355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Мизун » Разумная жизнь во Вселенной » Текст книги (страница 27)
Разумная жизнь во Вселенной
  • Текст добавлен: 12 октября 2016, 05:40

Текст книги "Разумная жизнь во Вселенной"


Автор книги: Юрий Мизун


Соавторы: Юлия Мизун

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 27 (всего у книги 29 страниц)

ПЕРВЫЕ ПОИСКИ

Первая научная работа с обоснованием того, что с помощью современных средств радиоастрономии можно вести поиск сигналов от внеземных цивилизаций, была опубликована в 1959 году. А в 1960 году уже начался такой поиск. Этот поиск начал американский радиоастроном Ф. Дрейк на Национальной радиоастрономической обсерватории в Грин Бэнк (Западная Вирджиния). Как и рекомендовали Дж. Кок-кони и Ф. Моррисон, поиск начали вести на длине волны 21 сантиметр. За достаточно короткий срок была разработана специальная приемная аппаратура. Она удовлетворяла требованиям узкополосности. Антенна представляла собой 27-метровый радиотелескоп с двумя рупорами. Техника измерений выглядела так. На один из рупоров антенны поступало излучение от той области неба, где, как предполагалось, должна была находиться планета с искомой цивилизацией. Сведений об этой планете не было, антенна наводилась на одну из двух звезд (8 Эридана и х Кита), которые находятся от нас на удалении около 31 световых года и вокруг которых, как предполагалось, могут обращаться планеты. Во второй рупор антенны поступал электромагнитный сигнал от другого участка неба за пределами указанных звезд. Приемник попеременно с помощью переключателя подключается то к одному рупору, то к другому. Поэтому сигнал от звезды записывался отдельными урывками, между которыми записывается сигнал (шум) из другого участка неба. Такая методика измерений была не новой, она широко использовалась в практической радиоастрономии и называется «модуляционной схемой». Она дает возможность выделить из шумов полезный сигнал даже в том случае, когда его уровень ниже уровня шумов, создаваемых аппаратурой. Но избавиться полностью от внешних шумов схема, к сожалению, не позволяет. Ф. Дрейк с сотрудниками проводил очень тщательные наблюдения в течение нескольких месяцев. Но ожидаемые сигналы не были зарегистрированы.

Позднее (начиная с 1971 года) подобные же наблюдения начали проводиться на радиотелескопах Национальной радиоастрономической обсерватории США с размерами 100 и 45 метров. На этот раз делалась попытка зарегистрировать сигналы от нескольких десятков ближайших к нам звезд, большинство из которых являлись красными карликами. В1971 году автор проекта «ОЗМА» принимал участие в работе международного совещания по проблеме поиска внеземных цивилизаций, которое состоялось в Бюракане (Армения) на астрофизической обсерватории. Там он выступил с анализом результатов эксперимента и пришел к заключению, что для поисков надо использовать самый крупный в мире радиотелескоп, расположенный в Аресибо. Диаметр его составляет 300 метров. Проведенные Дрейком оценки показали, что если мощность передатчика довести до 1000 кВт, то при коэффициенте направленности антенны радиотелескопа, равном 106, и ширине полосы, равной 100 МГц, а времени накопления в 100 секунд сигнал такого передатчика должен быть зарегистрирован на удалении порядка 6000 световых лет.

На Бюраканском семинаре были также доложены результаты экспериментов по поиску сигналов внеземных цивилизаций, выполненных под руководством В.С. Троицкого. В этих экспериментах также велся поиск на длине волны 21 сантиметр. Всего было исследовано 12 звезд, находящихся на расстоянии от нас, равном 10–60 световых лет. Каждая звезда исследовалась в течение 5 сеансов длительностью по 15 минут. Таким образом, общая продолжительность всех измерений составляла 16 часов. В этих экспериментах сигналы от внеземных цивилизаций также не были зарегистрированы. Возможные причины всех неудач мы рассмотрим позднее. Здесь только отметим, что чувствительность приемника в экспериментах В.С. Троицкого была невысокой, всего 2·10–22 Bт/см2 Гц. Чтобы понять, много это или мало, заметим, что такой поток радиоизлучения на метровых волнах дает только самый яркий источник радиоизлучения – Кассиопея А. В последующих экспериментах чувствительность приемника была повышена.

На Бюраканском семинаре также обсуждались результаты поиска сигналов из Вселенной, проводимого в США в рамках программы «Циклоп». При этом использовалась стандартная (штатная) радиоастрономическая аппаратура. Прием велся на волнах сантиметрового диапазона. Мы не будем подробно рассматривать каждый эксперимент по поиску сигналов от внеземных цивилизаций, выполненный за прошедшие годы. Итог всем этим экспериментам был подведен на Таллинском симпозиуме в 1981 году в докладе Дж. Тартер (США). Она составила сводную таблицу с включением в нее всех проведенных до конца 1981 года экспериментов по поиску сигналов от внеземных цивилизаций. Эта таблица была дополнена издателями материалов симпозиума и доведена до 1984 года. Что следует из этой таблицы?

С 1960 по 1984 год было проведено 45 экспериментов исследователями различных стран (СССР, США, Франции, ФРГ, Японии, Австралии, Канады, Нидерландов). Некоторые коллективы включились в поиски после этого срока. Многие ранее начатые эксперименты продолжаются до настоящего времени. За 25 лет, прошедших от начала первых поисков по проекту «ОЗМА», наблюдения силами исследователей всех стран велись в общей сложности в течение 120 000 часов, причем преобладали наблюдения по специально разработанным программам. Их продолжительность составила 100 000 часов. В результате проведенных поисков за 25 лет после 1960 года сигналы от внеземных цивилизаций так и не были обнаружены. Первые неудачи вызвали у некоторых ученых определенный пессимизм. И.С. Шкловский высказал мысль об уникальности разумной жизни на Земле. Другими словами, это значит, что поиски сигналов от внеземных цивилизаций бесполезны, так как таких цивилизаций нет. Но ведущие ученые мира придерживались и придерживаются другого мнения. Член-корреспондент АН СССР Н.С. Кардашев так подвел итог 25-летних поисков сигналов от внеземных цивилизаций: «Современную ситуацию можно обрисовать следующим образом. Программа перспективного поиска фактически не начата. Придавать какое-либо значение проведенным попыткам поиска сигналов нельзя. Внеземные цивилизации не найдены потому, что их не искали». Практически все участники Таллинского симпозиума придерживались такого же взгляда. Собственно, только И.С. Шкловский выразил свое отношение к проблеме: «Если ты очень ждешь своего друга, не принимай стук своего сердца за топот копыт его коня». Заметим, что доклад Н.С. Кардашева на этом симпозиуме был назван «Онеизбежности и возможных формах сверхцивилизаций».

Один из ведущих специалистов по данной проблеме Л.М. Гиндилис заявил на данном симпозиуме: «Я думаю, было бы большой ошибкой рассчитывать на быстрый и легкий успех. Такой неоправданный расчет может привести лишь к преждевременному и столь же неоправданному разочарованию». Свой доклад Л.М. Гиндилис завершил словами:

«В заключение хочу подчеркнуть следующее. Поиск ВЦ не является изолированной проблемой, она тесно связана с эволюцией нашей земной цивилизации, с развитием ее науки и культуры. Она требует самого широкого сотрудничества в различных сферах человеческой деятельности и, конечно, сотрудничества между народами. Это общенаучная, общекультурная и общечеловеческая проблема, которая помогает нам яснее представить и если не решить, то по крайней мере осознать кардинальные задачи нашей земной цивилизации».

«КОСМИЧЕСКИЙ СТОГ СЕНА»

Одна из причин неудач в поисках внеземных цивилизаций состоит в том, что наблюдения велись не на той аппаратуре, которая нужна была для этого, а на той, которая была в наличии. Практически на первом этапе отсутствовала нужная аппаратура. Так, профессор Оливер (США) доложил на Бюраканском семинаре о разработанном им проекте гигантского телескопа, предназначенного специально для поиска радиосигналов от внеземных цивилизаций. Стоимость сооружения такого телескопа исчисляется миллиардами долларов. В настоящее время государства не выделяют такие суммы специально на программу поиска внеземных цивилизаций. Тем не менее имеется существенный прогресс в радиоастрономической технике. Спасает положение то, что она создается для решения фундаментальных задач и одновременно может быть использована для решения данной проблемы.

Ф. Дрейк, который первым начал искать сигналы внеземных цивилизаций, сравнил эту проблему с проблемой поиска иголки в стогу сена. Так в науку о земных цивилизациях вошла метафора Дрейка о «космическом стоге сена». По-видимому, преувеличение здесь не очень большое. Если мы сегодня остановимся на определенном выборе частоты для связи, способе формирования связных сигналов, выборе направления связи с нашими корреспондентами во Вселенной, то это еще не означает, что наш выбор правильный, а главное – единственный. Если бы мы достоверно знали эти характеристики, то уже наверняка поймали бы посылаемые нам сигналы. Как ни хотелось бы, чтобы задача поддавалась именно такому решению, на это рассчитывать не приходится. Если мы действительно хотим решать эту чрезвычайно сложную задачу, то должны искать иголку в стоге сена.

Что же представляет собой этот стог? Обычный стог определяется тремя размерами: шириной, длиной и высотой. Задача поиска в нем иголки сводится к отысканиютрех координат того места, где находится иголка. Они определят однозначно место нахождения иголки. Какими величинами определяется космический стог? Одна из его координатных осей – это частота сигнала, который мыищем. Вторая координата – это чувствительность приемника (в ваттах на квад-ратный метр) для каждого отдельного канала независимо от его ширины. Третья координата (высота стога) – это количество направлений, в которых может быть осуществлена межзвездная радиосвязь. Можно ограничиться этими тремя координатными осями, хотя задачу можно (и не без основания) усложнить. Если мы будем достоверно знать эти три координат ы, то мы обнаружим бесценную иг олку – сиг нал от внеземной цивилизации. Что касается частоты, то в на-стоящее время не все специалисты столь единодушны в выборе частоты 1420 Гц, как это было вначале. В последующем стало выясняться, что у этой частоты наряду с плюсами имеются и минусы. Один из них состоит в том, что чем ниже частота, тем требуется большая мощность. Так, если сравнить две длины волны, равные 21 сантиметру и 0,15 сантиметра, то окажется, что при работе на длине волны 0,15 сантиметра потребуется в 20 тысяч раз меньшая мощ-ность, чем в случае работы на длине волны 21 сантиметр! Это при условии, что в том и другом случае будет создан одинаковый сигнал. Результат можно представить и по-иному. Если на каждой из волн с длинами 21 сантиметр и 0,15 сантиметра использовать одинаковую мощность, то сигнал на длине волны 0,15 сантиметра уйдет в 140 раз дальше, чем на длине волны 21 сантиметр. Эти цифры очень убедительно говорят в пользу волны с длиной в 0,15 сантиметра. Что касается природного характера излучения межзвездного водорода на длине волны 21 сантиметр, то и длина волны 0,15 сантиметра в этом смысле не очень обделена: на этой длине волны излучает позитроний – сверхлегкий элемент, состоящий из позитрона и электрона. В пользу выбора длины волны в миллиметровом диапазоне говорит и то, что чем меньше длина волны, тем меньших размеров потребуется антенна. Диаметр антенного зеркала D связан с длиной волны λ соотношением D≤05λ. Идея использовать для космической радиосвязи длину волны 0,15 сантиметра принадлежит Н.С. Кардашеву. Этот выбор обоснован не только приведенными выше соображениями. Важно и то, что именно вблизи этой длины волны имеется наименьшее количество космических шумов, мешающих поиску сигналов. На этой длине волны находится максимум реликтового излучения и, как уже говорилось, минимум галактического радиоизлучения. На эти «достоинства» излучения на длине волны 1,5 миллиметра внеземные цивилизации не могли не обратить внимания. Были рассчитаны возможности и связи на частоте 1,5 миллиметра. Поскольку мощность существенно уменьшится с уменьшением длины волны, то оказалось, что для установления связи на миллиметровых волнах в пределах нашей Галактики у нашей цивилизации имеются реальные технические возможности. Сейчас большие надежды возлагают на 70-метровый радиотелескоп РТ-70 Института космических исследований АН. Он работает в миллиметровом диапазоне радиоволн, который является оптимальным для поиска сигналов от внеземных цивилизаций. Значит ли это, что на этот раз вопрос выбора частоты сигналов окончательно решен? Конечно, нет. Здесь вряд ли можно ограничиться одним или двумя вариантами. Рассмотренные варианты довольно правдоподобны. Но если говорить о систематическом прощупывании всего космического «стога сена», то надо вести поиск радиосигналов на всех частотах от 300 МГц до 300 ГГц.

Второй координатой космического «стога сена», его длиной, если можно так сказать, является чувствительность приемной аппаратуры, с помощью которой ведется поиск. В идеале надо было бы вести поиск приемной аппаратурой, обладающей чувствительностью 10–30 Вт/м2. Она способна принять сигналы от такого же радиолокатора, как в Ареси-бо, но находящегося в любом месте в пределах нашей Галактики. Но такой инструмент для сегодняшней радиоастрономии – недостижимая пока что голубая мечта. Напомним, что чувствительность приемника в первых поисках сигналов внеземных цивилизаций была всего лишь 2·10–22 Вт/м2 Гц. Это в 50 миллионов раз меньше «идеальной».

Конечно, приемники с меньшей чувствительностью «прощупывают» наиболее близкие к нам вероятные источники и способны «услышать» те сверхцивилизации, которые способны послать очень мощные радиосигналы. Но это не дает нам никаких оснований делать вывод, что если на такой низкочувствительной аппаратуре мы не обнаружили сигналов от внеземных цивилизаций, то этих цивилизаций нет. Повторяем, что обзор всего неба на аппаратуре даже не слишком высокой чувствительности нужен. Он с пользой проводился до сих пор, и его планируется проводить и в дальнейшем. Причем, аппаратура и антенны, предназначенные для этих измерений, в будущем будут более совершенными.

Таким образом, длина космического «стога сена», то есть диапазон чувствительностей, простирается примерно от 10–22 до 10–30 Вт/м2 Гц. Пока что «стог» прощупан на очень небольшой его длине. Что касается высоты стога, то за нее мы приняли количество тех направлений, откуда могут прийти радиосигналы внеземных цивилизаций. Ясно, что этих направлений очень много, ведь нас окружает на разных удалениях множество звезд, а значит, и цивилизаций, расселившихся на планетах вокруг этих звезд. Если мы хотим найти иголку, мы должны прощупать весь стог, по всей его высоте. Другими словами, прозондировать нашу Галактику (о Вселенной мы уж не говорим) во всех возможных направлениях. Число направлений, в которых в идеале надо вести поиски радиосигналов, равно полному числу звезд, которые надо прощупать, для того чтобы обнаружить одну внеземную цивилизацию. Конечно, мы не можем считать, что вокруг каждой звезды должна быть разумная жизнь.

Имеется некоторая вероятность появления разумной жизни. Она оценивается в пределах от 10–5 (для оптимистов) до 10–12 (для пессимистов). Это значит, что для обнаружения одной внеземной цивилизации необходимо обследовать от 105 до 1012 звезд. Вот почему надо вести поиск сигналов из такого большого числа направлений. Число направлений, которые уже просматривались, не столь велико. Тем более что они просматривались только на определенных частотах и при довольно низкой и реже средней чувствительности приемной аппаратуры (естественно, сюда входят и соответствующие характеристики антенны).

Очевидно, что мы еще очень далеки от того, чтобы заявлять, что иголки в космическом «стоге сена» нет. Ее нет потому, что мы ее еще не нашли. Совершенно прав Н. С. Карда-шев, говоря: «Программа перспективного поиска фактически не начата». Значит ли это, что проблема настолько сложная, что нынешнее положение с ее решением является безнадежным? Практически все специалисты сходятся на том, что это не так, что проблема, несмотря на чрезмерную ее сложность, должна решаться. Более того, «проблема внеземных цивилизаций – проблема не только астрономическая, техническая и биологическая, но и социологическая, вернее, футурологи-ческая. Мы имеем дело со сложнейшей комплексной проблемой». Эти слова принадлежат И.С. Шкловскому.

КАК ИНАЧЕ ОБНАРУЖИТЬ ВНЕЗЕМНЫЕ ЦИВИЛИЗАЦИИ?

Внеземные цивилизации можно пытаться обнаружить не только путем поиска сигналов из Вселенной, которые имеют искусственное происхождение. Цивилизации должны демаскировать себя своей технологической и астроинженерной деятельностью. Поэтому они в принципе могут быть обнаружены даже в том случае, если не посылают сигналов другим цивилизациям.

Любое нагретое до определенной температуры тело излучает целый спектр электромагнитных волн. Это излучение называют излучением абсолютно черного тела. Длина волны, на которой происходит максимальное излучение, зависит от температуры тела. Так, если внеземная цивилизация построила вокруг своей звезды колонии или сферы Циолковского – Дайсона, то эти конструкции будут излучать. Если температура их составляет 30 °C (то есть 300 °К), то максимум их излучения приходится на 10–20 мкм. При очень низкой температуре вблизи абсолютного нуля (3 К) максимум излучения приходится на 1–2 мкм. Если температура составляет 1000 К, максимум излучения приходится на 7 мкм.

Представим себе, что цивилизация окружила ажурными конструкциями свою звезду со всех сторон, то есть перехватывает всю излучаемую звездой энергию. Тогда излучение этих эфирных городов в инфракрасном или миллиметровом диапазоне будет сравнимым с излучением самой звезды. Таким образом, обнаружение во Вселенной объектов с очень сильным инфракрасным и радиоизлучением должно наводить на мысль, не является ли этот объект делом рук внеземной цивилизации.

Конечно, просто сам факт наличия инфракрасного излучения у какого-либо небесного тела еще не говорит о его искусственном происхождении. Более того, естественных источников инфракрасного излучения практически бесконечно много. Среди них имеются и источники с очень большой светимостью, которая не только приближается к солнечной, но и значительно превышает ее. Такими интенсивными источниками инфракрасного излучения являются звезды с очень протяженными оболочками, протозвезды (то есть прародительницы звезд), плотные пылевые туманности и звезды, окруженные плотной космической пылью. Их называют звездами-коконами. Эта пыль и составляет их кокон. Свет звезды, проходя через этот кокон (космическую пыль), переизлучается. В переизлученном свете доминирует инфракрасное излучение.

Для того, чтобы определить искусственное происхожде-ние данного источника инфракрасного излучения, надо искать в нем какие-либо особенности. Они могут быть связаны, например, с формой, границами и т. д. самого сооружения. Возникает естественный вопрос, какая нужна аппаратура, для того чтобы вести поиск искусственных астроинже-нерных сооружений по их инфракрасному излучению с Земли? Сейчас такие измерения уже возможны. Это можно подтвердить такими цифрами. Если в центре Галактики имеется искусственная сфера Дайсона размером в 1 а. е. (это сфера, размеры которой равны орбите Земли) и температура конструкции оптимальна (-300 К), то ее инфракрасное излучение может быть зарегистрировано с помощью телескопа с диаметром «всего» 2 метра. Правда, используемый для таких измерений болометр на длинах волн 10–20 мкм должен обладать высокой чувствительностью, поскольку болометрический поток на орбите Земли составит всего около 3·10–16 Вт/м2. Надо иметь в виду, что это сооружение будет видно с Земли под углом 0,0002ґґ. Чем меньше температура, тем меньше излучение. Так, если температуру конструкции уменьшить почти до абсолютного нуля (3 К), то такой же болометрический поток будет только в том случае, если радиус сферы увеличится в 10 тысяч раз и она будет видна с Земли под углом 2ґґ. Максимум излучения при такой температуре приходится на миллиметровый диапазон. Чтобы его зарегистрировать на Земле (полагаем, что источник излучения находится в ядре Галактики), необходимо иметь антенну диаметром около 10 метров и соответствующей высокой чувствительности болометр.

Мы поместили гипотетические искусственные сферические сооружения в центре Галактики не случайно. Дело в том, что ученые не без оснований считают, что именно здесь имеются наиболее благоприятные условия для возникновения цивилизаций. Во-первых, здесь раньше всего началось образование звезд. Во-вторых, здесь имеется в избытке строительный материал для образования планет. Это газ и пыль. В центре Галактики сосредоточена большая часть ее массы. Так, в центральном объеме Галактики, который составляет всего одну миллионную долю всего объема Галактики, содержится около миллиарда звезд. Общая масса (или, точнее, плотность) здесь огромна, поскольку в небольшой сфере радиусом всего в 1 пк содержится масса, равная около 10 миллионов масс нашего Солнца. Недаром астрофизики считают это место в Галактике наиболее интересным, наиболее загадочным, где происходит интенсивное рождение новых звезд, планет и многое другое. Кого из читателей не интриговали рассказы о черных дырах, их невидимой огромной массе, экстравагантных свойствах. Так вот, полагают, что в центре нашей Галактики имеется такая массивная черная дыра (масса ее оценивается в несколько миллионов масс Солнца). Мало того, «здесь воз-можно существование цивилизаций на черных дырах», утверждали в своем докладе С А. Каплан и Н С. Кардашев на семинаре по внеземным цивилизациям в 1975 году.

Раз уж мы заговорили о воз можном существовании вне-земных цивилизаций в центре Галактики (кстати, там уже обнаружено 15 компактных источников инфракрасного излучения, только не доказана их искусственность), то отме-тим, что на Таллинском симпозиуме в 1981 году обсуждался вопрос о том, что не исключено су ществование организованной межзвездной связи в нашей Галактике, причем ассоциация внеземных цивилизаций, своего рода лидер всех цивилизаций в Галактике, должна находиться в центре Галактики, где имеются не только благоприятные условия ее возникновения (о которых мы говорили), но и плотность цивилизаций намного больше. Поэтому они без большого труда могут устанавливать двусторонние связи. Наша цивилизация находится на периферии Галактики, где плотность как звезд, так, естественно, и цивилизаций значительно меньше. Поэтому здесь устанавливать спонтанные контакты значительно сложнее. Л Н. Никишин высказал гипотезу, что ассоциация центральногалактических цивилизаций уже давно организовала единую систему связи со всеми известными цивилизациями Галактики. Это чем то похоже на единую телефоннуюсеть, к которой может подключиться любая новая цивилизация, которая дорастет до соответствующего технологического уровня. Такая сеть содержит устройства, запоминающие информацию, передающие ее цивилизациям, для того чтобы они на основании этой информации быстрее развивались и т. д. Так это или не так, сейчас никто не знает. Ясно одно, что эта гипотеза не противоречит никаким имеющимся на сегодняшний день данным.

Таким образом, сейчас все говорит за то, что в центральных областях Галактики очень вероятно существование астроинженерных сооружений, созданных или отдельными цивилизациями, или их ассоциацией. Часть этих сооружений могла бы быть предназначена «для организации потоков информации в общегалактических и даже трансгалактических масштабах».

В течение 1983 года было измерено инфракрасное излучение 98 % всей небесной сферы. При этом было открыто около 200 000 источников инфракрасного излучения. Большинство из них было связано с определенными астрономическими объектами. Но были найдены и такие объекты, которые, возможно, являются искусственными. Но это еще надо доказать, хотя за это говорят определенные факты.

Измерения были проведены с помощью инфракрасного космического телескопа. Он был установлен на искусственном спутнике Земли, плоскость орбиты которого была наклонена к плоскости земного экватора на 99°. Такие спутники называют полярными, так как они пролетают вблизи полюсов. Такая орбита спутника была выбрана не случайно. Измерения инфракрасного излучения лучше всего проводить, если телескоп находится на границе между днем и ночью. Такая орбита это обеспечивает. Диаметр зеркала телескопа 57 сантиметров. В фокусе зеркала находились детекторы, регистраторы инфракрасного излучения. Они охлаждались почти до абсолютного нуля (3 К). Это делается для уменьшения собственных шумов детекторов. Практически это охлаждение достигается помещением детекторов в жидкий гелий. Когда весь жидкий гелий был израсходован, измерения прекратились. Телескоп позволял проводить измерения излучения с длинами волн в четырех окнах: 8 – 15, 20–30, 40–80 и 80-120 мкм.

С помощью инфракрасного космического телескопа было зарегистрировано от многих объектов излучение только в инфракрасной области спектра. Такой объект может представлять собой звезду, которая, уже не светит, и окружена плотным облаком пыли. И звезды существуют. Это красные гиганты. Их масса близка к массе Солнца. Но внутри их выгорело все горючее, и они потухли. Другими словами, в ядре звезды прекратились ядерные реакции. Но атмосфера звезды увеличивается неимоверно, ее размер составляет несколько астрономических единиц. Так мертвая звезда становится гигантом. Из всех данных этих измерений были выделены данные по 5 объектам. Один из них, по оценкам, находится на расстоянии всего 20 световых лет. Температура, соответствующая его излучению, равна -53 °C. Другой объект оказался более теплым (+17 °C). Расстояние до него составляет примерно 70 световых лет. Следующий объект удален примерно на такое же расстояние. Температура +76 °C. Четвертый объект расположен на удалении 70 световых лет. Температура +17 °C. Пятый объект находится на расстоянии 400 световых лет. Температура -188 °C. Являются ли эти пять объектов сферами Дайсона, уверенно сказать нельзя. Чтобы это установить достоверно, необходимо получить дополнительную информацию.

Инфракрасный космический телескоп обнаружил вокруг центра Галактики около 2500 источников. Температуры их самые различные, от – 23 до +177 °C. Естественно, что не все они являются искусственными источниками, результатом деятельности цивилизаций.

Мы, конечно, плохо себе представляем, какую деятельность могут развивать внеземные цивилизации. Ведь отнюдь не обязательно перехватывать всю энергию своей звезды с помощью сфер Дайсона или других конструкций. Можно обеспечить себя энергией и другим путем. Например, использовать для этого планеты своей системы, которые состоят из водорода. И.С. Шкловский рассчитал, что если планета имеет такую же массу, как наш Юпитер, то ее массы хватит на 300 миллионов лет. В течение этого немалого срока за счет освобождения энергии при синтезе ядер водорода в ядра гелия можно будет получать столько же энергии, сколько мы получаем от Солнца. Более того, И.С. Шкловский считает, что для получения энергии цивилизация может замахнуться и на саму звезду, осуществить ее перестройку, отделив от звезды небольшую часть ее массы. Эта масса, заимствованная от звезды, может в десятки раз превышать массу планеты-гиганта. Непонятные вещи, которые действительно происходят с некоторыми звездами, обсуждались на семинаре в Таллинне. В. Страй-жис представил доклад «Некоторые астрономические явления как возможный результат деятельности высокоразвитых цивилизаций». Звезды, которые называют голубыми странниками, беглецами или бродягами, ведут себя так, как будто кто-то (высокоразвитая цивилизация) подсыпает в их ядро водород. Им давно пора полностью выгореть, а они продолжают гореть и светить также ярко, как и много времени тому назад. Сохраняя таким путем неизменным свое светило, цивилизация обеспечивает нормальные условия своего существования. «Нашей цивилизации через 4 миллиарда лет будет весьма кстати применить этот метод, чтобы избежать быстрого превращения Солнца в красный гигант» – говорится в докладе.

Обращается также внимание на звезды, названные пекулярными. На них почему-то значительно больше, чем положено, марганца, ртути, кремния, стронция, хрома и европия. Эти элементы находятся на поверхности звезды в разных местах (пятнах). Найти естественное объяснение этому ученые не могут. Поэтому пекулярные звезды привлекли внимание специалистов, занимающихся проблемой внеземных цивилизаций. Как это не покажется странным, ученые пришли к выводу, что цивилизация весьма успешно может обосноваться в атмосфере самой звезды. От корпускулярной радиации можно защититься с помощью магнитных полей, а от волнового излучения – с помощью специальных плазменных экранов. Андерсон, разрабатывающий этот вопрос, полагает, что конструкции в атмосфере звезды не должны превышать 100 метров (слишком сильно там гравитационное поле). Он считает, что сильные магнитные поля пекулярных звезд (их называют магнитными) могут поддерживать конструкцию в определенном положении. Таким образом, обилие металлов в разных местах на поверхности звезды можно рассматривать как «отходы инженерной деятельности высокоразвитых цивилизаций. Конечно, масштабы этой деятельности должны быть грандиозны и охватывать миллионы или даже миллиарды звезд».

В атмосферах холодных звезд также происходят непонятные вещи. Суть их состоит в том, что на их поверхности наблюдаются такие химические элементы, которые по нашим представлениям, исходя из эволюции звезд, там находиться не могут. Имеются различные типы этих звезд. Поэтому и избыточные элементы на их поверхностях различны. Так, в атмосфере двух из этих типов наблюдаются значительные количества радиоактивного элемента технеция. Как известно, его период полураспада составляет всего несколько сотен тысяч лет. Возраст этого типа звезд (их называют циркониевыми) составляет миллиарды лет. Совершенно непонятно, откуда взялся радиоактивный технеций. В некоторых из звезд этого типа наблюдается значительное содержание лития. При таких высоких температурах литий является короткоживущим элементом, а поэтому редким. Почему в атмосферах некоторых звезд (углеродных) его содержание увеличено в 100 000 раз? В углеродных звездах также сильно (в 100 раз) увеличено содержание тяжелых металлов – бария, стронция, лантана и др. Можно было бы полагать, что эти металлы выносятся из ядра звезды и они являются продуктами ядерных реакций. Но остается неясным, как это происходит, а точнее, по современным представлениям этого происходить не может. Образовавшиеся в ядре звезды тяжелые металлы должны оставаться там в продолжение всей жизни звезды.


    Ваша оценка произведения:

Популярные книги за неделю