температура: у ядра повышается, у оболочки понижается. Все это типичные примеры эволюционных процессов.
Но вот – ВЗРЫВ!!! За секунды, на этот раз уже не по часам Вселенной, а по нашему, земному, времени, все многообразие химических элементов, накапливающихся на звезде миллиардами лет, превращается в осколки – атомы водорода, среди которых лишь как ничтожная примесь встречаются редкие атомы более тяжелых «заводородных» элементов (впрочем, в весовом отношении этих «заводородных» столько, что хватает, и даже с избытком, на постройку планетной системы со всеми атрибутами: многими планетами, их спутниками, астероидами, метеоритами…). Это путь революционный[13]13
Впрочем, и распад элементов может идти эволюционным путем. Именно о таком пути рассказывалось во второй главе, когда шла речь о всеобщей радиоактивности как обязательном свойстве материального мира.
[Закрыть].
И сразу же за этим философским обобщением приходит грустная мысль: выходит, все зря, выходит, природа напрасно трудилась миллиарды лет, напрасно созидала сложные химические элементы. И все это лишь для того, чтобы за секунды – за секунды! – замечательные творения природы рассыпались впрах, дав жизнь только до обидности простенькому водороду?!
Нет, не надо сожалеть об уходящем лете, глядя на опадающий осенний лес. И пусть сейчас на дворе зябкая зима, но именно она – предвестник грядущей весны.
Не стоит сожалеть о погибающем зерне, высеянном в тучную почву, – ведь это зерно даст жизнь колосу.
И не скорби достойна смерть ради жизни, а уважения и признательности.
Надобно сказать, что поначалу к теории развития элементов на звездах многие ученые отнеслись кто настороженно, а кто и резко отрицательно. Не будем бросать этим ученым традиционные обвинения в ретроградстве, в узости мышления, в нежелании, неумении, близорукости и т. д., и т. п. Приклеивание ярлыков никогда и ни при каких условиях не может считаться лучшей формой научной дискуссии.
Все дело в том, что поначалу эта теория абсолютно недвусмысленно, я бы сказал, даже настойчиво утверждала неизбежность, неминуемость… конца мира.
Что – неожиданно?
Но в наш стремительный, насыщенный бурными научными событиями век, начиная исследования по некоторым тонким вопросам строения атомных ядер, нельзя быть уверенным, что в конце концов не придешь к проблемам возникновения и конца Вселенной, то есть к тем вопросам, которые испокон века были в компетенции только святой церкви и иных бойких лекторов районных отделений общества «Знание».
На первых порах теория развития элементов располагала лишь одним твердо установленным фактом: чем старше звезда, тем выше порядковый номер составляющих ее элементов. Этот факт был настолько бесспорным, что можно было, установив возраст звезды, например, по температуре ее оболочки, давать уверенный и почти всегда подтверждающий прогноз о ее химическом составе. Столь же непринужденно решалась и обратная задача: изучив спектр звезды и установив, из каких элементов она состоит, можно было обоснованно судить о том, каков возраст звезды.
Действительно, если преобладающий элемент звезды водород с незначительной подмесью гелия, то эта звезда совсем молодая, не вышедшая, так сказать, из школьного возраста. Кстати, наше Солнце, состоящее, как уже говорилось, преимущественно из водорода, имеет по масштабам Вселенной года совсем не обременительные. Реакции гелиевого цикла означают, что звезда стала совершеннолетней. Возникновение «железных» элементов свидетельствует о переходе звезды в зрелый возраст. Ну, а образование при нейтроно-протон-ном распаде всего разнообразия химических элементов, вплоть до самых тяжелых, показывает, что звезда состарилась и вступила в пенсионный возраст. Оперируя такими категориями, что можно было сказать о дальнейшей судьбе звезды?.. Вот то-то и оно…
Поэтому сами авторы теории происхождения элементов поначалу считали, что их теория свидетельствует о неизбежности конца мира. В самом деле, повышение порядковых номеров химических элементов не может идти бесконечно – на каком-нибудь элементе оно должно и оборваться. А кроме того, едва добравшись до трети периодической системы, до элемента железа, звезда уже не продуцирует энергию, а лишь потребляет то, что она накопила ранее. В общем, все свидетельствует о неумолимой энергетической гибели звезды, о том, что, завершив цикл развития элементов, звезда должна погаснуть, превратившись в холодный сгусток материи. Рано или поздно каждая звезда пройдет свой жизненный путь, а когда все звезды Вселенной погаснут, умрет и сама Вселенная. Конец мира неизбежен…
Эта пессимистическая точка зрения базировалась отнюдь не только на теоретических и экспериментальных сведениях о развитии элементов на звездах. Астрономы отыскали объекты, которые прямо свидетельствовали о справедливости этой точки зрения, – «белые карлики». Да, эти почти уже полностью угасшие звезды, имеющие небольшой размер и чудовищную массу, – они ли не наглядные свидетельства гибели звезды? Это ли не «останки» некогда блистательной красавицы?
Не случайно, нет, не случайно теория развития элементов на звездах поначалу так понравилась церкви. Сам папа Пий XII обратил на нее свое святейшее внимание и отметил теорию в одном из новогодних посланий. Это подтверждало уж совсем жгучий интерес к проблеме происхождения химических элементов.
История теории происхождения элементов – а эта теория уже имеет свою летопись – достаточно красноречивое подтверждение известного философского положения, которое утверждает: при рассмотрении каких-либо процессов, явлений необходимо учитывать не только эволюционный, но и революционный путь развития. Не хочу, не имею права утверждать, что многие ученые на Западе предпочитали не задумываться о возможном революционном цикле развития элементов лишь из-за настороженного отношения к этому прилагательному. Но факт остается фактом – гибель мира была провозглашена.
Взрывы Сверхновых звезд давно были известны астрономам. Но лишь в последние десятилетия астрофизики решили поставить эти взрывы в связь с процессами превращения элементов на звездах. И только тогда все прояснилось.
Прежде всего установили, что вовсе не обязательно каждая звезда должна стать «белым карликом». Более того, оказалось, что «белые карлики» – это тупиковая ветвь звездной эволюции, так сказать, космические губки. А торная дорога развития звезд – это тот путь, который мы и рассмотрели: водородная звезда – звезда с легкими элементами – звезда с тяжелыми элементами – Сверхновая.
Именно взрыв Сверхновой замыкает цикл развития звезды, а следовательно, и цикл развития элементов.
Потому что развеявшийся страшным взрывом водород силами тяготения рано или поздно соберется в компактный клубок, который, сжимаясь все возрастающими силами гравитации, вспыхнет молодой водородной звездой, вступающей в свою новую жизнь (хотел сказать «вторую жизнь», но вовремя остановился: кто знает, сколько этих жизней уже было у звезды). А относительно тяжелые элементы станут строительным материалом планетной системы нового Суириса. И на одной из этих планет со временем, быть может, возникнет жизнь. Пройдут миллиарды лет, и обитатели этой планеты, всматриваясь в сияющий на голубом небе Суирис, будут гадать: а почему же светит и греет их родимое светило? И, додумавшись до первопричины суирисского света и тепла, будут радоваться, что Суирис молод и жить ему долго, так долго, что, можно считать, конца этому не видать.
Не нам быть свидетелями этого ликования. Но радостно знать, что оно будет. Будет.
Пьянящие просторы космоса
В самом конце 1974 года в межзвездном пространстве был обнаружен этиловый спирт. К этому открытию астрономы отнеслись довольно равнодушно. Возликовали газеты. Даже респектабельная «Нью-Йорк геральд трибюн» не удержалась от того, чтобы не поместить карикатуру, на которой был изображен подозрительно веселый космонавт с чертами любимца американской публики Шепарда. Космонавт, находясь на какой-то экзотической планете, несколько затуманенным взором уставился на рекламу, на которой было выведено столь зазывно звучащее для каждого знающего толк в выпивке американца слово «Stolichnaja»…
А астрономам действительно удивляться не приходилось. Этиловый спирт был для них в данном случае очередным химическим соединением, открытым в космическом пространстве. И таких соединений уже известно несколько десятков.
Искать химические соединения в космосе начали давно – почти сразу после того, как астрономы получили от физиков и химиков замечательный метод исследования далеких космических объектов: спектроскопию. Впрочем, здесь, в задаче поиска в космосе химических соединений, дело обстоит далеко не так просто, как при обнаружении различных элементов: дескать, навел телескоп со спектрографом на нужную тебе область Галактики – и записывай в рабочий журнал всю «химию», какую регистрируют приборы. Ведь для того, чтобы элементы могли послать о себе весточку, они должны раскалиться в звездной печи. А именно эта процедура для подавляющего большинства химических соединений противопоказана: химическая связь не может существовать при той температуре, которая царит на поверхности даже относительно холодных звезд. Какая тут химическая связь, когда атомы при температуре в несколько тысяч градусов движутся с неистовой скоростью, что разрывают путы любой связи!
Когда астрономы, проконсультировавшись с химиками, выяснили, что надежд нет никаких, им оставалось одно – попытать счастья в «небесных дырках». Именно так, почти бранно, нарек открытые еще в XVII веке громадные скопления космической пыли знаменитый Вильям Гершель, рассердившись, что эти пылевые облака заслоняют свет от многих звезд. Температура «дырок», конечно, гораздо ниже, чем у звезд, и поэтому можно было надеяться, что в «дырках» будут образовываться некоторые не очень сложные химические соединения.
Первая «космическая» молекула была обнаружена в 1937 году. Молекула была очень простенькой: по одному атому углерода и водорода СН. Такая молекула в земных условиях существует ничтожные доли секунды («нормальное» соединение углерода с водородом – сгорающий в горелках наших газовых печей газ метан, СН4). Но важно другое: впервые было доказано, что в космическом пространстве, не только на Земле, могут существовать молекулы химических соединений.
Спустя несколько лет в «дырках» был обнаружен и циан – соединение атома углерода с атомом азота. Открытие дало основание для ряда прогнозов и догадок, большинство из которых выглядело достаточно мрачно: соединение циана с водородом, а его, как известно, в космосе предостаточно, – это цианистый водород, репутация которого зловеща и общеизвестна.
В 1963 году в межзвездной среде обнаружили гидроксил – соединение атома кислорода с атомом водорода (одним, а не двумя, как в случае воды!): ОН.
Но все эти открытые молекулы, во-первых, были радикалами, то есть очень неустойчивыми, по нашим земным понятиям, соединениями, а во-вторых, совсем простенькими: соединения всего двух атомов – это еще не бог весть какая химия. Но ведь надежды на встречу в космическом пространстве со сложными соединениями особенно радужными назвать было никак нельзя. В самом деле, для того чтобы в пылевом облаке образовалось соединение, необходимо по крайней мере столкновение атомов, которые могут вступить в химическую связь. Но ведь это только так говорится «облако». Концентрация вещества в пылевых облаках совсем ничтожная: меньше 100 атомов в кубическом сантиметре пространства. Это, конечно, больше, чем в «обычном» межпланетном пространстве, где количество вещества едва дотягивает до одного атома на кубический сантиметр, но гораздо меньше, чем плотность вещества, скажем, в земной атмосфере, в которой молекул в миллиард миллионов раз больше, чем в пылевых облаках. Да, перспективы на встречу атомов в таких «облаках» самые незавидные. Соответственно и прогнозы на открытие различных химических соединений в межзвездном пространстве были довольно незавидными. Во всяком случае, до тех пор, пока для спектроскопии не применили радиоволны и инфракрасное излучение.
И вот тут-то дела пошли веселее!
В космическом пространстве были обнаружены: аммиак, вода, сероводород, угарный газ, цианистый водород (оправдались прогнозы!), а затем и целый ряд довольно сложных органических соединений – формальдегид, метиловый спирт, муравьиная кислота, ацетальдегид. И этиловый спирт, о котором уже упоминалось.
А одна из заметок в журнале «Природа» так и называется: «29-я органическая молекула в космосе». Два японских астронома обнаружили в созвездии Стрельца и в туманности Ориона метиламин, довольно сложное органическое соединение, молекула которого состоит из семи атомов. Между прочим, метиламин, взаимодействуя с муравьиной кислотой, образует глицин – простейшую аминокислоту. А аминокислоты – главные составные части, главные блоки белка. А это означает, что… Впрочем, здесь нас уже заносит в область научного фантазирования, а ведь на научных поворотах надо быть едва ли не более осторожным, чем на скользком шоссе! Доказательством этому может служить хотя бы история о Сеньке Зайцеве, который ни в чем не был виноват.
Эх, Сенька Зайцев, Сенька Зайцев!
Октябрьским ярким днем на иоле подмосковного совхоза студенты копали картошку. Внезапно в небесной сини возник все усиливающийся нехороший фугасный звук и что-то, взметнув ботву, врезалось в землю. Повыждав, студенты принялись откапывать неизвестный предмет и скоро обнаружили глыбу льда весом килограммов в пять. Разочарованные студенты начали было стряхивать прилипшие к джинсам комки глины, но тут обратили внимание на коллегу – астронома Сеньку Зайцева, лицо которого застыло в маске вдохновенного глуповатого блаженства.
Астрономы хорошо знают, что многие из метеоритов, подлетающих к Земле, состоят из льда, обычного льда, весело искрящегося под яростными, но совсем не греющими в космосе лучами Солнца. Но никому еще не удавалось держать в руках ледяной метеорит. Стоит ли объяснять, почему? Зафиксирован, правда, один случай, когда ледяной метеорит каким-то чудом прорвался, не расплавившись, через атмосферу. Этот едва ли не единственный на памяти людей ледяной метеорит умудрился упасть на шедшее в Дубровники грузовое судно «Пракситель», с непостижимой точностью вонзившись в голову старшего помощника.
Ледяные метеориты манили астрономов не только из-за их неслыханной редкостности. Главная притягательность этих, конечно же, необычных космических гостей заключалась в том, что вероятность обнаружить следы инопланетной жизни в ледяных метеоритах наибольшая: известно – из всех химических соединений живые клетки больше всего любят воду.
– И вот, – пояснил Сенька, – наконец ледяной метеорит найден. Здесь, близ деревни Волково, девятого октября одна тысяча девятьсот шестьдесят четвертого года.
Спустя полтора часа дежурный на платформе «И 1-й километр» с удивлением наблюдал, как к электричке двигалась кавалькада молодых людей, двое из которых бережно несли что-то завернутое в ватник, а остальные, вытянув шею, не отрываясь смотрели на ношу и шипели:
– Оссссторожжжжно!..
– Змея? – спросил дежурный.
– Неа… – разъяснил Сенька Зайцев, сохраняя на лице выражение Главного Хранителя государственной тайны, и вся компания укатила в Москву, не взяв билетов.
Дальнейшие события лучше, излагать в форме дневника.
22 часа. Студенты прибыли на Павелецкий вокзал. Собрав в карманах двугривенные и подсчитав сумму, сели в такси. Ватник осторожно положили на колени.
22 часа 30 мин. Приехали в обсерваторию МГУ. По причине отмечавшегося накануне Дня астронома и ввиду пасмурной погоды в обсерватории находился только вахтер, отличавшийся предельной некоммуникабельностью.
– Ничего! – не огорчился Сенька. – Поехали в институт.
23 часа. На метро добрались к институту, в котором помещается метеоритная комиссия Академии наук. И здесь не было ни души, что вряд ли стоило считать удивительным, так как в 11 часов вечера даже специалисты по метеоритам спят или, в крайнем случае, смотрят танцевальное обозрение из Варшавы. Местный вахтер оказался ничуть не общительнее обсерваторского.
Тогда астроном решительно подошел к телефону-автомату, набрал «09» и узнал номер телефона академика Ч., председателя метеоритной комиссии.
Разбуженный академик ухватил суть дела мгновенно и, разделяя слоги, чтобы было понятнее, прокричал в трубку:
– Никуда, слышите, ни-ку-да не уходите. Я буду через двадцать минут, через двадцать!
Академик приехал через пятнадцать минут.
Еще через несколько минут стали съезжаться неведомо как узнавшие о ледяном метеорите сотрудники института.
0 часов 30 мин. Институт сиял. Светились почему-то даже окна месткома. Многочисленные сотрудники, в глазах которых фарами горело любопытство, толпились около комнаты № 38, где избранные счастливцы исследовали метеорит, и взывали к безответной двери:
– Ну, что?
2 часа ночи. Прилипший к скважине ухом старший научный сотрудник Дроздов сообщил болельщикам:
– Вроде бы азот нашли! Ей-бо-гу, азот! Они там целуются!
Сообщение Дроздова вызвало у собравшихся ликование. Азот – это уже почти наверняка органические молекулы. А органические молекулы… Уф, даже дух захватывает!..
2 часа 45 мин. Дверь комнаты № 38 приотворилась, и академик Ч. приказал:
– Микроскоп, быстро!
Микроскоп доставили через сорок секунд. Владелец его пытался протиснуться вместе с прибором в комнату. Микроскоп взяли. Владельца выдворили.
3 часа 00 мин. За дверью комнаты раздался крик:
– Это надо проверить!!!
3 часа 07 мин. Крик повторился.
3 часа 20 мин. Двери комнаты № 38 отворились, и в них показался профессор К. Не переступая порога, он тихо сказал:
– В метеорите обнаружены бактерии. Вот так-то…
Дверь снова затворилась, а в коридоре воцарилось молчание. Каждый понимал, что эти минуты уже принадлежат истории. По-видимому, именно с этих 3 часов 20 минут начнут отсчитывать новую эру в науке. Эру, когда человечество узнало о новой форме жизни, внеземной жизни.
3 часа 30 мин. Академик Ч., не отворяя двери, попросил разыскать где-нибудь биолога и как можно быстрее доставить в лабораторию.
4 часа 05 мин. Доставили биолога и впустили в комнату № 38, конвой вытолкнули. Болельщики снова принялись метаться по институту.
4 часа 15 мин. Академик Ч. из-за запертой двери распорядился:
– Выставить у двери охрану, обеспечить карантин. Никому не входить. Бактерии живые.
В институте появился корреспондент, почему-то из «Лесной промышленности». Лесной корреспондент прорвал кордон и по-хозяйски постучался в комнату № 38.
5 часов 05 мин. Из приотворившейся двери комнаты № 38 болельщики услышали отрывки довольно странного диалога.
– Понимаете, – смущенно тянул биолог, – с одной стороны, похоже, очень похоже на полиангиацае, но, с другой стороны… А вообще я не микробиолог, я специалист по приматам.
– Приматы в метеорите не обнаружены, – сухо сказал академик Ч., – пока не обнаружены. Придется вызывать академика М.
Предложение было встречено присутствующими с полным сочувствием. Академик М. в последние годы очень увлекался проблемами внеземной жизни и даже пытался – увы, безуспешно! – искать споры бактерий в каменных и железных метеоритах.
6 часов. Академика М. у подъезда института встретили с ликованием. Он быстро шел по коридору, и руки его тряслись. Стоящий у комнаты «N1» 38 конвой расступился, и академик, не снимая пальто, прильнул к микроскопу.
Спустя минуту академик М. выпрямился и холодно, очень холодно попросил:
– Покажите метеорит.
– Но он спрятан в криостат…
– По-ка-жи-те метеорит!
Академика подпели к криостату.
Он мельком взглянул на кусок льда и холодно заключил:
– Я не специалист по медицинским анализам, поэтому я вряд ли могу оказаться вам полезным. Можете пригласить любую лаборантку, хотя бы из поликлиники напротив. Она в момент скажет вам, сколько в этом «метеорите» белка, а сколько сахара.
Спустя два дня сопровождаемый астрономом и биологами Сенька Зайцев, желая отвести от себя подозрение в грубом и неостроумном розыгрыше, принес копию докладной записки командира самолета Ту-104, приписанного к московскому аэропорту Домодедово. Уместно привести конец записки:
«…о неисправности которого я докладывал службе главного механика еще 28.09 с. г. Во время выполнения рейса 4817 при заходе на посадку резервуар самопроизвольно открылся, в результате чего на меня по прилете было наложено службой санитарной инспекции взыскание».