355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2004 № 07 » Текст книги (страница 2)
Юный техник, 2004 № 07
  • Текст добавлен: 31 октября 2016, 01:32

Текст книги "Юный техник, 2004 № 07"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Под водой на… поезде

Еще в XIX веке появились первые проекты прокладки подводных тоннелей из одной части света в другую. Некоторые из них осуществлены, другие же пока так и остаются на бумаге. Почему?


Вообще-то говоря, подобные проекты, как правило, относятся к долгострою. Тот же тоннель под Ла-Маншем хотели было построить еще в конце XVIII века. Но когда во Франции пришел к власти император Наполеон, правители Великобритании предположили, что по тоннелю его войска смогут попасть в Англию. И все работы по возведению тоннеля были прекращены.

Несколько раз откладывали начало строительства и в наши дни. Уже готовое технико-технологическое обоснование проекта тоннеля под Ла-Маншем пролежало под сукном около трех десятилетий, пока в 1984 году лидеры Великобритании и Франции за завтраком фактически в течение пяти минут не решили: пора строить.

Строительство было начато в 1987 году и благополучно завершено в 1994-м, невзирая на разговоры, что тоннель себя никогда не окупит. И действительно, транспортная нагрузка недостаточна, чтобы тоннель экономически себя оправдывал. Но главное здесь – высокая политика: Великобритания теперь по существу перестала быть островным государством. Не оправдал себя экономически и тоннель длиной почти в 5 км, который Япония проложила по дну Токийского залива еще в 70-е годы прошлого века.



Тоннель должен соединить Азию с Америкой.


Схема устройства подводного туннеля для обычных поездов (слева) и пневмотранспорта (справа).

Цифрами обозначены:  1– вагон; 2– стабилизатор: 3– якорь постоянный; 4– канат; 5– лебедка; 6– балласт; 7– служебный батискаф; 8– аварийно-переходная камера;  9– монтажный батискаф; 10– трос сбросного якоря;  11– балластная система; 12– сбросной якорь; 13– пневмовагон; 14– выходной люк.

Тем не менее, в 80-е годы родился проект «туннельного варианта» переправы через Гибралтарский пролив, о котором пойдет речь дальше. А в России начиная еще с 30-х годов ведутся разговоры о строительстве тоннеля под Татарским проливом. Его даже начали было строить в сталинские времена, но после 1953 года строительство остановили, так как затраты показались неоправданно большими.

Недавно в очередной раз был рассмотрен проект прокладки железнодорожной трассы между Европой и Америкой по дну океана в металлической трубе диаметром 8 м на глубине около 5 км. «В случае реализации этого проекта появится возможность путешествия на поезде из Лондона через Берлин, Москву, Омск, Якутск, Анадырь, Ном прямо в Нью-Йорк, – утверждают сторонники строительства. – По своему значению эта трасса вполне сравнима с Великим шелковым путем».

Однако у проекта есть и противники. Они припоминают, что первый проект трансконтинентального тоннеля родился больше века назад. Он был предложен русскому правительству неким американским синдикатом еще в 1902 году. Уже тогда технически стройка была вполне осуществима. Проект дважды рассматривался министрами царского правительства, однако так и не был принят. Сомнения вызывало то, что для осуществления плана требовались гигантские затраты, а выгоды от подобного предприятия были весьма туманны.

Затем грянули Русско-японская война и революция 1905 года, и России стало не до этой масштабной стройки. А при советской власти сама идея проложить железнодорожный путь на территорию потенциального противника казалась абсурдной. Лишь в последние годы исследователи вновь вернулись к старой идее. С российской стороны этим занимается Центр интегрированных регионально-транспортных проектов при Российской академии наук, который возглавляет член-корреспондент Российской инженерной академии Виктор Разбегин.

«К настоящему времени выполнен большой объем работ по технологическому обоснованию проекта, – говорит он. – Мы провели ряд экспедиций в район предполагаемого строительства, результаты исследований обсуждались на различных конференциях…»


Схема прокладки подводного туннеля:

1– буксирный батискаф; 2– якорь постоянный; 3– стяжной трос; 4– торцевая заглушка; 5– компенсатор;  6– батискаф;  7– стабилизатор; 8– передвижная якорная лебедка; 9– сбросные якоря.

И в США сейчас вновь заинтересовались идеей. Американцы хотят иметь надежный транспортный коридор для перевозки грузов в Азию и Европу. Самая большая сложность проекта – строительство тоннеля между Азией и Америкой. В самом узком месте ширина Берингова пролива – около 90 км. Длина тоннеля, по разным оценкам, может составить 100–110 км. Существенно облегчает строительство то, что посреди пролива расположены два острова: Ратманова и Крузенштерна. Кроме того, геологические условия Берингова пролива весьма благоприятны – грунты под ним вполне надежны.

Однако реализация проекта осложняется несколькими обстоятельствами. Прежде всего, ни с российской, ни с американской стороны к месту предполагаемой прокладки тоннеля нет автомобильных и железнодорожных подъездов. На американской территории ближайшая автотрасса находится в 1200 км, у города Фэрбанкс, на российской – в 1600 км, у Магадана. Что же касается железнодорожных путей, то с американской стороны рельсы проложены в 2000 км от пролива, до города Принс-Джордж канадской провинции Британская Колумбия. С российской стороны ближайшей железной дорогой является БАМ. Так что прежде, чем начинать сооружение тоннеля, нужно проложить к нему транспортные пути, чтобы была возможность подвозить грузы для строительства.

В США уже принято решение о строительстве железной дороги на Аляске. В России же строительство ответвления от Байкало-Амурской магистрали пока только планируется, и то лишь до Якутска. На большее нет денег. Тем не менее, российской стороной сегодня рассматриваются два варианта прокладки дороги к Берингову проливу. Первый – это возрождение знаменитой дороги Салехард – Игарка как составной части Приполярной магистрали от Воркуты до Анадыря. Эта магистраль длиной от 6500 до 7500 км могла бы пройти через Надым, Дудинку, Норильск, Тикси, Билибино, Эгвекинот, обеспечив круглогодичный доступ к месторождениям Ямала, Таймыра, Якутии, Чукотки.

Но у данного варианта есть один существенный недостаток. Поскольку он имеет лишь внутрироссийское значение, то под его осуществление будет сложно найти иностранных инвесторов. А вот второй вариант строительства железнодорожной ветки – от Якутска через Магаданскую область на Аляску – может заинтересовать и другие государства, прежде всего азиатские.

Впрочем, в любом случае масштабы и затраты и всего строительства железной дороги, и непосредственно на тоннель впечатляют. Только по времени на воплощение проекта может уйти лет 15–20, а по деньгам – порядка 100 млрд. долларов. Когда же проект себя окупит, и вообще неизвестно. Во всяком случае, не сегодня и не завтра.

Впрочем, если российско-американский проект все же осуществится, он откроет путь к освоению огромной области нашей страны, богатой залежами полезных ископаемых. В их покупке могут быть заинтересованы и Китай, и Япония, и США…

Сам тоннель будет не только транспортным коридором. В нем проложат линию электропередачи, которая соединит две мощнейшие в мире энергосистемы. У нас в Сибири есть избыточные потенциальные энергетические мощности, которыми мы также могли бы торговать. Кроме того, известно, что годовой эффект от соединения двух энергосистем составляет 5 – 10 % от мощности меньшей системы. В данном случае экономия в год составит порядка 2–3 млрд. долларов. В тоннеле можно также проложить газо– и нефтепровод, в которых, кстати, очень заинтересованы американцы.

Пока одни специалисты размышляют: строить или не строить новую трассу, другие думают над тем, как бы удешевить строительство. Например, американцы предлагают вместо тоннеля построить над проливом подвесной мост протяженностью 100 км. По замыслу авторов проекта, смонтированные на берегу опорные башни с помощью вертолетов будут попарно опущены в Берингов пролив и надежно закреплены якорями. Затем на стальных кабелях к ним подвесят двухъярусное тело моста: сверху – проезжая часть, снизу – нефтепровод.

А наш инженер-строитель A.Л. Яковенко-Богачев предлагает построить не тоннель, а транспортный путепровод под водой, на 10–80 м ниже поверхности, не заглубляя его под дно пролива. То есть Александр Леонидович предлагает на новом уровне вернуться к идее Стефенсона, существенно ее модернизировав.

Трасса составляется из автономных секций, диаметром около 8 и длиной до 200 м, изготовленных на специальных верфях и почти полностью укомплектованных внутренними конструкциями, рельсами, балластными понтонами, энергоустановками, аварийными эвакуационными камерами и т. д. Секции закрывают с обеих сторон герметическими заглушками и буксируют по воде к месту монтажа, где с помощью плавучих кранов и собственной балластной системы притопят их на заданную глубину и состыкуют с уже установленными секциями. Такая всепогодная трасса, по мнению автора проекта, сможет составить серьезную конкуренцию морским и авиационным перевозкам людей и грузов.

В. ЧЕТВЕРГОВ

ОТ ПЕРВОГО ЛИЦА
Когда дрожит Земля…

Каждое утро перед выходом из дома все мы привычно прислушиваемся к голосу радио: какую погоду нам на сегодня обещают? И хотя, бывает, клянем метеоцентр за неточность предсказаний, метеорологи чаще все же не подводят. Ну а можно ли подобным же образом предсказывать не только грозы и снегопады, но и землетрясения – самые, пожалуй, страшные стихийные бедствия на нашей планете?

Чтобы получить ответ на этот и другие подобные вопросы, наш специальный корреспондент Станислав ЗИГУНЕНКО отправился в Институт физики Земли имени Гамбурцева, к ведущему научному сотруднику, кандидату физико-математических наук А.Д.ЗАВЬЯЛОВУ, специалисту по проблемам прогнозирования землетрясений.


– Алексей Дмитриевич, говорят, что в последние годы сейсмическая активность нашей планеты заметно увеличилась. Так ли это?

– Наша Земля вообще очень активная планета. Репортажи с мест порой напоминают фронтовые сводки. Вспомните хотя бы: около 50 тысяч погибших насчитали после одного из самых страшных за последние годы землетрясений, случившегося в декабре 2003 года в Иране. Между тем, три года тому назад, в июне 1990 года, в другой части той же страны – на северо-западе Ирана – подземные толчки силой 7,3 балла унесли еще 50 тысяч жизней.

Землетрясение примерно такого же масштаба, случившееся в том же декабре в Калифорнии, погубило всего лишь двух женщин. Еще три десятка человек получили ранения различной тяжести.

– Наверное, такая колоссальная разница в числе жертв обусловлена тем, что в США лучше поставлена служба прогнозирования землетрясений?

– Отнюдь. Забегая вперед, сразу скажу, что прогнозировать землетрясения хотя бы с такой же точностью, как перемены погоды, люди научатся лет через сто, не раньше. А вот уменьшить количество жертв до минимума мы можем уже сегодня…

– Каким образом?

– Все очень просто. Районы, где часто случаются землетрясения, известны издавна. Скажем, на территории бывшего СССР это Узбекистан, Армения, некоторые регионы Кавказа, Камчатка, районы, прилегающие к Байкалу. Специалисты все эти регионы знают назубок, у них есть атласы, где указаны не только границы сейсмических районов, но и примерная частота землетрясений, а также их сила по шкале Рихтера. На основании этих данных для каждой области существуют специальные строительные нормы, указывающие, какие именно дома и прочие постройки здесь можно строить.

Заведен был такой порядок, скажем прямо, не от хорошей жизни. Когда в 1966 году землетрясение не такой уж большой силы – в 5,5 балла – тряхнуло Ташкент, последствия его были таковы, как будто над городом взорвали атомную бомбу. Столица Узбекистана была разрушена практически полностью. Так получилось не только потому, что эпицентр землетрясения оказался прямо под городом на относительно небольшой глубине – всего лишь 10 км. Огромные разрушения обусловило еще и то, что постройки старого города были сложены сплошь из непрочного саманного кирпича.

Такие же постройки, кстати, преобладали и в иранском городе Бам, где в декабрьском землетрясении, о котором уже сказано, погибло около трети его жителей.

А вот в Калифорнии легкие дома строят в основном из дерева с учетом предложений по сейсмостойкости. Потому и жертв там значительно меньше, и восстанавливают постройки значительно быстрее.

Впрочем, прочность построек зависит не только от их типа, но и от того, насколько качественно оно возведено. В 1988 году в Спитаке (Армения) многие дома развалились как карточные домики только потому, что в кладке вместо цемента оказался практически один песок…

– Но можно ли все-таки заранее предсказать, когда случится землетрясение и какой силы оно будет?

– Смотря какой прогноз вам нужен. Как уже говорилось, нам известно, где землетрясения происходят постоянно или же случаются очень редко. Отсюда уже можно строить долгосрочные прогнозы, на основании которых и создан уже упоминавшийся атлас. Что же касается среднесрочных, а тем более краткосрочных прогнозов, то с ними сложнее. Дело в том, что любой прогноз, как правило, строится на статистике. А данных по землетрясениям нам пока катастрофически не хватает – извините за невольный каламбур.

Повторяемость сильных землетрясений имеет период около ста лет. Скажем, в Авачинской губе они были в 1737, 1842 и в 1952 годах. Стало быть, следующее там случится, наверное, году в 2052-м или около того. Но даже таких статистических данных по разным регионам очень мало. Что же касается более мелких землетрясений, то их стали регулярно регистрировать лишь в конце XIX века. Так что нам придется, видимо, еще лет сто собирать сведения, прежде чем мы получим возможность на основании статистических расчетов давать более-менее точные прогнозы.

– А если отойти от статистики? Есть ведь, наверное, какие-нибудь физические теории, позволяющие прогнозировать развитие процесса?

– Теории, конечно, есть. Но вся беда в том, что их очень много. Мы еще очень плохо представляем себе то, что происходит буквально под нашими ногами. А уж о том, что творится на глубинах в десятки, сотни и тысячи километров, можем в основном лишь догадываться на основании экспериментов, проводимых в лабораториях. А лабораторные данные, они все-таки не всегда сходятся с натурными…


Кроме того, для того, чтобы построить прогноз, нужно ведь получить для него какие-то исходные данные. А сеть сейсмостанций в нашей стране далеко не столь густа, как сеть метеопостов.

Вот, например, всем известно, что нужно бы поставить сейсмостанции у побережья Камчатки, да и всего Дальнего Востока. Но где взять на это средства? Ведь стоит каждая такая станция порядка миллиона долларов…

Нужна также оперативная связь с этими станциями. Необходимы и мощные компьютеры, которые могли бы оперативно всю эту массу информации перерабатывать. Иначе кому нужен завтра вчерашний прогноз?

– Но есть ведь, говорят, предвестники землетрясений. Одни специалисты берутся предсказывать землетрясения по выделению гелия из недр, другие – по изменению формы облаков, третьи предлагают со спутников измерять микропередвижения почвы…

– Таких предвестников опять-таки очень много, их всего набирается более тысячи. Но непонятно, какой из них выбрать в нужный момент. Известно, например, что накануне землетрясения начинает изменяться уровень воды в колодцах, некоторые вообще высыхают. Но так бывает далеко не всегда и не везде.

В Китае замечено, что перед землетрясениями начинают выползать из нор змеи, убегают из домов кошки и собаки. И хорошо, если такое случается, – можно на это отреагировать. Но, к сожалению, часто бывает, что вместе с людьми гибнут и животные. Что же касается прогнозирования землетрясений по облакам, то оно недостаточно убедительно.

В общем, сегодня можно условно разделить все предвестники на несколько групп – электромагнитные (изменение напряженности полей), биологические (поведение животных), физические (микроподвижки почвы), гидропредвестники (изменение уровня воды), газовые (количество выделяющегося из недр газа). Но, как правило, после каждого сильного землетрясения выясняется, что все аналитики сильны, как говорится, задним умом.

– Получается, положение безнадежное?

– Сейчас известен один достоверный случай успешного прогнозирования. В 1975 году в Китае по десяти признакам специалисты увидели, что ожидается Хайченское землетрясение. Из его зоны было эвакуировано почти все население, и жертв практически не было, хотя многие постройки были разрушены полностью.

Казалось бы, победа, найден удачный алгоритм… Но через год в соседней провинции Тянь-Шань произошло примерно такое же землетрясение силой в 7,5 балла. И тем же специалистам предугадать его не удалось, в результате погибло свыше 255 тысяч человек.

Кроме того, не стоит забывать, что необоснованные предсказания могут принести едва ли не больший вред, чем сами землетрясения. Массовая паника иной раз страшнее, чем само стихийное бедствие.

Между тем одно время в газетах стали появляться чуть ли не «расписания» предстоящих землетрясений с указанием конкретных дат, мест и силы. Люди срывались с мест, и этим вовсю попользовались мародеры…

Этим же был нанесен и большой вред науке. Поэтому в 1991 году был принят Европейский кодекс этики составления прогнозов землетрясений. Прежде чем бить в колокола, ученый должен всесторонне проверить правильность своих данных и методик, а уж потом доводить его до сведения местных властей.

– Но этого же, наверное, никто не делает… Ответственность большая, хлопот – выше головы, а результат может быть отрицательный…

– Нет, почему же… На Камчатке, где крайне высокая сейсмичность, а кроме того, действует около 30 вулканов, проблемой прогнозов занимаются два научных института – землетрясений и вулканологии. Так вот там еженедельно собирается специальная комиссия, которая рассматривает краткосрочные прогнозы и решает, что делать дальше. И как видите, больших ЧП на Камчатке у нас пока не отмечалось…

– И последний вопрос. По некоторым данным, вскоре на Среднерусской равнине, ранее спокойной, начнется сейсмическая активность…

– У нас таких данных нет.

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Драгоценности Вселенной

Недавно прочитал фантастический рассказ, в котором звездные авантюристы на своем корабле отлавливали блуждающие во Вселенной астероиды и на этом неплохо зарабатывали, поскольку одни осколки состояли изо льда, другие из железной руды, а некоторые даже содержали в себе вкрапления драгоценных металлов и алмазов. Действительно ли во Вселенной есть залежи полезных ископаемых и драгоценностей?

Виктор Солнцев,

г. Вятка


В рассказе нет особых преувеличений. Более того, его автор, наверное, не был знаком с последними открытиями ученых. Так, в феврале нынешнего года американские специалисты из Смитсоновского Центра астрофизики в Гарварде, США, объявили, что открыли находящуюся на расстоянии 50 световых лет от нашей планеты звезду-алмаз. Ученые назвали ее «Люси» в честь песни группы «Битлз» – «О, Люси, в небесах с алмазами».

Вес алмазной звезды – 10 34каратов. И цена ее в глазах ювелира безумно велика – единица с 37 нулями долларов!

Правда, добираться до звезды далековато. Да и подготовиться к такой экспедиции стоит основательно. Ведь звезда, сжавшись, тем не менее, сохранила свое поле тяготения, преодолеть которое при взлете с добычей будет не так-то просто…

Впрочем, можно особо и не торопиться. Ученые предрекают, что со временем аналогичная судьба постигнет и наше Солнце. Через 5 млрд. лет оно превратится в белого карлика, а спустя еще два миллиарда лет – в алмаз. Если же вам почему-либо не нравятся алмазы, то можно открыть во Вселенной сезон охоты за золотом, платиной и другими драгоценными металлами. Согласно одной из теорий, после возникновения Вселенной в ней существовали только два элемента – водород и гелий, и лишь впоследствии в результате синтеза из этих газов образовались другие атомы, в том числе и таких элементов, как железо, свинец, золото, платина, уран…

Реакторами но производству тяжелых элементов, по мнению некоторых ученых, являются сверхновые звезды, которые при взрыве синтезируют драгоценные и редкие металлы. Но если это так, значит, при каждом взрыве по Вселенной разлетается огромное количество золота, платины, урана и т. д.? Проверить это и должны будут будущие исследовательские экспедиции.

Впрочем, есть и иной сценарий возможного развития событий, предложенный коллективом ученых под руководством Стивена Россуога из Университета Лейчестера, Великобритания. Он и его коллеги полагают, что благородные металлы могут возникать при столкновении нейтронных звезд.

Нейтронные звезды-пульсары – это крошечные, по космическим масштабам, объекты. Их диаметр всего около 20 км, но масса соизмерима с массой нашего Солнца. Исследователи попробовали смоделировать столкновения пульсаров на суперкомпьютере. Виртуальная катастрофа, при осуществлении которой пришлось принять во внимание множество теорий и разнообразных факторов, потребовала от университетского компьютера невиданного напряжения. В результате компьютер продемонстрировал ученым такую картину развития событий. Если бы по воле случая две нейтронных звезды столкнулись в космическом пространстве, произошел бы чудовищный энергетический выброс. Он уничтожил бы всю жизнь типа земной в радиусе нескольких тысяч световых лет. Причем «аварийные» нейтронные звезды превратились бы из крошечных светящихся точек в черную дыру, а в космическое пространство полетели бы некие «обломки».

При температуре около миллиарда градусов Цельсия в этих «обломках» действительно могли бы образоваться атомы таких элементов, как золото и платина. Далее, невероятная мощь взрыва разбросала бы остывающие частицы по очень отдаленным областям Вселенной. При этом они смешались бы с межзвездным газом и пылью и, вероятно, вошли в состав сырья, из которого образуются новые звезды.

Так что золота в космосе в чистом виде, скорее всего, не так уж много. Тем не менее, можно предположить, что по просторам Вселенной где-то бродят и своего рода самородки – осколки бывших звезд, состоящие из благородного металла.

Максим ЯБЛОКОВ


    Ваша оценка произведения:

Популярные книги за неделю