355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2000 № 11 » Текст книги (страница 5)
Юный техник, 2000 № 11
  • Текст добавлен: 21 сентября 2016, 18:49

Текст книги "Юный техник, 2000 № 11"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 6 страниц)

Последняя версия браузера Internet Explorer, а также некоторые специальные программы позволяют сохранить выбранную страницу (или даже целый сайт, создавая на локальном компьютере его «зеркало») целиком, вместе со всеми включенными в нее компонентами, так что при последующем просмотре она будет воспроизведена точно так же, как при ее просмотре с помощью Интернета.

Примечание. Многое из того, что имеется в Интернете и бесплатно доступно всем желающим, охраняется авторским правом. Поэтому не все, что разрешается копировать на локальный компьютер для личного использования, можно затем размещать на своей страничке, публиковать или использовать в иных коммерческих целях. Впрочем, в Интернете существуют и коллекции рисунков, звуков, видео и пр., которые разрешается использовать без каких-либо ограничений.

Платное и бесплатное в WWW. Значительная часть информации, которая размещена в Интернете и в WWW в частности, бесплатна и общедоступна. Но бывают и ограничения. Например, некоторые коллекции программ и текстов доступны только зарегистрированным пользователям (хотя сама регистрация часто бывает бесплатной и нужна владельцу сайта только для получения информации о посетителях). А некоторые вещи – «электронные версии» книг и журналов, коммерческие версии программ и, конечно же, товары в Интернет-магазинах – предоставляются только за определенную плату. Обычно сообщение об этом с указанием требуемой суммы выдается при первой же попытке входа на данный сайт или обращения к данной информации, и пока вы не сообщите какие-то сведения, гарантирующие оплату (например, номер кредитной карточки), вас дальше не допустят. Отказ же от оплаты и от доступа к этой информации ни к каким затратам не приводит. В некоторых же Интернет-магазинах предоставляется возможность заказа с последующей оплатой после доставки товара на дом, при этом в момент оформления заказа у вас запрашивают домашний адрес и прочие ваши координаты.

Одним словом, чтобы не попасть впросак, лучше всего во время «похождений» по Интернету придерживаться следующего простого правила: никогда не сообщайте настоящие сведения о себе (адрес, телефон, номер счета или кредитной карточки и даже имя и фамилию) никому, кроме тех, кому действительно доверяете.


АДРЕСНАЯ КНИГА:

• Чат «Диван» – http://www.divan.ru/

• Чат «Сибирские партизаны» – http://www.party.sib.ru/

• Интернет-магазин «ОЗОН» – http://www.ozon.ru/

• Музеи России и мира (в том числе виртуальные) – http://www.museum.ru

• Русский проект CDRR:

– Koyot – http://www.toon.eu.org/cdrr/

– Rem – http://www.toon.eu.org/rem/

– Shredder – http://www.toon.eu.org/shredder/

– «Мастерская Гайки» – http://www.toon.eu.org/atex/izobr/

– SCREW – http://mygadget.chat.ru

• Фотографии НАСА – http://www.nasa.gov/gallery/index.html

• Общедоступный сервер бесплатных страниц Chat.Ru – www.chat.ru


ДАВАЙТЕ ГОВОРИТЬ ПО-РУССКИ

• «КОМПЬЮТЕР» ПО-ФРАНЦУЗСКИ. Во Франции стремление очистить родной язык от ненужной иностранщины уже породило первые практические результаты. Так, по некоторым сведениям, в этой стране запрещено использовать термины «англо-компьютерного» происхождения в официальной переписке; теперь «e-mail» французы будут официально именовать не иначе как «un letter electronicue», а компьютер – «I ordinateur».

• «АСЬКА» В ИНТЕРНЕТЕ. Один из, наверное, наиболее удачных примеров «словоизобретений», касающихся замены иностранных терминов более привычными для нашего слуха. Есть в Интернете такой сервис: ICQ – «Интернет-пейджер», позволяющий обмениваться короткими текстовыми сообщениями.

ICQ – это аббревиатура, да еще вдобавок английская, – поэтому не стоит особенно удивляться, что очень быстро пользователи стали именовать ее «по созвучию» не иначе как «аськой». Так что сегодня уже часто можно увидеть в чате или электронном письме вопросы вроде: «А у тебя аська есть? А какой номер?»

КОЛЛЕКЦИЯ «ЮТ»


Этот многоцелевой самолет использовался в качестве учебного и спортивного. В Швеции он выпускался после доработки по лицензии германской фирмы МВБ. Первый полет прототипа прошел 11 июля 1968 г. Но оказалось, что мощности двигателя не хватает для нормального пилотирования, и в 1971 г. на самолете был установлен двигатель мощностью 147 кВт. Такой двигатель позволил брать на борт до 300 кг груза. Это уже подходило и военным. Так появился еще и армейский вариант.


Техническая характеристика:

Экипаж… 2 человека

Двигатель… один KTW 4BL

Стартовый вес… 900 – 1200 кг

Максимальная скорость… 365 км/ч

Потолок… 4100 м

Дальность полета… 800 км

Площадь несущих плоскостей… 11,9 м2


Почти 2 миллиона автомобилей этого семейства выпущено в Советском Союзе. Это была, пожалуй, самая популярная машина этого класса. Она верой и правдой служила и в городе, и на селе, и в тайге. Даже на Крайнем Севере и в пустынях Казахстана можно было встретить ее симпатичную «мордашку». Выпускался «уазик» с задним приводом и в полноприводном вариантах. Он и сегодня сходит с конвейера, правда, после значительной модернизации.


Техническая характеристика:

Полная масса… 2670 кг

Собственная масса… 1720 кг

Масса прицепа… 850 кг

Дорожный просвет… 220 мм

Запас топлива… 56 л

Объем двигателя… 2445 см3

Мощность двигателя… 75 л.с.

Радиус поворота… 6800 м

ПОЛИГОН
Крылья для человека

Отметим, завоевание воздуха началось не со строительства воздушных кораблей, а с попыток создания крыльев, наподобие птичьих. Решить задачу удалось не сразу. Прошли тысячелетия, прежде чем немецкий художник и инженер Отто Лилиенталь в 1890 году справился с ней.

Созданные им крылья были необычайно красивы. Напоминали нечто живое: летучую мышь, птеродакталя и стрекозу одновременно. Он парил на них словно птица. Более шести лет продолжались эти полеты. Но в августе 1896 года ему не повезло. Порыв ветра перевернул аппарат. Изобретатель упал с 30-метровой высоты и в тот же день скончался. «Мне не хватает чутья птицы», – были его предсмертные слова.

Этого человека мы чтим как одного из основателей авиации. Он доказал, что освоение воздуха возможно лишь после создания надежных аппаратов, способных к планирующему полету. Развитие его идеи закончилось созданием самолета.


Почти никто не решился повторить опыт с крыльями. Лишь англичанин Пильчер, купив один из крылатых планеров у самого Лилиенталя и усовершенствовав его, совершил несколько удачных полетов, но и он погиб в 1899 году. Видимо, крылатые полеты были в своем роде полетами души, а крылья произведением необычного искусства, где красота формы заменяла инженерный расчет.

Лилиенталь был человеком своеобразным. Горячий поборник планирующего полета, он понимал необходимость обратиться к помощи мотора. Но… не признавал винта. На один из своих планеров он даже поставил мотор в 2,5 л.с. (рис. 1), но приводили тот в действие два небольших машущих крыла. Их главное назначение было создавать горизонтальную тягу.

Формально говоря, это был первый удачно летавший легкий моторный аппарат. А если считать его еще и произведением искусства, можно назвать и самым красивым.


Рис. 1

С тех пор попытки создания сверхлегких летательных аппаратов делались лишь на инженерном уровне. Как это часто бывает, первый шаг был совершен в военных целях. С палубы всплывшей подводной лодки удается разглядеть цель, отстоящую примерно на 8 км. При этом сама лодка становится заметна противнику. Тут, как говорится, кто кого!

Подводников это не устраивало. Пытаясь решить эту проблему, в 30-е годы во многих странах создавались крохотные складные гидросамолеты, которые можно было разместить в трюме корабля.

Но самолету нужен пробег при взлете и посадке. В боевых условиях, да еще и при волнении запустить и снова взять самолет на борт лодки зачастую не удавалось.

Немецкая фирма «Фокке-Ахгелис» нашла выход в крохотном одноместном складном автожире (рис. 2), весившем всего 83 кг.


Он не имел двигателя и летал за счет буксировки на длинном тросе. Для взлета было достаточно, чтобы лодка шла со скоростью 25 км/ч. Автожир легко поднимался на 120 м, так что пилот мог обнаружить цель на расстоянии до 40 км.

Говорят, что у одной из захваченных нами трофейных машин такого типа на обеих лопастях винта были установлены легкие скоростные моторы с пропеллерами. Они своей тягой раскручивали винт и превращали автожир в вертолет, способный к самостоятельному полету.

В послевоенные годы было создано немало машин такой же схемы. Только по концам лопастей ставили уже реактивные двигатели. Они во много раз легче мотора с пропеллером. Одну из таких машин, оснащенную жидкостными реактивными двигателями, вы видите на рисунке 3.


Ее взлетный вес 180 кг. Из них на полезную нагрузку приходится 112 кг.

Двигатели очень легкие, но расход топлива у них огромен. Его едва хватало на 10–15 минут полета.

Но для выполнения некоторых задач, например, высадка с моря на крутые скалы, помощь при пожаре, и этого времени многовато. Для таких случаев предлагаются «реактивные ранцы», либо обзоры или научные труды по этой теме нам неизвестны. Но все же кое-какие сведения о них просачиваются в печать. Вот что мы можем рассказать.

Впервые реактивный летательный аппарат в качестве спасательного средства для космонавтов и летчиков высотных самолетов изобразил на одной из своих картин известный советский профессор Г.Покровский в 1936 году. А уже в конце 50-х годов появляются первые сообщения о разработке таких аппаратов для армии США. Первоначально источником энергии для них служили легкие баллоны со сжатым воздухом, снабженные соплом Лаваля и клапаном. При открытии клапана из сопла выходила со сверхзвуковой скоростью струя воздуха. (В некоторых случаях сжатый воздух выталкивал струю воды.)

Возникала реактивная тяга, достаточная для прыжка на высоту 5 – 10 м и в длину около 20 м.

Низкая энергоемкость таких двигателей – очевидный недостаток. Но есть у них и огромное достоинство – полная безопасность. Если струя из обычного ракетного двигателя способна расплавлять броневую сталь, то здесь температура, измеренная термометром, ниже минус ста. Клапан позволяет плавно изменять тягу, а значит, быстро взлетать и мягко, без удара, опускаться.

Следующее поколение летающих ранцев имело уже двигатели на перекиси водорода. Это вещество направлялось в камеру с катализатором, где разлагалось с выделением кислорода и водяного пара. Тяги таких двигателей хватало для безопасного подъема на 20–30 м и прыжка на 200 м.

Если же к перекиси водорода добавить, например, спирт, высота и дальность полета возросли бы в несколько раз. Однако обеспечить надежное управление такими двигателями очень трудно.

По последним данным, летающие ранцы оснащены небольшими турбовентиляторными двигателями. Они надежны, прекрасно управляемы, работают на обычном керосине. Человек с парой таких двигателей за спиной может пролететь более 20 км.

А вот одно из недавних предложений. Назовем его условно костюм-самолет (рис. 4).


Это скафандр удобообтекаемой формы с системой обеспечения жизнедеятельности. На нем укреплено крыло с парой двигательных установок по концам. Это могут быть турбовентиляторные двигатели или очень легкие поршневые с винтами. Запас топлива размещен в крыле и примыкающем к нему баке. В аварийной ситуации крыло может быть сброшено, а человек спасется на парашюте. Под оболочкой скафандра расположена система управления полетом и сохранения равновесия. Кнопочные органы управления расположены в особых рукавицах. На стекле шлема отображается панель управления и параметры полета, как это делается в кабинах современных истребителей. Взлет и посадка самолета-костюма производятся вертикально за счет тяги двигателей.

Далее направление тяги меняется, и пилот постепенно переходит в горизонтальный полет с использованием подъемной силы крыла.


Воздухоплавательная мода». Карикатура XIX века.

А теперь несколько цифр. Истребитель Второй мировой войны с мотором 1000 л.с. развивал 600 км/ч при весе 2,5 т. Можно ожидать, что самолет-костюм весом 150 кг достигнет такой скорости с двигателями мощностью 60–70 л.с. У многих возникает вопрос: сможет ли человек носить их на своих плечах? Думаем, сможет. Поршневые двигатели, выполненные из композиционных материалов, сегодня весили бы 10–15 кг. Еще легче бесшатунные и газотурбинные. Таким образом, названный нами взлетный вес, вероятнее всего, сильно завышен.

Очевидно, самолет-костюм открывает новые, революционные возможности не только в передвижении людей, но и в их общении друг с другом. Хорошо это или плохо, зависит только от пользователей. Поживем – увидим.

А.ИЛЬИН

СДЕЛАЙ ДЛЯ ШКОЛЫ
Раз-два… взяли!


Каких только подъемных механизмов не придумано за тысячелетия – от многотонных подъемных кранов до механических рук с искусственным интеллектом. Но и до сих пор необходимость поднимать непомерно большие грузы своими силами отнюдь не отпала. В таких случаях, как и сотни веков назад, мы применяем простые устройства. Не имеющие собственных источников энергии, они многократно увеличивают нашу силу.

Однако за это мы расплачиваемся уменьшением скорости и высоты подъема груза. На рисунке 1 показан подвижный блок.


Рис. 1

По соображениям симметрии можно сделать вывод, что вес груза должен делиться на две равные части между правой и левой половиной веревки, охватывающей блок.

Для того чтобы поднять груз на один метр, через устройство необходимо протащить два метра веревки. Но необходимая для этого сила в идеале составит лишь половину от веса груза. Таким образом, выигрывая в силе ровно вдвое, мы столько же проигрываем в пути, в скорости или во времени.

Действие подвижного блока можно разъяснить и через его аналогию с рычагом.

Однако приведенный нами вывод, основанный на симметрии, более общий. Во флоте, например, иногда вместо подвижного блока используется талреп – простая дощечка с отверстием для каната.

Ее действие, разумеется, можно вывести из свойств виртуального рычага, но это потребует акробатической работы мышления. В то же время соображения симметрии и здесь воспринимаются абсолютно естественно.

На рисунке 2 полиспаст – комбинация из нескольких подвижных и неподвижных блоков.


На первый взгляд кажется, что, взяв достаточно много блоков, можно получить любой наперед заданный выигрыш в силе. Однако в блоках существуют потери на трение. Трение в осях и трение веревки при движении по ручью блока. Эти силы быстро растут по мере увеличения числа пар, и выигрыш в силе значительно уменьшается, поскольку рабочему приходится тратить силы не только на подъем груза, но и на преодоление трения в самом полиспасте.

Полиспасты, состоящие более чем из 4–5 пар блоков, почти не встречаются.

Пользуясь имеющимися в кабинетах физики наборами блоков, можно показать, как быстро растут потери на трение (рис. 3).



При этом становятся очевидными и все трудности, связанные с изготовлением и применением сложных полиспастов. В частности, постоянное спутывание нитей, соскальзывание их со шкивов. Все эго привело к изобретению широко применяемого в технике разностного (дифференциального) полиспаста, о котором в школьном курсе нет ни слова (рис. 4).


Рис. 4

Он состоит из двух неподвижных блоков различного диаметра на одной оси. Эти блоки имеют зубья, входящие в зацепление со звеньями охватывающей их замкнутой цепи. Одна часть цепи проходит через подвижный блок, другая, в виде свободной петли, охватывает оба блока и находится в руках рабочего. Натягивая и перебирая в руках петлю рабочий заставляет вращаться неподвижные блоки. В результате цепь с меньшего из них сматывается, а на больший наматывается. Подвижный блок поднимается очень медленно на величину, равную разности числа смотанных и намотанных звеньев цепи. В таких полиспастах достигается 18 – 20-кратный выигрыш в силе при КПД около 95 %.

Получить такие характеристики от классического полиспаста сегодня не представляется возможным.

Особую группу подъемных механизмов представляют собой домкраты. Изобретателем первого домкрата с зубчато-реечным механизмом считается Леонардо да Винчи. Однако такие домкраты неудобны в работе из-за необходимости нагибаться и вращать в вертикальной плоскости довольно большую рукоятку. В противном случае трудно получить значительные выигрыши в силе.

Более совершенны винтовые домкраты, которыми очень часто комплектуются автомобили. В станине такого домкрата расположена гайка, вращаемая при помощи рычажно-храпового механизма вокруг неподвижного винта. Выигрыш в силе здесь определяется прежде всего шагом винта. Вот, что это такое.

Винтовую линию (спираль) можно получить, навивая треугольник на цилиндрическую поверхность. По сути своей винт – это скрученная наклонная плоскость. Но у наклонной плоскости выигрыш в силе тем больше, чем более полого она располагается. Таким образом, и выигрыш в силе винта определяется углом наклона по отношению к оси его нарезки.

На практике измерять этот угол было бы делом весьма трудоемким, да и, как оказалось, ненужным. Вместо этого достаточно измерить шаг резьбы – расстояние между ее витками – и диаметр винта. Теперь выигрыш в силе легко найти расчетом.

Казалось бы, уменьшая шаг винта, можно неограниченно увеличивать выигрыш в силе. Это верно. Только мы с вами забыли про несущую способность. При уменьшении шага витки (нитки) резьбы получаются очень узкими, неспособными нести большую нагрузку. Она их попросту мнет и срезает.

Одно из простейших решений – оставить шаг резьбы таким, который достаточен для того, чтобы выдерживать нагрузку, а гайку домкрата вращать через замедляющую передачу. Тогда общее замедление при подъеме груза равно замедлению, даваемому винтом, умноженному на замедление передачи. Выигрыш в силе значительно возрастает. Но по мере роста значительную часть его пожирают потери на трение.

Лучше работает домкрат более замысловатой конструкции (рис. 5).


Здесь гайка и винт вращаются в разных направлениях, в результате чего при каждом повороте рукоятки винт поднимается очень медленно. Конструкция довольно проста, содержит немного деталей. А как обстоят дела с потерями на трение, с реальным выигрышем в силе?

Он у всех винтовых домкратов зависит от нагрузки. В нормальных условиях между витками резьбы винта и гайки присутствует слой смазки, и тогда трение невелико. Если нагрузка превышает некоторый предел, масло выдавливается и витки начинают тереться всухую. Трение резко возрастает, чем ограничивает максимальный вес, который можно поднять данным домкратом.

Есть два пути борьбы с этой неприятностью. Один из них подбор смазки. Ее стараются делать достаточно густой, чтобы она не вытекала при больших давлениях. В нее добавляют графит, дисульфит молибдена – вещества, делающие поверхность достаточно скользкой даже тогда, когда масляная пленка частично разорвана. Однако, идя по этому пути, мы обычно уменьшаем трение при больших нагрузках, но оно растет при малых.

Более радикальный путь – шариковый винт. Это пара винт – гайка, между витками которых катаются стальные шарики, такие, как у подшипников. Здесь трение скольжения заменяется в десятки и сотни раз меньшим трением качения. Правда, за такую замену приходится дорого платить.

Прежде всего витки винта и гайки теперь должны иметь строго определенный круговой профиль, соответствующий диаметру шарика. Выполняться он должен с микронной точностью. Касание между шариком и винтовой поверхностью происходит на очень малом по площади участке, где развивается значительное давление на единицу площади. Поэтому винты, гайку и шарики здесь приходится делать из высокопрочных термообработанных легированных сталей. А это, как вы догадываетесь, отнюдь не упрощает их изготовление.

Сложна и гайка сама по себе (рис 6). Ведь шарики при работе пары винт – гайка перекатываются, протекают между витками. И гайка имеет канал, по которому они текут по замкнутому пути.


Шариковые винтовые пары отличаются не только малым трением, но и как следствие мало подвержены износу, имеют исключительно высокую точность перемещения. Поэтому они находят широчайшее применение в технике. И не только там, где нужно получить большой выигрыш в силе. Но и там, где нужна точность, например, в станках.

Что касается домкратов, то из-за высокой (более чем стократной по сравнению с обычным винтом) стоимости изготовления здесь они редки. Однако, по имеющимся сообщениям, шариковые домкраты для специальных целей (резервный механизм поворота орудийного ствола) были сделаны и дали реальный 500-кратный выигрыш в силе.

Поговаривают, что создается смазка на основе фуллеронов – молекул углерода, имеющих шаровидную форму. Возможно, смазанный ею винт будет не скользить, а кататься, как на шариках.

Как видим, полиспаст, блок, винт и домкрат неисчерпаемы, как атом. Попробуйте и вы придумать что-нибудь новенькое в области использования очень непростых простых механизмов.

А.ВАРГИН

Рисунки автора


    Ваша оценка произведения:

Популярные книги за неделю