355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2000 № 11 » Текст книги (страница 2)
Юный техник, 2000 № 11
  • Текст добавлен: 21 сентября 2016, 18:49

Текст книги "Юный техник, 2000 № 11"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

ОСТРЫЙ РАКУРС
Рассказ о забытом законе

С понятием теплоемкости мы знакомимся в школе. И знаем, что это количество тепла, необходимое для нагревания одного кг вещества на один градус Цельсия. Теплоемкость измеряется в килоджоулях на килограмм и градус.

У воды от – 4,2 кДж/кг/град, у алюминия – 3,69, у свинца – только 0,756 – в общем у всех веществ разная. Величина теплоемкости любого вещества зависит еще от его температуры.

Для расчета устройств, при работе которых температура вещества сильно меняется, например, печей или тепловых двигателей, знать эту зависимость совершенно необходимо. Даже сегодня для этих целей приходится вести дорогостоящую, как правило многолетнюю, экспериментальную работу с целью составления справочных таблиц. Промышленность остро нуждается в таких данных, и не поддается учету, сколько ученых и лабораторий занято этим делом!

А теперь вернемся к делам знакомого уже нам с вами профессора МВТУ Алексея Нестеровича Шелеста (см. «ЮТ» № 9, 1999 г.).

В 1914 году при расчете своего тепловозного двигателя Алексей Нестерович получил столь высокое значение КПД, что отказался в это поверить.

Ученый разобрался, что повинны в этом таблицы теплоемкостей. Хоть и выпущенные разными очень серьезными научными школами, но данные их местами различались между собою на 50 и более процентов! Что прикажете делать при таких обстоятельствах? Составлять собственную правильную таблицу? Но на это потребуется полжизни! Да и где гарантия, что именно она будет точнее других?

И вот недавний выпускник института, инженер, занимавшийся вещами сугубо практическими: вагонами, рельсами, паровыми машинами и дизелями, даже водонапорными башнями – садится за квантовую механику.

Науку еще очень молодую, непонятную, почти никем не признанную. На ее основе выводит некие математические зависимости, позволяющие точно рассчитывать теплоемкость любых веществ, и формулирует закон теплоемкости.

В 1922 году в Лейпциге на немецком языке вышла из печати книга А.Н.Шелеста «Теплоемкости газов и паров». В ней впервые был сформулирован закон теплоемкостей, объективно действующий в природе независимо от воли людей. Согласно этому закону молярные (относящиеся к одному молю вещества) теплоемкости всех тел прямо пропорциональны числу атомов в молекуле. Были разработаны формулы для определения молярных теплоемкостей жидкостей, твердых тел и газов.

Теплоемкость твердых и жидких тел по закону профессора А.Н.Шелеста определяется по формуле:

Cp= Z x 4,157(lnT/36,09 + 1) кДж/молК.

Теплоемкость газов в зависимости от температуры находится по другой формуле:

Cv= Z х 4,157(lnT/98,1 + 1) кДж/молК,

где Z – число атомов в молекуле, Т – температура в градусах Кельвина.

(Чтобы перейти от молярной к более привычной теплоемкости одного кг вещества, достаточно ее разделить на молекулярный вес.)

Надо сказать, что потребность техники в точном знании теплоемкости с каждым годом росла. И ученые-экспериментаторы всячески шли ей навстречу, хотя это было не просто. Вот как, например, выяснили теплоемкость газов. Из-за малой плотности определять ее непосредственно, как, например, это делается для твердых тел на лабораторных работах в школе, не удавалось. Приходилось прибегать к косвенным методам.

Один из них основан на измерении скорости звука в газе. Газом наполняется длинная труба. С одной стороны она закрыта упругой стальной мембраной, по которой ударяют молотком.


АППАРАТ ШЕНТЬЕ ДЛЯ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ.

Четыре одинаковых по размерам и массе цилиндра из различных металлов нагревают в ванне с кипятком и ставят на брусок парафина, и каждый из них погружается в парафин па глубину, пропорциональную теплоемкости вещества, из которого он сделан.


ДВИЖЕНИЕ БРОУНОВСКОЙ ЧАСТИЦЫ под микроскопом, зарисованное наблюдателем, характеризует тепловое движение атомов и молекул, своеобразный образец хаоса.

Время распространения звуковой волны в газе регистрируется точным прибором. Зная температуру и плотность газа, расчетным путем по формуле Лапласа находится теплоемкость.

Шелест показал, что только лишь ошибка в измерении скорости звука на одну сотую секунды дает в этом опыте ошибку в измерении теплоемкости на 46,6 процента! А ведь есть еще неточности в измерении температуры, плотности и много-много других. Не отличались точностью и другие методы. Но как бы там ни было, ученые к началу 20-х годов значительно повысили точность измерения теплоемкости.

И тут оказалось, что теплоемкости очень многих газов по мере уточнения стали приближаться к величинам, найденным по формулам закона теплоемкости. То же относилось к жидким и твердым телам. Уже это доказывало справедливость закона.

Однако не все шло гладко. Во многих случаях закон давал расхождение с экспериментом в целое число раз. Алексей Нестерович объяснил это тем, что в отдельных случаях либо число атомов в молекуле измерено неверно, либо сами молекулы объединялись в группы, участвующие в тепловом движении в роли отдельных целых частиц. Наиболее красноречиво это выглядит на примере воды и льда. Известно, что теплоемкость воды в два раза больше, чем теплоемкость льда. Отсюда можно сделать вывод, что вода имеет молекулу, число атомов которой в два раза больше, чем у молекулы льда.

С учетом подобных допущений было проанализировано 242 известных в то время опыта по определению теплоемкостей различных веществ, и оказалось, что ни один из них в пределах точности измерения не противоречит закону теплоемкости.

Но при этом выяснилась еще одна удивительная вещь. Все химические элементы таблицы Менделеева ведут себя в процессах нагревания и охлаждения как вещества, состоящие из двух атомов. Исключение составляют только бор, бериллий и углерод.

Они подобны веществам одноатомным.

Работа Шелеста была встречена благожелательными откликами ведущих специалистов Европы. Но… автор был занят множеством очень важных дел: тут и разработка нового двигателя, и закупка в Англии паровозов для Советской Республики, и работа над тепловозом…

Так что уделить достаточно времени закону теплоемкости он не мог. И о законе постепенно стали забывать.

Рискнем предположить, что очень многим эта забывчивость была выгодна. Ведь закон теплоемкости лишал их спокойной, престижной, прекрасно оплачиваемой работы. Ведь так хорошо: заполнил газом трубу с мембраной и стучи себе молотком год или два…


ТЕПЛОВАЯ ВСЕЛЕННАЯ ШЕЛЕСТА. Интерпретация ряда экспериментов в свете «Закона теплоемкости» показывает, что теплота не столь хаотична, как мы думаем. Молекулы и атомы веществ за исключением бора, бериллия и углерода участвуют в тепловом движении как минимум парами.

Сегодня достаточно точный расчет теплового двигателя весьма трудоемок, поскольку сопровождается поэтапным заглядыванием в таблицу теплоемкости. Введение ее в память компьютера проблемы не решает, поскольку программа остается достаточно сложной, требует больших затрат на разработку.

Применение формул закона теплоемкости позволяет ту же работу и с более высокой точностью выполнить при помощи простейшей программы, занимающей не более двадцати строчек. Да и в случаи определения теплоемкости любого вещества закон теплоемкости мог бы ускорить работу в десятки раз. Теперь она бы сводилась только к определению температур фазовых переходов, где теплоемкость вещества скачкообразно меняется. Все остальные значения определялись бы по приведенным формулам профессора Шелеста.

Если бы подобная стратегия была принята, то неизбежно возникло бы желание физически объяснить явления, происходящие при этих скачках или фазовых переходах.

Но тут мы вновь подходим к вопросу, который вызывал шок у химиков, да, вероятно, уже возник и у многих читателей. Неужели при определении числа атомов в молекуле допущены столь грубые ошибки и о каких молекулах можно говорить в отношении инертных газов? Вопросы серьезные.

Вероятно, отвечать на них придется с изменения терминологии. Попробуем допустить, что молекулы попросту объединяются в комплексы и ведут себя как частицы, число атомов в которых кратно числу атомов в молекуле. Природу этой связи необходимо выяснить. Она должна быть иной, чем связь атомов в молекулах или молекул в полимерах. Не химической по своей природе.

Поэтому она и ускользала от глаз химиков. Поэтому на нее не распространяется запрет, действующий в рамках химии для инертных газов. Их атомы в процессе теплового движения могут объединяться в пары, но только под действием особых сил. Назовем их силами Шелеста. Добавим к этому, что закон теплоемкости фундаментален. Он многое меняет не только в наших взглядах на строение вещества, но и на второе начало термодинамики и, возможно, на наши представления о свойствах пространства-времени.

Если вас заинтересовало рассказанное выше, разыщите работу А.Н.Шелеста «Закон теплоемкости» (Машгиз, 1946 г.) и познакомьтесь с его выводами.

Предупреждаем – не пугайтесь. Закон его прост и изящен. Доступен любому студенту третьего курса. Желаем успехов.

к. т. н. П. ШЕЛЕСТ, А. ИЛЬИН


У СОРОКИ НА ХВОСТЕ


ОТКУДА МАТЕРИЯ? Американские астрономы обнаружили источник вещества, из которого рождаются звезды в нашей Галактике. Многолетние исследования показали, что в системе Млечного Пути каждый год зажигается как минимум по одной звезде. Это происходит благодаря гравитационному сжатию космического газа, запасы которого по расчетам должны были истощиться еще миллиарды лет тому назад.

Этот парадокс разрешили ученые из Мичиганского университета. В статье, опубликованной в журнале «Нейчур», они пишут, что наблюдения, проведенные с помощью телескопа «Хаббл», показали: Млечный Путь постоянно получает материю от мощных газовых облаков, которые с большой скоростью перемещаются в межгалактическом пространстве.

Эти облака были открыты еще в середине 60-х годов, однако их роль до недавнего времени была не ясна. Теперь стало понятно, что они подобно земным облакам, несущим влагу для произрастания растений и питания рек, доставляют материю для «производства» новых звезд и других небесных тел.

ЯЙЦО ДРЕВНЕГО СТРАУСА. В Дарвиновском музее столицы для всеобщего обозрения выставлено яйцо в 7 раз больше яйца африканского страуса и объемом, превышающим 8 литров – целое ведро! Можно представить, какой бы из него вылупился птенец…

Несли такие яйца эпиорнисы – древние слоновьи птицы, прозванные так за свои размеры. Были они высотой в три метра и весили до полутонны. Жили на Мадагаскаре, где вроде бы совсем неплохой климат. Но, подашь ты, почему-то вымерли…

НАВОЗ ВМЕСТО… НЕФТИ?! О том, что коровий навоз – хорошее топливо, в южных безлесных регионах нашей страны знают издавна. А теперь вот инженер-химик из Таиланда Вис саму Мийао изобрел реактор, позволяющий перерабатывать всякие экскременты в «бионефть», качество которой получается даже выше, чем нефти обыкновенной. Из одного килограмма «сырья», обработанного азотом при температуре 400 °C, вырабатывается 600 г «бионефти», 300 г угля и 120 г газа, сообщает изобретатель. Единственное, на что он сетует: производство пока обходится вдвое дороже получения обычного дизельного топлива. Однако химик настроен оптимистически и обещает в скором будущем усовершенствовать технологию.

КОСМОДРОМ ДЛЯ «ЛЕТАЮЩИХ ТАРЕЛОК». Южнокорейская ассоциация уфологов решила пригласить к себе в гости… инопланетян. А для этого на вершине горы Понхва, что в провинции Кенсан-Пункто, решено построить площадку для приземления «летающих тарелок».

Чтобы пилоты НЛО не пролетели мимо, по всему периметру космодрома размерами 50 на 50 м будут мигать посадочные огни. А поперек самой площадки появится исполненная белой флуоресцентной краской надпись «Добро пожаловать, НЛО!» на корейском языке, которым, как считают уфологи, пришельцы из Вселенной владеют свободно.

Чтобы запечатлеть момент посадки внеземного космического аппарата, планируется установить действующие в автоматическом режиме видеокамеры.

Для бриффингов и пресс-конференций прилетевших гуманоидов будет также построено помещение. Самое интересное, что вся затея окажется для ассоциации практически бесплатной: землю под «тарелкодром» и деньги на его техническое оснащение пожертвовал живущий поблизости буддийский монах, который часто, как он сам утверждает, наблюдал посещения этой местности пришельцами из космоса.

СУД НАД… УРАГАНОМ? Необычный судебный спор выиграл недавно один австралиец. Дело в том, что недавний ураган, который поднялся в районе центрального пляжа будущей олимпийской столицы, полностью разгромил стадион для пляжного волейбола. Пластиковые сиденья разлетелись в радиусе 700–900 м. Разбросал смерч и цветы с местного рынка. Причем один гладиолус, словно пика, серьезно повредил глаз 53-летнему Гарри Мейлу, который немедленно обратился в суд с соответствующим иском. Впрочем, пожаловался австралиец на само стихийное бедствие, а не на городские власти и местную метеослужбу, которые не смогли заблаговременно предупредить жителей о надвигающемся ненастье. Адвокат ответчиков попытался было сослаться на каверзный характер смерча, но это ему не помогло.

ВСЕГО СТАКАН ВОДЫ. Нехватка воды в большинстве городов Китая заставляет местных умельцев проявлять чудеса изобретательности. Здешние изобретатели разработали устройство, которое может очистить унитаз стаканом воды. При каждом нажатии на кнопку аппарат под большим давлением распыляет 200 граммов жидкости. Изобретение позволит каждый раз экономить 12 литров воды, которые содержит стандартный китайский бачок.

С ПОЛКИ АРХИВАРИУСА
Воронка, изменившая мир, или что скрывается за простотой…

Изобретения, которые сделал шведский инженер Карл Густав Патрик де Лаваль, сегодня, наверное, не помнит никто, кроме историков. Однако любой инженер несомненно помнит Лаваля, как создателя паровой турбины, и очень важной ее детали – трубки, или сопла для истечения пара. От обычных трубок сопло Лаваля отличается тем, что внутренний диаметр его вначале уменьшается, а затем плавно растет. Кому-то покажется все пустяком. А между тем именно эта деталь впервые сделала турбину работоспособной. Впервые… за две тысячи лет!


Рисунок профессора Г.И.Покровского.

Первая паровая турбина была создана в I веке до н. э. Героном Александрийским. Она работала за счет силы реакции пара, вытекавшего из трубок. Есть легенда о том, что на ее основе Герон построил действующую установку для подъема дров на вершину Фаросского маяка. Однако после гибели античной цивилизации турбину Герона (эолипил) долгое время рассматривали лишь как умозрительную игрушку.

В эпоху Возрождения потребность в энергии стала расти, что открыло путь к поискам ее новых источников. Появляются первые идеи о возможности использовать силу пара. В XVII веке паровую турбину, похожую на водяную мельницу, предложил итальянец Джованни Бранка (рис. 1).


Рис. 1

Судя по деталям рисунка, где изображена передача, снижающая скорость вращения в 100–125 раз, можно полагать, что какие-то опыты с ней проводились.

Но на первых порах технически проще оказалось заставить работать пар в поршневых машинах. И несмотря на большой успех, их чрезмерная сложность вскоре заставила изобретателей обратиться к турбине.

На одном из американских лесопильных заводов начала прошлого века поставили реактивную турбину, подобную эолипилу Герона. Поскольку даровое топливо (древесные опилки) имелось в изобилии, да к тому же рядом, установка проработала немало лет. Но в большинстве случаев применение паровых турбин не представлялось возможным. Расход топлива у них был в десятки раз выше, чем у паровых машин. И причина транжирства долгое время была загадкой.

А заключалась она в том, что конструкторы первых паровых турбин пытались использовать опыт турбин водяных. Поскольку плотность пара в сотни раз меньше плотности воды, струе, бьющей на лопатки, старались сообщить большую скорость. А вот делали тем же способом, что и с водой. Пропускали поток пара через сужающееся сопло. Для жидкостей это верно. Их скорость легко достигала предела, обусловленного почти полным переходом потенциальной энергии в кинетическую. Но скорость пара росла лишь до некоторого значения. И ничто – ни повышение давления, ни температуры – ее существенно не увеличивало.

Измерения показывали, что при этом в кинетическую энергию превращалась лишь ничтожная часть энергии. Турбинное же колесо – не что иное, как устройство, перехватывающее кинетическую энергию потока пара. При таких условиях КПД турбины мог быть лишь очень низким.

Чтобы справиться с задачей, необходимо было понять, что же происходит при истечении пара.

В отличие от воды, которая практически не сжимаема, пар при прохождении через сужающееся сопло, значительно увеличивает свою плотность. Образно можно сказать, что пар как бы имеет возможность выбирать: увеличивать ли ему свою кинетическую энергию или потенциальную. В сужающемся сопле он явно отдает предпочтение последнему. За счет этого темпы роста скорости убывают. Когда скорость потока достигает скорости звука, дальнейший ее рост прекращается.

Пар, покидающий устье сопла, в дальнейшем расширяется и тем самым дополнительно совершает механическую работу. Но движется он при этом в разные стороны. Как же уловить всю его энергию?

Выход из положения – позволить газу продолжать течение в условиях, когда плотность его может уменьшаться. Для этого вслед за сужением надо бы установить расширяющийся раструб.

Такие рассуждения и приводят нас к соплу Лаваля. В нем скорость газа может в несколько раз превысить скорость звука. А его кинетическая энергия на 95–98 % соответствует той части тепла, которая теоретически может перейти в работу (рис. 2).


А теперь небольшое отвлечение. В 1990 году издательство «Знание» выпустило книгу «Огонь в упряжке», авторы А. Моравский и М. Файн. В ней говорится, что сопло такого типа было изобретено еще в 1848 году ван Ратеном (английский патент № 11800). Лавалю тогда было около трех лет. А свою турбину он создал лишь через сорок лет. Стало быть, сопло он изобрел хоть и самостоятельно, но заново. Однако надо учесть, что за такой срок авторские права перестают действовать, а заключенная в патенте идея становится достоянием всего человечества.

Так что сопло назвала именем Лаваля молва человеческая.

Ван Ратен в свое время не нашел полезного применения своему соплу. Во всяком случае, турбину на его основе он не создал. И вот. видимо, почему.

Скорость истечения пара из его сопла достигала 700–800 метров в секунду. Для того чтобы использовать эту энергию, такой же должна была быть и окружная скорость турбинного колеса. Но материалов, которые могли бы ее выдержать, не было в помине. Не появились они и во времена Лаваля. Однако он эту проблему сумел преодолеть.

Начал он с того, что придал лопаткам турбины особую форму. Теперь она могла «поймать» всю кинетическую энергию пара даже при скорости, в два раза меньшей.

Но и такую скорость обычный цилиндрический диск выдержать не мог. Тогда Лаваль додумался придать ему особую форму, при которой разрывающие его центробежные силы минимальны. Теперь ротор турбины мог выдерживать окружную скорость в 440 м/с. Но турбина еще не была работоспособна. При изготовлении ротора центр его масс всегда оказывался не на оси вращения, а где-то сбоку. Это приводило к вибрации, которая быстро разрушала вал. Казалось бы, отсюда следовало сделать вал как можно толще. Но Лаваль поступил наоборот. Насадил ротор на очень тонкий гибкий вал. И когда ротор начинал вращаться, вал изгибался до тех пор, пока центр масс не оказывался на оси вращения. Вибрация прекращалась.

Было в турбину заложено и много других технических хитростей. В свое время она производила большое впечатление на современников. И казалось, она должна была изменить мир. Но из-за громадных скоростей вращения места ей в большой энергетике так и не нашлось. Вероятно, турбина Лаваля стала бы со временем диковинным устройством. Однако многое изменилось, когда пришло время ракетной техники. Первым нашел применение соплу Лаваля К.Э.Циолковский в 1898 году, предложив космическую ракету с жидкостным реактивным двигателем.

Существовавшие в то время пороховые ракеты использовали простое сужающееся сопло. В результате скорость истечения продуктов сгорания была в 2–3 раза, а дальность полета в 4–9 раз ниже возможных. Использование же сопла Лаваля в ракетных снарядах наших «катюш» стало одной из главных причин успеха этого оружия.

Такими соплами оснащаются и все жидкостные реактивные двигатели. Правда, их форма несколько отличается от классического сопла Лаваля. Что позволяет уберечь их от расплавления и более полно использовать энергию продуктов сгорания (рис. 3).


Рис. 3

Ракетный двигатель – это, в сущности, комбинация камеры и сопла. Мощность одиночного двигателя большой ракеты может достигать 36 миллионов кВт при весе менее одной тонны! Мощность турбонасосного агрегата для подачи в него кислородно-водородного топлива более 80 000 кВт. Это крохотное, размером с ведро, устройство состоит из центробежного насоса и турбины Лаваля. Вот где она нашла себе достойное применение!

Огромная мощность реактивного двигателя, в сущности, мощность покидающего его потока газов. Он отдает ее ракете полностью, когда та движется со скоростью истечения газов. Сам поток в этом случае относительно Земли неподвижен. Но ракета, особенно космическая, использует двигатели только для разгона. Скорость ее постоянно меняется. По этой и другим причинам на пользу дела идет лишь небольшая часть энергии двигателей. КПД ракеты меньше, чем у паровоза.

Существуют и иные устройства, выполняющие роль улавливателя энергии. Еще в 1840 году Армстронг создал пароэлектрическую машину (рис. 4).


Водяной пар проходил через электрическое поле и, отдавая ему часть энергии, создавал ток. КПД устройства оказался ничтожно мал.

Другой способ был предложен М.Фарадеем. Если поток электропроводящего вещества движется между полюсами магнита, в нем точно так же, как и при движении обычного проводника, появляется ЭДС. Остается лишь использовать ее (рис. 5).


Сам Фарадей для проверки своей идеи воспользовался водами Темзы и магнитным полем Земли. Между парой проводов, опущенных в реку, возник ток, уверенно отклонявший стрелку гальванометра. Сегодня на таком принципе создаются магнито-гидродинамические генераторы (МГД). В них используется струя газов, вытекающих из сопла (разумеется, Лаваля) реактивного двигателя. Добавлением ионов щелочных металлов ее делают электропроводной, и, проходя через магнитное поле, она кратковременно дает электрический ток очень большой мощности. Правда, делать газ электропроводным достаточно сложно. Французы поступили более остроумно. В 1990 году они сделали МГД-генератор на парах олова (рис. 6).


Олово кипит в специальном котле. Его пар поступает в сопло Лаваля и разгоняется в нем до больших скоростей. Далее поток поступает в сильно охлаждаемую воронку. Здесь он конденсируется, превращается в жидкость, но скорости своей не теряет. Затем прекрасно проводящий электричество поток металла проходит между полюсами магнита, где и создает электрический ток. Выполнив эту задачу, металл попадает в котел, где подогревается вновь. КПД такой системы в целом 20 %. Совсем неплохо для устройства, не содержащего движущихся частей!

Н. САВЕЛЬЕВ


    Ваша оценка произведения:

Популярные книги за неделю