Текст книги "Юный техник, 2006 № 05"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
ВОЗВРАЩАЯСЬ К НАПЕЧАТАННОМУ
Полет на… бомбе?
Помните, как барон Мюнхгаузен летал на ядре?.. Но это еще цветочки! Говорят, в скором будущем космические корабли станут летать, используя энергию термоядерного взрыва. И это не сказки…
Бомболет-космолет
Мы уже рассказывали, как в начале 60-х годов XX века американское правительство затеяло создание тяжелого межпланетного космического корабля «Орион» с командой в 150 человек (см. «ЮТ» № 2 за 2003 г.). Предполагалось, что на нем можно будет долететь до Марса, Юпитера и Сатурна или даже выбраться да пределы Солнечной системы.
Так должен был выглядеть полет космолета « Орион».
Проект звездолета « Дедал».
Несмотря на кажущуюся фантастичность идеи – корабль должен был приводиться в движение взрывами ядерных бомб! – ее осуществлением занимались ведущие американские физики, в том числе и «отец» американской водородной бомбы Эдвард Тейлор.
На первом этапе предполагалось создать корабль для полетов внутри Солнечной системы – некий «небоскреб», опирающийся на прочную плиту с отверстиями. Атомные заряды из склада должны были скользить по специальным колоннам-направляющим, выпадать через отверстия в плите и взрываться по пять штук разом на некотором удалении от корабля.
Ударная волна, согласно расчетам, могла создать соответствующую реактивную силу, которая бы выбросила всю конструкцию на орбиту, оставив позади огромное радиоактивное облако.
На старте собирались использовать бомбы мощностью 0,1 килотонны, в космосе в ход пошли бы 20-килотонные бомбы. Считалось, что таким образом можно вывести в космос корабль с полезной нагрузкой в 100 000 тонн.
После освоения Солнечной системы прямо в космосе предполагалось смонтировать «Орион-2». На нем вместо атомных думали использовать водородные бомбы, которые должны были подтолкнуть корабль в сторону Альфы Центавра со скоростью одна сотая скорости света (3000 км/с). Таким образом, путешествие к ближайшей звезде заняло бы около 500 лет.
Истратив за семь лет, с 1958 по 1965 год, свыше 1,5 млрд. долларов, американцы построили 100-метровый прототип «Ориона», который работал на обычной взрывчатке. Но потом проект все же прикрыли, пишет журнал Discover.
Причин тому оказалось несколько. Во-первых, бомболет оказался чересчур дорогим. Во-вторых, при взлете «Орион» погубил бы все живое на много миль вокруг. В-третьих, в 1963 году был подписан договор между США и СССР о запрете испытаний ядерного оружия в атмосфере, что заметно осложнило бы проверку силовой установки «Ориона».
И любопытный проект несколько десятилетий пылился в засекреченных архивах, пока не вышел срок давности…
Схема корабля « Орион»:
1– жилые отсеки; 2– термоядерные заряды; 3– корабельные механизмы; 4– амортизаторы; 5– опорная плита.
Взрыволет по-советски
К сказанному журналом Discoverмы можем добавить, что примерно в то же время и у нас разрабатывались подобные проекты. В частности, один из них предполагал разработку атомного космического корабля для марсианской экспедиции.
Для него было придумано даже соответствующее название – взрыволет – летательный аппарат, движимый реактивной силой периодических ядерных взрывов. Такое название, как и сама идея, принадлежит академику Андрею Сахарову. Еще в 1966 году в сборнике «Будущее науки» была опубликована его статья, в которой он изложил суть идеи создания такого летательного аппарата.
Однако в свое время взрыволет Сахарова, как и «Орион» Тейлора, построен не был. Причина тому – для полета такого корабля требовались ядерные взрывы вещества с большой критической массой, а это очень опасно.
Сейчас физики предлагают пересмотреть идею взрыволета, ориентируясь на вещество с малой критической массой. Так, скажем, сотрудник Московского физико-технического института, кандидат физико-математических наук Олег Егоров, полагает, что критическую массу вещества можно уменьшить во много раз, правильно выбрав рабочее вещество – например, используя вместо урана кюрий-245.
Схема звездолета с аннигиляционным двигателем:
1– магнитное сопло; 2– ферма с радиаторами; 3– отсек экипажа; 4– топливные баки; 5– локаторы.
«Взрыволет представляется мне неким гибридом современной ракеты и «летающей тарелки», – рассказывает исследователь. – Надо вместо огненного «хвоста» мысленно приставить к торцу ракеты диск-«тарелку» на пружине. За этим диском – графитовым отражателем каждую секунду встречаются две половинки заряда, выстреливаемые с двух сторон конца ракеты в один «небольшой шарик» – взрывное устройство. При соединении их образуется критическая масса и произойдет взрыв. Он ударит в отражатель, пружина сожмется, и ракета полетит».
Конечно, от схемы до готовой конструкции – дистанция огромного размера. Нужно еще найти такое вещество для отражающей платформы (которая одновременно является и защитной), чтобы оно не расплавилось от жара взрывов, предохранило экипаж и окружающую среду от радиации. Однако у современных конструкторов куда больший выбор, чем у их предшественников, полагает Егоров. Полвека назад, например, не было углеродных композитов.
Запуск такого взрыволета, конечно, должен производиться не с Земли. Запускать его предполагается с геостационарной орбиты, подальше от Земли. А сборку можно будет осуществлять на космической станции.
По патенту молнии
Впрочем, и такая конструкция содержит элемент потенциальной опасности – с бомбами, что ни говорите, шутки плохи. Поэтому известный советский конструктор Валентин Глушко, в отличие от американцев, предлагав взрывать с помощью лазерных лучей в рабочей камере двигателя крошечные мишени из дейтерия. Миниатюрные водородные бомбы были проще и безопаснее в обращении, а также не могли нанести столь существенный вред окружающей среде, как в проекте «Орион».
Современные наши конструкторы предпочли бы обойтись без бомб, использовав для разогрева рабочего тела – газовой смеси – ядерный реактор обычного типа. Так, сотрудники Московского НИИ тепловых процессов А.Коротеев, В.Семенов, В.Акимов и М.Ватель предложили даже несколько вариантов ЯРД – ядерного ракетного двигателя – с газовым, жидкостным или комбинированным охлаждением. Причем один из прототипов такого двигателя был построен и испытан на воронежском предприятии «Промхимавтоматика».
Еще один любопытный проект предлагает немецкий изобретатель венгерского происхождения Шандор Надь.
По его словам, он был вдохновлен громом и молнией: «Когда молния рассекает небо, воздух взрывообразно расширяется, ведь его температура в один миг возрастает до 30 000 градусов»…
Это взрывное расширение и решил использовать инженер из Эрфурта, конструируя принципиально новый двигатель для летательных аппаратов будущего. В его модели воздух не сгорает вместе с топливом, а разогревается лучом лазера. Затем следует молниеносное расширение. Воздушная струя улетучивается, создавая реактивную силу.
Шандор Надь уже экспериментировал с топочной камерой, стены которой были покрыты металлом или керамикой. Прежде чем вырваться наружу, струя воздуха миновала еще одну, форсажную, камеру, нагретую другим лазерным лучом. Это усиливало напор раскаленной струи.
Особого внимания заслуживает еще одна новинка, придуманная Надем: между топочной и форсажной камерами он поместил диафрагму. Если ее перекрыть, то двигатель можно использовать даже в космосе, наполнив ее водородом. Именно он и станет топливом «космолета», а дальше все следует по той же схеме: лазерный луч – нагревание – взрыв.
«Возможности летательных аппаратов, оснащенных лазерными турбинами, очень велики, – считает Надь. – Они могут совершать полеты и в космосе, и близ Земли. Самолет становится универсальным видом транспорта. На нем можно передвигаться повсюду. Даже отправиться в путь к одной из соседних планет и там, в ее воздушной оболочке, набрать себе топлива на обратную дорогу»…
И действительно, лазерная турбина в принципе способна работать с самыми разными жидкостями и газами. «В случае необходимости баки этого самолета можно заправить даже кометным льдом», – считает Шандор Надь.
Станислав СЛАВИН
У ВОИНА НА ВООРУЖЕНИИ
Кто годится в гренадеры?
Я слышал, что в петровские времена существовали особые солдаты – гренадеры. В их обязанности на поле боя входило метание гренад, то есть гранат. А чтобы они летели подальше, в гренадеры набирали солдат-богатырей, регулярно тренировали их на дальность и меткость броска. В наши дни в армии тоже есть гранатометчики. Каковы их обязанности? Каким оружием они пользуются? Какие навыки должны иметь?
Андрей Богатырев,
г. Калязин
Виды гранат
«Карманная артиллерия» – так иногда называют гранаты – имеет довольно длинную историю (см. «Подробности для любознательных»). Наибольшее распространение этот, казалось бы, про стой вид вооружения получил в XX веке. В российской армии гранаты современного вида впервые появились в ходе Русско-японской войны.
На вооружении Красной армии была граната образца 1914 года. В 1930 году ее модернизировали – в комплект гранаты, которую использовали обычно в наступлении, был добавлен чехол, который применяли при метании гранаты из окопов или укреплений во время обороны, чтобы разлетавшиеся осколки не задели бросавшего.
Наиболее популярной в Красной армии была знаменитая РГД-33 – ручная граната образца 1933 года, сконструированная М.Г. Дьяконовым. В 1939 году по французскому образцу военный инженер Ф.И. Храмеев разработал оборонительную гранату Ф-1. Чуть позднее талантливым конструктором, впоследствии лауреатом Государственной премии СССР Н.П. Беляковым была создана осколочная граната РГ-41. А в 1940 году на вооружение поступила разработанная М.И. Пузыревым противотанковая граната фугасного действия РПГ-40 с массой заряда 760 г. Вскоре наши воины получили и модернизированную противотанковую гранату РПГ-41 с массой заряда 1400 г. Она пробивала броню толщиной в 25 мм.
Таким образом, к началу Второй мировой войны гранаты стали разделять по классам: противопехотные, противотанковые и специальные (например, дымовые, химические и т. д.).
Современные ручные гранаты
Для ведения ближнего боя у бойцов сегодня есть различные типы гранат боевого и вспомогательного назначения. Противотанковые гранаты в наши дни практически утратили свое значение, поскольку броня у современных танков очень толстая. Да и действовать с гранатометом, о конструкции которого будет рассказано ниже, против бронированного «зверя» гораздо удобнее.
В бою – гранатомет АГС-17.
Противопехотные же гранаты теперь четко подразделяются на два класса – наступательные и оборонительные.
Наступательные гранаты используют во время атаки, когда бегущий боец не имеет возможности спрятаться в укрытие. Поэтому такие гранаты имеют сравнительно небольшой заряд взрывчатки, а сам корпус гранаты делается из тонкого металла (стали или алюминия), а то даже из пластмассы. А потому наступательная граната практически не дает осколков.
Примером такой гранаты может послужить отечественная РГД-5. Корпус ее изготовлен из двух тонких жестяных полусфер, изготовляемых штамповкой. Перед боем в трубку для запала вставляется запал УЗРГМ. Для приведения его в боевое состояние нужно выдернуть кольцо чеки. После этого ударник запала удерживает лишь ручка спускового рычага, зажатая в руке. После того как граната брошена, спусковой рычаг под действием боевой пружины отходит в сторону, и ударник своим жалом бьет по капсюлю-воспламенителю. Однако благодаря замедлителю взрыв происходит не мгновенно, а через 3–4 секунды, за которые граната успевает долететь до цели.
Оборонительные же гранаты предназначены для метания из укрытия – например, из-за бруствера окопа или траншеи. Они имеют больший заряд взрывчатки и толстую рубашку (например, из чугуна) с нанесенным рифлением в виде продольных и поперечных борозд, по которым граната и разрывается на множество осколков.
Классическим примером такой гранаты может послужить отечественная граната Ф-1, которая и по сей день состоит на вооружении. Дело в том, что за многие десятилетия службы она доказала свою безотказность: она взрывается при падении как на твердую поверхность, так и в грязь, снег и даже воду. Разлет же ее осколков весьма внушителен – около 200 м!
Поскольку в боевой практике солдаты далеко не всегда имеют возможность выбрать тот или иной тип гранат, на вооружении ряда стран состоят и универсальные гранаты. Примером может послужить, скажем, NR 2 °C1, состоящая на вооружении армии Нидерландов. Яйцевидный корпус этой гранаты изготовлен из пластика. Однако внутри наряду со взрывчаткой расположено и 2100 металлических шариков, разлетающихся при взрыве со скоростью 1600 м/с и поражающих все вокруг на расстоянии в десяток метров. Однако на дальности более 20 метров от места взрыва такая граната уже безопасна. В качестве боевого заряда здесь используется смесь тротила, гексагена и парафина. Вес гранаты – 390 граммов, а замедление взрыва составляет 3–4 секунды.
Наконец, в некоторых случаях современной пехотой могут быть использованы и вспомогательные гранаты – дымовые, зажигательные, учебные… Последние, несмотря на то, что внешне в точности похожи на боевые, не имеют заряда взрывчатки. А заряд зажигательной гранаты способен в течение короткого времени развить температуру до 2200 °C, заставляя гореть даже металл.
Противотанковая граната РКГ-3.
Гранатомет против пехоты
Какую бы силищу ни имел метатель гранат, ему вряд ли удастся забросить гранату дальше, чем на 30–40 метров. Но подпускать к себе противника на такое расстояние смертельно опасно – ведь тогда и он сможет бросить гранату или в последнем броске преодолеть данное расстояние за несколько секунд, бросившись в штыковую атаку. Поэтому конструкторы и стали разрабатывать гранатометы – устройства, позволяющие метать гранаты на сотни метров с высокой точностью.
Прототипами современных гранатометов и гранат были так называемые ружейные гранаты, которые использовала пехота многих стран еще во время Первой мировой войны. Такие гранаты вставляли тонким хвостовиком прямо в дуло винтовки или карабина. И когда солдат производил выстрел холостым патроном, сила порохового заряда выбрасывала гранату на десятки метров.
Потом появились первые специализированные гранатометы, напоминавшие обычные охотничьи ружья большого калибра, «переламывающиеся» при заряжании. Попытка совместить стрелковое оружие и гранатомет в одной конструкции привела к появлению так называемых под ствольных гранатометов.
Рассмотрим в качестве примера хотя бы российский гранатомет ГП-25 «Костер». Он был разработан в 1975 году и пущен в серийное производство пять лет спустя. Предназначен для использования в комплексе с автоматами АКМ, АКМС, АК-74, АКС-74 и крепится с помощью специального кронштейна под дулом основного ствола. Заряжается такой гранатомет с дула специальным зарядом-выстрелом ВОГ-25.
Сам выстрел состоит из двух частей – вышибного заряда и непосредственно самой гранаты. Заряд силой пороха способен выбросить 40-миллиметровую гранату на прицельное расстояние до 400 м со скоростью 76 м/с. Ударившись о цель, граната взрывается, нанося противнику немалый урон. Причем для некоторых операций бойцы могут использовать гранаты со слезоточивым газом или иными спецсредствами.
Гранатомет АГС-30.
Многозарядные гранатометы
В тех случаях, когда скорострельности в 4–5 выстрелов в минуту при ручной зарядке с дула недостаточно, бойцы могут применять многозарядные гранатометы.
Так, гранатомет ГМ-94 представляет собой вариант крупнокалиберного помпового ружья с нарезным 43-миллиметровым стволом и магазином на 3 патрона. Перезарядка производится простым передергиванием цевья вперед. А сами гранаты могут быть фугасными, осколочными, осветительными, термобарическими (т. е. разрывающимися с сильным грохотом и дающими сильную световую вспышку) и т. д. Начальная скорость гранаты – 100 м/с, а летит она прицельно на расстояние до 300 метров.
Ручной гранатомет РГ-6 имеет механизм перезарядки револьверного типа на 6 патронов и способен стрелять прицельно на расстояние до 400 м. Весит такое оружие в незаряженном состоянии – 5,6 кг. Интересно, что разработан этот гранатомет группой сотрудников ЦКИБ СОО под руководством В.Н. Телеша в ноябре 1993 года всего за 10 дней.
А сравнительно недавно на вооружение наших бойцов поступил автоматический гранатомет АГС-17, где используются 30-мм выстрелы ВОГ-17М и ВОГ-30 с осколочной гранатой и взрывателем ударного действия. При разрыве такая граната образует зону сплошного осколочного поражения в радиусе 7 м. Выстрел ВОГ-30 имеет в полтора раза большую площадь поражения, чем американский выстрел М384.
Гранатомет прост по устройству, его конструкция обеспечивает надежную работу в любых условиях, его использовали практически во всех «горячих» точках, начиная с Афганистана. Однако весит АТС-17 31 кг. И потому тульскими конструкторами недавно был разработан гранатомет АГС-30. Он вдвое легче. Небольшая масса – 16,5 кг – позволила сократить боевой расчет с трех человек до двух. Но все же и современным гренадерам необходима сила, выносливость для транспортировки АГС-30. Правда, его также можно устанавливать на всех видах боевых машин, катерах, вертолетах.
Виктор ЧЕТВЕРГОВ
Подробности для любознательных
ИЗ ИСТОРИИ «КАРМАННОЙ АРТИЛЛЕРИИ»
Осколков древних гранат на Руси сохранилось очень немного. Однако в раскопках под Саратовом, в городищах XIII–XIV веков, удалось найти глиняные пустотелые шары диаметром около 16 сантиметров. Это и были, по всей вероятности, первые гранаты.
Узкое горлышко каждого сосуда, очевидно, предназначалось для запала, которым в то время служил фитиль. К сосуду привязывали шнурок, с помощью которого гранате можно было придать большой размах. Дно сосуда, тяжелое и остроконечное, рассчитано было так, чтобы при падении сосуд ложился не на запал, а боком.
Наиболее древними из известных нам европейских разрывных гранат являются итальянские гранаты XVI века, хранящиеся в Эрмитаже. Они представляют собой шарообразный сосуд из белого толстого… стекла, снабженный стеклянными же шипами для того, чтобы при падении граната не разбилась. Один из этих шипов полый, в него закладывался запал.
С развитием металлургии гранаты стали лить из чугуна. Был усовершенствован и запал – шнур фитиля стали пропитывать особым составом селитры, заставляя его гореть устойчиво в любую погоду.
Начиная с конца XVII века в европейских армиях, в том числе и в русской, которая была перестроена на новый лад Петром I, создаются особые отряды пехоты, с назначением бросать в неприятеля гранаты. В эти отряды брали отборных солдат – отважных, ловких, высокого роста.
Отличительными признаками гренадер было изображение пламенеющей гранаты на предметах снаряжения и особый головной убор в виде остроконечной шапки-гренадерки, которой заменялась обычная черная шляпа. Гренадерам приходилось в бою при бросании гранаты часто закидывать свое ружье за спину на ремне. Обычная шляпа могла бы этому помешать. Кроме того, высокие шапки действовали на противника устрашающе, подчеркивая большой рост и грозный вид воинов. С этих пор гренадер так и вошел в историю как солдат исключительно высокого роста, а гренадерские части – как отборные войска.
Русские гренадеры.
У СОРОКИ НА ХВОСТЕ
О ЧЕМ ДРОЖИТ ЗЕМЛЯ?Группа калифорнийских исследователей во главе с профессором Барбарой Романович сумела зафиксировать сверхнизкочастотные колебания нашей планеты с частотой порядка 2–7 миллигерц. Источником этих колебаний оказались подвижки земной коры (резкие всплески земной активности во время землетрясений из реестра наблюдений были исключены), а также океанские волны. При этом выяснилось, что шум морского прибоя разносится по всей планете. Причем, когда в Северном полушарии зима, гудит в основном Тихий океан, а летом больше шумят южные районы Атлантики и Индийского океана. Теперь исследователи оценивают, не может ли пригодиться полученная информация, например, для прогнозирования цунами и ураганов.
«НОЕВ КОВЧЕГ» ОСТАНОВИЛСЯ НA ШПИЦБЕРГЕНЕ. Природные катаклизмы, обрушившиеся на нашу планету в последнее время, заставили исследователей многих стран ускорить осуществление давнего проекта. А именно, в Норвегии принято решение создать уникальное хранилище биологического материала. Иными словами, на тот случай, если нашу планету постигнет какой-нибудь катаклизм, в уникальном хранилище, создаваемом по проекту «Ноев ковчег», сохранится комплект из 2 млн. видов различных семян, что позволит затем восстановить растениеводство. Для этих целей в скалах Шпицбергена вырубается уникальная пещера-хранилище, где в условиях вечной мерзлоты будут храниться контейнеры с семенами. По словам куратора проекта Гарри Фаулера, программа должна быть завершена не позднее 2007 года.
ЧЕМ ПАХНЕТ? ПРИКАЗОМ…Исследователи Университета Южной Калифорнии в Лос-Анджелесе изобрели новый способ командования с помощью кодированных запахов. На солдат наденут специальные воротники со множеством отсеков, в каждом из которых – тампон, смоченный пахучей жидкостью, небольшой вентилятор и запирающий клапан. Удаленный радиосигнал открывает нужный клапан и запускает в действие вентиляторы. Воротник помещается в непосредственной близости от лица солдата, так что тот мгновенно чувствует появившийся запах. Солдат же обучат связывать определенные действия с легкоузнаваемыми ароматами: скажем, если пахнет розой – нужно идти в атаку, а запахло керосином – беги.
ДОМ БРОСАЕТ ЯКОРЬ.Поняв, что борьба с наводнениями с помощью дамб не всегда гарантирует безопасность, голландские инженеры предлагают более надежный способ обезопасить жителей страны от стихии. Здесь теперь начинают строить дома-амфибии. Здание строится на обычном фундаменте, но имеет надежную гидроизоляцию, а также дополнительные поплавки, которые в случае наводнения позволяют дому всплыть и удерживаться на месте с помощью системы якорей.