Текст книги "Юный техник, 2006 № 05"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 5 страниц)
ПОЛИГОН
Попрыгунчик
Если потянуть этого зверька за хвост, он зажужжит и поползет вперед. Примечательно, что лапки его не сделают при этом ни единого движения. Кажется, будто внутри возникает какая-то сила, позволяющая ему двигаться, не отталкиваясь и не опираясь на что-либо. Под влиянием механизмов подобного рода в технике возник миф о безопорном движении.
Когда мы идем, едем, плывем или летим, то отталкиваемся от земли, воды или воздуха. Ракета летит, отбрасывая поток газов. Но есть немало случаев, когда кажется, что движение совершается как бы под влиянием только внутренних сил, без отбрасывания массы или опоры на что-либо. Например, раскачиваясь на скейтборде, можно довольно быстро ехать, казалось бы, практически не отталкиваясь от дороги. Точно так же можно раскачать лодку, и она поплывет без весел.
Так нельзя ли создать устройство, которое не только бы двигалось в горизонтальном направлении, но и летало без всякой опоры на окружающую среду? В отличие от ракеты оно бы, не отбрасывая массы, легко поднималось бы на любую высоту, даже покидало Землю и достигало других планет. Космонавтика стала бы делом простым и дешевым.
Такое устройство должно двигаться под действием сил инерции перемещающихся в нем масс. Поэтому его называют безопорным движителем, или инерциоидом.
Механика доказывает, что система тел (а таковым является любое устройство) не может переместить свой центр масс только за счет действующих внутри ее сил. Но не противоречит ли это опыту? К сожалению, нет.
Когда мы рывками вперед-назад заставляем двигаться лодку или скейтборд, то рывок в одну сторону делаем с большей скоростью, чем в другую. Между тем сопротивление между водою и лодкой или трение качения колес по асфальту зависят от скорости. При большой скорости они выше, чем при маленькой. Таким образом, мы, того не замечая, отталкиваемся от окружающей среды. Никакого безопорного движения здесь нет.
В расчете на получение безопорного движения делались инерциоиды весьма замысловатой конструкции, которые даже показывали небольшое снижение веса. Но при внимательном и точном изучении выяснялось, что все эти устройства действуют за счет взаимодействия с окружающей средой.
Однако существуют инерциоиды, которые вовсе не рассчитаны на нарушение законов природы. Они движутся за счет создающейся в них вибрации, опираясь на окружающую среду. Один из них – игрушечный зверек, рассказом о котором мы начали эту статью.
Внутри его вращается неуравновешенный груз, создающий сильную вибрацию. Ось вращения маховика расположена наклонно. В момент, когда груз, вращаясь, окажется позади, тело переместится вперед и вверх, а лапки зверька на мгновения оторвутся от стола. Но центр масс всей системы, как и следует из механики, остается на прежнем месте. Перемещаются лишь центры масс частей системы: груза и тела зверька. Через мгновение после этого тело и лапки вновь коснутся стола.
Когда же груз при своем вращении перейдет вперед, тело зверька, по тому же закону сохранения центра масс, должно бы переместиться назад. Но оно уже опустилось на стол, а значит, начала действовать сила трения. Она-то и не дает зверьку сдвинуться назад.
В простейшем случае этот эффект легко смоделировать, несимметрично насадив на вал моторчика от старой игрушки какой-нибудь грузик (см. рис. 1).
Рис. 1. Демонстрационная модель с электродвигателем.
Укрепите на небольшой дощечке жестяные лапки. С противоположной стороны, посередине, прибейте к ней кусок дерева и прикрутите к нему скотчем моторчик с грузом. Если подключить к нему ток, система начнет вибрировать и поползет. Так же точно ведет себя и наша игрушка. Вообще-то доску с моторчиком можно декорировать под какое-нибудь животное, и получится отличный подарок для малыша. Однако интереснее сделать игрушку заводную.
На рисунке 2 изображена схема механизма, работающего от растяжения резины.
Рис. 2. Модель с резиномоторм.
Потянув за шнурок (хвостик), заранее намотанный на нижнюю катушку, вы тем самым заставите намотаться резиновый жгут на верхнюю катушку. Если хвостик выпустить из рук, то резиновый жгут начнет сматываться. При этом начнет вращаться сидящий на одном валу с ним маховик, связанный при помощи резинового пассика со шкивом, на одной оси с которым укреплен груз. Диаметр этого шкива значительно меньше диаметра маховика. Поэтому получается повышающая передача, и груз вращается очень быстро, а все устройство вибрирует с большой частотой.
Весь механизм смонтирован на легкой жестяной раме. Размеры выбираются в соответствии с имеющимися заготовками. Так, например, маховик с желобком для пассика можно найти в старом плеере. Обычно он имеет диаметр 50–70 мм.
Вал маховика и вал груза проходят через отверстия в раме. В продольном направлении они зафиксированы надетыми на них керамическими «четками» от нагревательного элемента старого кофейника. Такие «опорные подшипники» при смазке графитом имеют очень низкое трение.
Раму лучше сделать из жести. Возьмите полоску жести и процарапайте на ней резаком или шилом две параллельные линии примерно на 1/3 толщины. Если глубина их достаточна, то по этим линиям жесть легко согнется. После этого углы следует пропаять, и вы получите прочный аккуратный профиль. Рама состоит из двух частей, собираемых на винтах.
В качестве двигателя используется пучок резиновых нитей сечением 1x1 мм. «Хвостик» сделайте из рыболовной лески.
Готовый аккуратно сделанный механизм сам по себе смотрится достаточно изящно. Его можно заключить в жестяной контур, напоминающий силуэт какого-нибудь зверя.
А. ВАРГИН
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Раз, два – и гитара
Самую простую электрогитару вы можете сделать из обычной, акустической. Иногда деку гитары изготавливают из подходящей деревянной доски, а под струнами устанавливают электромагнитный преобразователь (адаптер) механических колебаний струн в электрические сигналы, которые посылали на усилитель, работающий на акустические колонки.
Конструкция простейшего электромагнитного адаптера изображена на рисунке 1.
Его основание изготавливается из мягкой стали или пермаллоя толщиной 1…1,5 мм. На основании крепится плоская катушка, содержащая 5000 витков провода ПЭВ 1 диаметром 0,05…0,1 мм. Внутрь катушки помещается магнитный сердечник из намагниченной стали.
Сердечник можно также составить из группы постоянных магнитов с одинаково направленными векторами намагниченности N – S. Всю конструкцию следует заключить в экран из медной или латунной фольги толщиной 0,1…0,2 мм, чтобы исключить паразитные наводки от электросети. Для защиты от механических повреждений преобразователь заключают в пластмассовый чехол и крепят к деке инструмента длинной стороной поперек струн, не касаясь их.
Колебания стальных струн вызывают изменение величины магнитного потока, пронизывающего катушку, при этом на ее выводах возникает переменная э.д.с., амплитуда и частота которой отвечают звуковым колебаниям струн.
В описании рассматриваемой конструкции приводится также схема электрической приставки, показанная на рисунке 2; она включается между электромагнитным адаптером и уже упоминавшимся усилителем.
Приставка содержит регуляторы R1 и R2, а также переключатели «громкость» SA1 и «тембр» SA2. Сигнал с катушки L1 преобразователя подастся через указанные переключатели на разъем XI, откуда поступает на вход усилителя. При установке переменного резистора R1 в положение небольшой громкости (при выключении SA2) легкие повороты ручки R1 позволяют получить эффект органного звучания. Подключение к усилителю выполняется экранированным проводом длиной порядка 5 м. На этом заимствование из известных конструкций электрогитар заканчивается – усилитель мы соберем на основе современных радиоэлементов, что существенно упростит конструкцию.
Базой усилителя служит интегральная микросхема DA1 (см. рис. 3) типа K174YH7.
Ее высокое входное сопротивление хорошо согласуется с достаточно высоким выходным сопротивлением адаптера. Микросхема, установленная на теплоотводящий радиатор, позволяет получить выходную мощность до 4,5 Вт при сопротивлении звуковой катушки динамической головки 4 Ом. Диапазон воспроизводимых усилителем частот – от 40 до 20 000 Гц. Переменный резистор R1 на рисунке 3 служит для регулирования в широких пределах уровня громкости звучания вашего электромузыкального инструмента.
Такого усилителя вполне достаточно для игры в обычной квартире. При этом вы не будете сильно мешать соседям. Что же касается качества самодельной гитары, то попробуйте сравнить ее с фирменной. Разница окажется не так уж велика.
Ю. ПРОКОПЦЕВ
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос – ответ
В январе с мыса Канаверал (США) к Плутону был запущен межпланетный исследовательский зонд. В связи с этим событием у меня к вам три вопроса. Во-первых, почему на американской ракете «Атлас» стоят российские ракетные двигатели РД-180? Во-вторых, зачем на зонд вместо обычных солнечных батареи поставили ядерный реактор с радиоактивным плутонием? И, в-третьих, по каким причинам зонд будет лететь столь долго – ведь он доберется к Плутону лишь в 2015 году?
Алексей Коростылев,
г. Тюмень
Российские двигатели РД-180 НПО «Энергомаш» начало поставлять в США по контракту несколько лет назад. Сначала были использованы старые запасы двигателей, которые некогда сконструировали и построили для советской лунной ракеты. Но на Луну, как известно, наши космонавты не полетели. Двигатели же получились очень удачные. Вот американцы и покупают их, так сказать, по дешевке: за 101 двигатель они заплатят 1 млрд. долларов. Создание собственных двигателей такого класса им бы обошлось в несколько раз дороже.
Поскольку зонд летит на окраину Солнечной системы, где светило еле-еле видно, то солнечные батареи там практически бесполезны. Вот и пришлось оснастить аппарат ядерным реактором для питания электричеством исследовательских приборов зонда. С его помощью исследователи намерены составить первую карту Плутона, выяснить, есть ли на планете кратеры и вулканы, имеется ли атмосфера.
Кроме того, зонд обследует спутники Плутона – Харон и еще два, которые пока не имеют собственных названий. Наконец, с помощью зонда исследователи постараются узнать, нет ли за орбитой Плутона еще не открытых планет?
Зонд следует по своему маршруту достаточно быстро, со скоростью более 16 км/с. Так, скажем, расстояние от Земли до орбиты Луны он преодолел всего за 9 часов – раньше на это уходило более 3 суток. Долгое же время полета обусловлено длиной пути – ведь Плутон находится от Солнца на расстоянии почти в 40 раз большем, чем Земля.
По телевидению, по радио довольно часто показывают и рассказывают о пожарах и противопожарной технике. Но мне, например, ни разу не довелось услышать, кто изобрел самый простой, и эффективный агрегат для тушения пожаров – огнетушитель. Что вы знаете об истории его создания?
Андрей Черкасов,
г. Ростов
Действительно, мало кому известно, что огнетушитель – изобретение российское. Прообраз устройства для тушения огня предложил в 1815 году бывший крепостной Семен Власов. Он первым догадался использовать для тушения огня не просто воду, а пенный раствор с добавлением в него отходов мыловаренного производства, действовавший куда более эффективно.
Следующее усовершенствование этого прибора было предложено преподавателем физики бакинской гимназии Александром Георгиевичем Лораном. Он как-то обратил внимание на пивную пену, которая сплошным одеялом обволакивает поверхность, препятствуя доступу к ней воздуха. Однако опыты с пивом скоро разочаровали его.
Во-первых, пиво все-таки достаточно дорогой продукт, чтобы заливать им огонь. Во-вторых, и это главное, пивная пена быстро оседает и разрушается. Тогда учитель стал искать иные средства вспенивания жидкостей. И в конце концов добился своего. В 1904 году он получил «привилегию» (патент) на ручной огнетушитель «Эврика», который и был испытан во дворе Василеостровской пожарной части в Петербурге 20 мая 1905 года. С той поры, вот уже более ста лет, пенные огнетушители верой и правдой служат людям.
ДАВНЫМ-ДАВНО
В первые годы существования радиосвязи казалось, что места в эфире хватит на всех. Но очень скоро количество радиостанций возросло, и они начали мешать друг другу. Хотя частоты станций стояли друг от друга довольно далеко, при приеме одной станции слышны были другие. Инженеры пробовали сужать полосу частот, посылаемых передатчиком. Помехи соседним станциям снижали, но при этом резко снижалась разборчивость передачи. Метод зашел в тупик.
Причину явления в 1920-е годы раскрыли чисто математически советский инженер В,А. Котельников и американец Х.Найквист. Они до казали, что даже при простом включении и выключении передатчика появляются так называемые «боковые полосы», занимающие некоторую полосу частот, а при работе вещательной станции она достигает многих килогерц, отчего станции «наползают» друг на друга. Но, быть может, это просто игра ума?
В конце 1920-х годов видный советский физик А.Ф. Иоффе поставил эксперимент с прибором для измерения частоты переменного тока – язычковым частотомером. В основе его была небольшая стальная гребенка с язычками разной длины. Под действием поля электромагнита всегда колебался один из язычков, резонансная частота которого совпадала с его частотой.
На лекции А.Ф.Иоффе подключал прибор к сети 50 Гц и указал присутствующим, что в этот момент колеблется не только главный язычок (50 Гц), но и два боковые – 49 и 51 Гц. Так было доказано, что боковые частоты действительно существуют.
Государства быстро договорились о распределении частот между странами. Это позволило к 1928 году обеспечить в Европе работу без взаимных помех более 280 радиостанций.
* * *
А почему?Правда ли что в Тихом океане была своя Атлантида – огромный материк, погибший в результате катастрофы? Как лианы карабкаются по отвесным скалам? Отчего огромная статуя бога солнца Гелиоса, возведённая на острове Родос, в древности считалась чудом света? Как гребля стала популярным видом спорта? На эти и многие другие вопросы ответит очередной выпуск «А почему?».
Школьник Тим и всезнайка из компьютера Бит продолжают своё путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в один из московских музеев, где можно узнать немало любопытного об истории российского морского флота.
Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.
ЛЕВША– Гибрид самолета и катера один из первых отечественных гидропланов был задуман как машина экспериментальная, но грянула война, и опытные образцы ушли па фронт. Ко Дню Победы мы публикуем в рубрике «Музей на столе» эскизы модели корабельного самолета Бе-2 (КОР-1).
– Один шарик – это всего лишь шарик; а два шарика – это фантастическое шоу… в блюдце. В основу новейшей игрушки знатока головоломок Владимира Красноухова положен малоизученный оптический эффект.
– Собран несложный водяной метроном, любители механики смогут помедитировать под непривычные восточные ритмы.
* * *