355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Мизун » Разумная жизнь во Вселенной » Текст книги (страница 14)
Разумная жизнь во Вселенной
  • Текст добавлен: 12 октября 2016, 05:40

Текст книги "Разумная жизнь во Вселенной"


Автор книги: Юрий Мизун


Соавторы: Юлия Мизун

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 14 (всего у книги 29 страниц)

КВАЗАРЫ

В 1963 году было сделано открытие исключительной важности: обнаружены квазары – объекты, свет (и радиоволны) от которых шли к нам целых 15 миллиардов лет. Это значит, что сейчас мы их видим такими, какими они были вскоре после Большого Взрыва, в результате которого началась история нашей Вселенной.

Что собой представляют квазары? Прежде всего это источники радиоволн. Отсюда и их название: квази (то есть почти) звездные радиоисточники. Квазары поразили всех прежде всего колоссальной своей мощностью: находясь на самом «краю» Вселенной, они испускали настолько интенсивное излучение, что оно не только дошло до нас, хотя и находилось в пути более 10 миллиардов лет, но дошло весьма интенсивным. Ведь квазар можно наблюдать в самый простой 20-сантиметровый телескоп, тогда как для наблюдения объектов, находящихся в тысячи раз ближе, нужны пятиметровые телескопы! Квазар излучает такое огромное количество энергии, что возникает законный вопрос, откуда он ее черпает. Энергия, которую он излучает за полчаса, равна всей энергии, которая выделяется при взрыве Сверхновой! Светимость каждого квазара в тысячу раз превышает светимость крупных галактик, в которые входят миллиарды звезд! Поражает в квазаре и другое – компактность этой фабрики энергии. Квазар скорее сравним по размерам со звездой, чем с галактикой. (Поэтому его и назвали «квази»-звездным источником. Е) стественно, главным является вопрос, как устроен квазар, как работает его фабрика энергии, или, как говорят физики, какова его физическая природа. Не менее поразительно и то, что его фабрика энергии работает неритмично. Излучаемая квазаром энергия (он излучает видимый свет, ультрафиолетовые, инфракрасные и рентгеновские лучи, радиоволны) меняется не только в течение нескольких лет, но и в течение нескольких месяцев или даже недель. Это при среднем возрасте квазара 10 миллионов лет! Надо как-то объяснить такие значительные сбои в работе энергетиков квазара. Например, квазар 3С под номером 345 за три недели изменил свою светимость вдвое, а квазар под номером 466 в том же третьем кембриджском каталоге (3С) изменил свою светимость вдвое даже в течение нескольких дней (в течение нескольких месяцев светимость его изменилась в 20 раз!). Такие изменения характерны не только для видимой светимости, но и для интенсивности радиоизлучения квазара.

Обращаем внимание на то, что сейчас мы получаем информацию о тех квазарах, которые существовали около 10 миллиардов лет тому назад. Просуществовав всего 10 миллионов лет, они перестали быть квазарами. Таким образом, мы ведем разговор об объектах, которые существовали во Вселенной до того, как образовалась Земля. Это смещение во времени (возможность путешествия в прошлое и невозможность увидеть то, что сейчас происходит в ее далеких уголках) происходит потому, что на передачу информации с помощью света во Вселенной могут потребоваться миллиарды лет! Поэтому те квазары, которые излучают сейчас, можно будет наблюдать через 10 миллиардов лет, когда их излучение придет к нам.

Измерения показали, что квазары движутся (вернее, двигались) со скоростями, составляющими 87 % от скорости света. Скорости квазаров направлены от нас, то есть они разлетаются во все стороны с огромными скоростями. Измерялись не скорости, а смещение частоты излучения квазаров за счет эффекта Доплера. Оказалось, что смещение линий излучения атомов водорода происходит в сторону красного края спектра, то есть частота излучения увеличивается, что имеет место при удалении источника. Квазары движутся со скоростями, превышающими 250 000 км/с! Такие скорости запрещены другим объектам. Так, если бы звезда имела скорость движения больше 1000 км/с, то она покинула бы свою галактику. Кроме того, звезды движутся как от нас, так и к нам. Квазары же движутся исключительно от нас.

Как «работает» квазар?

Этот вопрос астрофизики изучают давно. Самым сложным оказалось понять, откуда квазар черпает такое большое количество энергии. За это время было предложено множество гипотез, объясняющих устройство квазара. Но они оказались несостоятельными. Поэтому их нет смысла рассматривать.

Оказалось, что проблема квазаров связана с проблемой активных ядер галактик. Они были открыты еще в 1943 году американским астрономом К. Сейфертом. В спектрах излучения, приходящего от космических объектов, были обнаружены широкие («размытые») и очень интенсивные линии водорода, азота, кислорода и других химических элементов. Положение линии излучения, которому соответствует определенная частота (а значит, и длина волны), зависит от того, какова скорость движения излучающей частицы и куда направлена эта скорость. Если скорость излучателя направлена к нам, то линия смещается в одну сторону, а если от нас – то в противоположную сторону. Движение излучателя поперек луча зрения не приводит к смещению линии в спектре излучения. Если одновременно измеряется излучение от частиц, часть которых движется к нам, а другая часть – от нас, то линия излучения расширяется в обе стороны. Чем больше скорость частиц, тем линии излучения становятся шире. По величине этого уширения можно рассчитать скорость движения частиц. Это сделал К. Сейферт. Он установил, что в активных ядрах галактик частицы газа движутся с огромными скоростями, достигающими десятков тысяч километров в секунду. Скорости газа в обычных галактиках не более 300 км/с. Скорости движения частиц газа в активных ядрах галактик сравнимы по величине со скоростями разлета частиц при взрывах Сверхновых звезд. Сейферт исследовал активные ядра 12 таких необычных галактик. Эти галактики впоследствии были названы сейфертовскими.

Ядра сейфертовских галактик своим излучением напоминают квазары, но мощность их излучения меньше. Их еще называют мини-квазарами. Излучение активных ядер сейфертовских галактик, как и излучение квазаров, является переменным. Был сделан вывод, что квазары представляют собой центральные объекты (ядра) внутри галактик. Дальнейшие исследования квазаров показали, что процессы, обеспечивающие выделение энергии, не ограничены ядром галактики, а являются результатом взаимодействия галактики с этим ядром.

ПРОИСХОЖДЕНИЕ ПЛАНЕТ

Происхождение и эволюция планет для проблемы внеземных цивилизаций являются одними из самых главных. К сожалению, сегодня мы не имеем полной ясности по данному вопросу. На первый взгляд это парадоксально, поскольку планеты находятся почти рядом по сравнению со звездами.

Более того, на одной из них мы живем. Тем не менее мы знаем значительно больше о происхождении и эволюции звезд, чем планет. Главная причина такого парадоксального положения состоит в том, что планеты (за исключением планет нашей Солнечной системы) мы пока что не могли наблюдать. А жизнь звезд мы поняли потому, что можем наблюдать ее на разных этапах их эволюции. Мы наблюдаем не жизнь одной звезды (для этого нам не хватит ни своей жизни, ни жизни нашей цивилизации), а одновременно жизни многих звезд, часть из которых рождается, часть находится в цветущем, а часть – в преклонном возрасте. Из этих наблюдений несложно нарисовать картину жизни одной звезды от ее рождения до ее смерти, что выше и было сделано. О планетах этого сказать мы не можем. Так что же сегодня мы знаем о происхождении планет?

Образование планет является частью процесса образования звезд или же очень тесно связано с ним. Как известно, звезды рождаются не поодиночке, а сразу целыми коллективами, скоплениями. Исходным материалом является облако межзвездной среды. Масса такого облака очень большая, она превышает в много тысяч раз массу Солнца. Чтобы такое облако начало сжиматься, необходимо, чтобы его плотность была больше некоторой критической величины. Способствовать увеличению плотности облака могут некоторые процессы, которые приведут к уплотнению вещества облака. Одним из таких процессов могут быть ударные волны, образующиеся при взрывах Сверхновых звезд, если они происходят не очень далеко от облака. Если бы все вещество облака сконденсировалось в один комок, то образовалась бы звезда-гигант, каких не бывает. Этого не происходит потому, что сжимающееся облако по мере своего сжатия распадается на более мелкие кусочки, сгустки, из которых впоследствии образуются звезды и планеты. Фундаментальными характеристиками тела являются его размер, форма и масса. Но когда речь идет о вращающемся теле, то такой фундаментальной характеристикой является его момент количества движения. Он определяется массой тела, его скоростью и удалением центра массы тела от точки, вокруг которой оно вращается. Если умножить эти три характеристики, то получим момент количества движения. Если данное облако межзвездной среды, имеющее определенный момент количества движения, является изолированным, то его момент должен сохраняться постоянным. Если облако распадается на отдельные сгустки, то сумма моментов количества движения всех сгустков, образовавшихся из облака, должна быть равна моменту количества движения изначального облака. Если же облако не изолированно, то часть своего момента количества движения оно может передавать другому телу, с которым оно взаимодействует. Естественно, оно может не только передавать, но и получать определенный момент количества движения от этого тела. Проиллюстрируем распределение количества движения на примере Солнечной планетной системы. Если массу всей Солнечной планетной системы принять за 100 %, то масса Солнца составляет 98 %, а массы всех планет составляют всего 2 %. В то же время момент количества движения Солнечной системы распределен так: 98 % его связано с движением планет по своим орбитам, и только 2 % вносит самое массивное в этой системе Солнце. Звезды вращаются с различными скоростями. Скорости вращения некоторых звезд в 200 раз больше скорости вращения Солнца. Но оказалось, что звезда изменяет скорость своего вращения в процессе своей эволюции не непрерывно, а в определенный момент этой эволюции скорость меняется скачком. Момент количества движения звезды с изменением скорости ее вращения будет также меняться. Быстрее вращаются массивные звезды. Малые звезды вращаются медленнее. Если звезда в процессе своей эволюции проходит момент, когда температура ее поверхности составляет около 6 тысяч градусов, скорость ее вращения резко (практически скачком) уменьшается. В этот «момент» происходит следующее: от звезды отделяются «куски» и уносят с собой часть ее момента количества движения. Поэтому звезда после этого вращается медленнее. Это можно проиллюстрировать на примере Солнечной системы. Если бы планеты составляли с Солнцем единое тело, то оно должно было бы вращаться со скоростью в 50 раз большей, чем сейчас, когда планеты являются самостоятельными объектами. Открытие того факта, что горячие звезды вращаются значительно быстрее холодных карликовых звезд, говорит о том, что у последних должны быть планетные системы.

Следовательно, образование планет можно представить себе следующим образом. Уже было сказано, что облако межзвездной среды сжимается (конденсируется) под действием силы гравитации только в том случае, если его плотность больше некоторой критической величины. Пока она остается меньше этой величины, сжатия не происходит. Поэтому только незначительная часть таких облаков, масса которых во много тысяч раз больше массы Солнца, испытывает гравитационное сжатие. Первоначальному уплотнению облака способствуют ударные волны и другие процессы, способные стимулировать звездообразование. На некотором этапе это очень массивное облако распадается на куски, сгустки. Каждый из таких сгустков является строительным материалом для создания звездной планетной системы, состоящей из центральной звезды и вращающихся вокруг нее планет. В самом начале вращательный момент такого сгустка очень большой, поскольку составляющий его газ быстро и беспорядочно движется. В результате этого движения газа сгусток приобретает форму диска, радиус которого в десятки раз больше расстояния между Землей и Солнцем. Далее этот довольно плоский диск видоизменяется: в нем образуются отдельные кольца, состоящие из газа. Затем каждое из образованных колец постепенно превращается в большой газовый сгусток. Именно из этих сгустков впоследствии образуются планеты, поэтому их назвали «газовыми протопланетами». Но пока что это не планеты, а огромные облака. Если бы такое облако находилось на месте Земли, то оно касалось бы Солнца. Далее эти облака-протопланеты сжимаются, температура газа растет. В центре облака она может достигнуть 3–4 тысяч градусов. Вещество внутри становится жидким. На более поздней стадии эволюции туманности в центральной ее части образовалась центральная звезда системы.

Анализ эволюции облака межзвездного газа показывает, что не может из него образоваться одна звезда (без планет или без другой парной ей звезды), потому что должен сохраниться постоянным, неизменным вращательный момент облака. Это было бы возможно в том случае, если бы вращательный момент первичного облака был очень мал. Но если такие облака и есть, то их очень мало, не более 10 %. Основные же в конце концов должны эволюционировать или в двойные звезды, или в планетные системы (со звездой в центре). Специалисты приходят к выводу, что примерно пятая часть звезд имеет планетные системы. И.С. Шкловский разделяет эту точку зрения: «Развитие современной наблюдательной астрономии естественно приводит к выводу о множественности планетных систем во Вселенной».

РАДИОТЕЛЕСКОПЫ И РАДИОИНТЕРФЕРОМЕТРЫ

Поиск внеземных цивилизаций производится с помощью радиотелескопов. По принципу работы они напоминают оптические телескопы – рефлекторы. В них также, как и в оптическом телескопе-рефлекторе, электромагнитное излучение собирается на зеркале и затем поступает в приемник этого излучения. В оптическом телескопе собирателем служит вогнутое параболическое зеркало. Видимые лучи, отражаясь от этого зеркала, собираются в фокусе рефлектора, где получается изображение небесного объекта. В радиотелескопе собирателем радиолучей служит металлическое зеркало (антенна). Форма зеркала выбирается также параболической, поскольку только зеркало такой формы позволяет собирать в одну точку (фокус) падающие на него электромагнитные волны. Металлическое зеркало собирает падающие на него радиоволны в фокусе, где установлена маленькая дипольная антенна. Эта антенна называется облучателем, так как она облучается радиоволнами. Радиоволны вызывают в облучателе электрический ток, сила которого изменяется во времени по определенному закону. От облучателя в радиоприемное устройство электрический ток передается по волноводам, на выходе приемника подключаются самопишущие приборы или другие регистраторы.

Радиотелескоп, как и оптический телескоп, надо направить в определенную часть неба, а еще лучше – в определенную точку. Для этого надо иметь возможность поворачивать (или направлять другим путем) само зеркало рефлектора. Это можно осуществить разными путями. У телескопов рефлекторы могут двигаться вокруг двух осей – вертикальной и горизонтальной. Для борьбы с отрицательным влиянием явления параллакса создают специальные параллактические установки.

Зеркало рефлектора должно быть таким, чтобы оно было направлено в определенную точку. Это достигается увеличением площади зеркала. Собственно, важны не абсолютные размеры зеркала, а отношение его размера (радиуса) к длине рабочей волны, излучение на которой должен принять радиотелескоп. Поскольку электромагнитные волны оптического диапазона на много порядков меньше, чем радиодиапазона, то и зеркало оптического телескопа может быть во столько же раз меньше зеркала радиотелескопа. Например, самый большой в мире телескоп, построенный в России и используемый в Специальной астрофизической обсерватории Академии наук России. имеет зеркало диаметром 6 метров. В то же время размеры зеркал радиотелескопов измеряются десятками и сотнями метров. Например, самый большой полноповоротный радиотелескоп имеет зеркало диаметром 100 метров. Неподвижное зеркало радиотелескопа в Аре-сибо (Пуэрто-Рико), которое вмонтировано в кратер вулкана, имеет диаметр, равный 300 метрам. Это зеркало может использоваться не только для приема радиоволн, но и для излучения, то есть в качестве передающей антенны. Другими словами, оно служит основной частью радиолокатора, способного посылать радиоволны в любые участки Галактики.

В последние годы у нас в стране построен радиотелескоп РАТАН–600. Размеры его составляют 600 метров. Он имеет особую конструкцию. Его зеркало параболической формы состоит из 895 подвижных алюминиевых отражающих пластин размером 2x7,5 метра, из которых составлено кольцо диаметром 600 метров. Когда речь идет о приеме радиоволн с помощью радиотелескопа, то лучше телескоп характеризовать не шириной луча, а его разрешающей способностью. Она определяется тем расстоянием между двумя радиоисточниками, радиоволны от каждого из которых радиотелескоп способен зарегистрировать по отдельности. Это расстояние измеряют не в единицах длины, а в угловых единицах. Чем больше площадь зеркала, тем больше угловое разрешение радиотелескопа.

Радиотелескопы имеют более высокое угловое разрешение, чем оптические. Это связано с технологией их изготовления. Металлические зеркала радиотелескопов изготовлять проще, чем стеклянные. В том и другом случае надо добиться, чтобы поверхность зеркала была строго параболической. Но степень строгости для обоих телескопов различна. Зеркало надо отшлифовать так, чтобы глубина шероховатостей его поверхности была не больше одной десятой длины волны принимаемого излучения. Длина волны видимого света очень мала. Поэтому и глубина шероховатостей оптического зеркала должна быть также очень мала. Другими словами, зеркало оптического телескопа должно быть отполировано с допуском в сотые доли микрометра. Значительно проще обстоит дело в случае металлического зеркала радиотелескопа. Поскольку длина радиоволн во много раз больше длины волн оптического диапазона, то и допуск здесь может быть во много раз больше. Поверхность металлического зеркала радиотелескопа может быть «отполирована» с допуском в несколько миллиметров! Ясно, что такое зеркало изготовить проще, чем стеклянное. Например, шестиметровое зеркало самого большого оптического телескопа шлифовали в течение восьми лет. Работы велись в особых условиях. Помещение, где проводились работы, было окружено тремя рядами стен. Для изготовления металлического зеркала этого не надо делать. Более того, оно может быть изготовлено не сплошным, а в виде решета. Если дырка решета меньше величины допуска, то радиоволны ее не заметят. Зато какой выигрыш получается в массе антенны, которую надо вращать и двигать.

Радиотелескопы еще экономичны и тем, что на одно и то же зеркало можно принимать радиоволны различной длины. Радиоволны приходят из космоса с самыми различными длинами волн. Насколько все усложнилось бы, если бы для приема излучения на каждой длине волны пришлось создавать специальное зеркало! Для того чтобы переключить радиорефлектор с одной длины волны на другую, достаточно заменить маленькую антенну в центре, то есть облучатель. Само же зеркало собирает радиоволны в фокусе независимо от их длины.

Кроме пространственного разрешения очень важной характеристикой радиотелескопов является их чувствительность. Чем выше чувствительность, тем более слабые радиосигналы способен принять радиотелескоп. Для повышения чувствительности надо, в частности, увеличивать площадь зеркала. Но для того чтобы принять слабый радиосигнал, мало иметь большое зеркало. Надо еще располагать высокочувствительным радиоприемником. Но повышать чувствительность приемников до бесконечности нельзя. Этого не позволяют физические процессы, которые протекают в проводах до входа в приемник. В них имеется непрерывное (тепловое) движение электронов, которое зависит от температуры проводника. В результате к приемнику подводится тепловой шум, который не позволяет принимать сигналы меньше определенного порогового значения. Поступившие в усилитель приемника тепловые сигналы усиливаются так же, как и полезные сигналы, созданные в проводнике принятыми из космоса радиоволнами.

Но это не все. Имеется еще очень важное обстоятельство, ограничивающее чувствительность радиоприемника. Это собственные его шумы. Причиной их являются процессы в различных радиодеталях. Проблема устранения этих шумов очень непростая. Решение ее очень важно не только для радиоастрономии, но и для многих других областей научных исследований, а также практических задач, где требуется принимать слабые радиосигналы на фоне превосходящего их шума. К настоящему времени уже сделано много для решения данной проблемы. Специалисты научились выделять очень слабые полезные радиосигналы из-под превышающих их шумов. Но для технического воплощения найденных решений требуется значительное усложнение радиоприемной аппаратуры.

Возможности радиотелескопов можно значительно расширить, если их использовать не поодиночке, а парами. Их можно включить так, что приходящие из космоса радиоволны будут суммироваться. Более конкретно это происходит следующим образом.

Две волны одинаковой длины можно так расположить друг относительно друга, что при сложении они полностью погасят друг друга, то есть дадут ноль. Для этого они должны быть в противофазе друг к другу. Если же они будут в фазе (то есть гребень одной волны точно совпадет с гребнем другой), то они сложатся и результирующая волна будет иметь интенсивность (амплитуду), равную сумме ин-тенсивностей обеих волн. Если амплитуды изначальных волн были одинаковы, то произойдет удвоение амплитуды первоначальной волны. Источник излучения, который посылает волны, находящиеся в фазе друг с другом, называют когерентным. Мощность излучения равна квадрату интенсивности. Поэтому при когерентном сложении, когда интенсивность волны удваивается, мощность излучения увеличивается в четыре раза (она прямо пропорциональна квадрату интенсивности).

Идея использования радиотелескопов парами состоит в том, что при определенном расположении телескопов принятые каждым из них волны будут складываться когерентно. При этом амплитуда (интенсивность) увеличится вдвое, а мощность – в четыре раза. Для того чтобы сложение волн происходило когерентно, надо выбрать длину электрического кабеля от каждого из радиотелескопов до радиоприемника так, чтобы сигналы от каждого радиотелескопа попадали в приемник одновременно. Описанное сложение волн называется интерференцией. Поэтому включенная таким образом в единую систему пара радиотелескопов называется радиоинтерферометром.

Радиотелескопы располагаются на некотором расстоянии друг от друга, которое называется базой. Радиоволны падают на их зеркала из космоса под определенным углом.

Если это направление изменится, то при той же базе условие одновременного прихода сигналов в приемник нарушается. Понадобится отрегулировать длину кабеля (волновода). В результате вращения Земли находящиеся на ней радиотелескопы непрерывно меняют направление своих лучей относительно космических объектов, а значит, меняется и направление радиоволн, приходящих к телескопу от данного источника. Эти изменения не компенсируют непрерывным изменением длины волновода. Их просто учитывают при обработке данных измерений, поскольку они будут приводить к изменению интенсивности. Всякое отклонение угла падения oт оптимального (при котором происходит когерентное сложение радиоволн) приведет к уменьшению интенсивности суммарной волны.

Возможности радиоинтерферометров значительно больше, чем отдельных радиотелескопов. Так, если база радиоинтерферометра составляет 8000 километров, то он позволяет проводить измерения радиоизлучения с разрешением в 0,0001 угловой секунды. Один радиотелескоп этого интерферометра находится в Крыму, а другой – в Хайситекской обсерватории (США). Под углом в 0, 0001 секунды дуги виден с Земли след космонавта на поверхности Луны! Максимальное угловое разрешение оптических телескопов составляет полсекунды дуги. Вот какими зоркими стали современные радиоинтерферометры. Чем больше база радиоинтерферометра, тем больше его разрешение. Радиотелескопы и радиоинтерферометры, установленные на поверхности Земли, работают с серьезными ограничениями. Во-первых, их работе мешает земная атмосфера. Так как она неоднородна, то и отдельные радиолучи проходят через среду с разными характеристиками, и поэтому их фазы колебаний и амплитуды будут отличаться. Говоря научным языком, можно сказать, что они перестают быть строго когерентными. Это изменяет получаемое изображение. Кроме того, атмосфера и ионосфера поглощают радиоволны определенной длины, то есть становятся для этих волн непрозрачными. Имеются и чисто земные ограничения. Это весовые и ветровые ограничения, и индустриальные радиопомехи, и, наконец, огромная «космическая» стоимость антенн таких размеров, которые надо бы иметь. Поэтому их создание нереально.

Многие из этих ограничений или снимаются, или ослабляются, если радиотелескопы поднять над земной атмосферой, вынести в космос. Здесь металлические конструкции могут быть более ажурными, легкими, поскольку ветровых нагрузок нет, а притяжение меньше. Но главное даже не в этом, а в том, что между объектом и прибором отсутствует неоднородная атмосфера и, кроме того, база интерферометра не ограничивается размерами Земли. Возможности интерферометров значительно возросли после того, как в 1970 году французский астроном А. Лабейри предложил эффективный метод, основанный на анализе зернистой структуры (состоящей из пятнышек, крапинок) телескопического изображения космических объектов. Поэтому метод был назван методом спекл-интерферометрии. Принцип, позволяющий это сделать, можно понять из такого примера. Если мы фотографируем рой пчел при плохой освещенности и невысокой чувствительности фотопленки, то вынуждены будем взять большую экспозицию. Но так как пчелы роя непрестанно движутся, то фотография получится размытой. На ней не удастся разглядеть каждую пчелу в отдельности. Так мы получим только общий вид пчелиного роя, как говорят, получим информацию о его форме, размерах и грубой (размытой) структуре. Далее представим себе, что у нас появилась очень чувствительная пленка и мы можем вести съемку с очень малой выдержкой. Тогда на каждой такой фотографии движение пчел не отразится, они будут видны неподвижными. Если вернуться от роя пчел к астрономическим объектам, то роль одной пчелы заменится ролью какого-либо структурного элемента (пятна, крапинки, зерна) на объекте. Чувствительность «фотопленки», то есть регистрирующей аппаратуры телескопов, можно существенно повысить. Можно ее повысить не только существенно, но предельно. В настоящее время для этих целей используются устройства, позволяющие во много раз усиливать с помощью электронной аппаратуры интенсивность света. Они называются фотоэлектронными усилителями (ФЭУ). С помощью ФЭУ можно поймать даже один-единственный фотон, минимальную порцию света. Это и есть предел, который уже достигнут. Итак, метод спекл-интерферометрии работает так. Ведут съемки объектов с очень малой экспозицией. Но делают не один кадр, а тысячи и миллионы их. Далее с помощью ЭВМ и специально разработанных программ эти кадры «складывают». При этом сохраняется информация о зернистой структуре объекта, то есть угловое разрешение очень сильно повышается. Если этого метода не применять, то «складывание» кадров происходит непосредственно в регистрирующем устройстве (как на фотопленке при большой экспозиции) и информация о такой структуре объекта теряется. В наше время этот метод широко внедряется в десятках обсерваторий мира, то есть они оснащаются спекл-интерферометрами.

Не надо думать, что с выносом телескопов и интерферометров за пределы земной атмосферы полностью отпадает необходимость бороться с последствиями того, что среда, в которой распространяются радиоволны или свет, является неоднородной. Поэтому метод спекл-интерферометрии применяется и при проведении измерений на космических интерферометрах.

Антенные поля в космосе могут создаваться с помощью автоматически развертывающихся конструкций, как это уже делается. При этом можно создать антенные поля, площадь которых во много раз превышает площадь земных антенн. Доставлять на орбиту эти конструкции будут транспортные космические системы, которые способны будут доставлять в космос строительный материал для энергетических установок, технологических комплексов и космических колоний.

Показано, что космический радиотелескоп можно установить на геостационарной орбите. Его размер может достигать 10–20 километров. Но важен не только размер антенны, но и длина волны, на которой работает интерферометр. Важно, в конечном счете, отношение минимальной рабочей длины волны к диаметру антенны. С выводом интерферометров в космос чувствительность их может быть увеличена более чем в сто тысяч раз. Надо иметь в виду, что чувствительность увеличится примерно в 10 раз только за счет уменьшения промышленных помех.

Разрешающая способность при этом также увеличится примерно во столько же раз. Она возрастает за счет увеличения базы интерферометра. Кстати, тут возможны различные варианты. Можно один телескоп оставить на Земле, а второй разместить на спутнике. При этом получится наземно-кос-мический интерферометр. Высота орбиты спутника может быть относительно небольшой (400–600 километров). В такой комбинации земного и космического радиотелескопов достигается новый специфический эффект, обусловленный тем, что оба интерферометра обращаются вокруг общего центра несинхронно, а относительная их скорость большая. Это позволяет получать более богатую информацию.

Можно несколько видоизменить приведенный вариант – использовать спутник с апогеем до 1 миллиона километров. При этом угловое разрешение увеличится в сто раз. И наконец, можно космический радиотелескоп вынести на удаление около 100 миллионов километров от Земли. Можно считать, что для такого радиотелескопа антенна уже отработана в процессе подготовки эксперимента по исследованию поверхности Венеры. Расстояние между зеркалами (база) интерферометра, видимо, достаточное. Но точность инструмента ограничивается влиянием неоднородностей космической среды. Это может затруднить обнаружение астроинженерных сооружений внеземных цивилизаций в космосе.

Размещение телескопов в космосе со столь большой базой открывает новые возможности. Если взять не два, а три радиотелескопа, разнесенные на большие расстояния, то становится возможным прямое измерение расстояний до объектов – источников радиоволн. Более того, при этом возможно получить объемное изображение данного объекта.


    Ваша оценка произведения:

Популярные книги за неделю