355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2000 № 08 » Текст книги (страница 2)
Юный техник, 2000 № 08
  • Текст добавлен: 12 октября 2016, 03:30

Текст книги "Юный техник, 2000 № 08"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Ткани XXI века

Новое поколение тканей, над которыми сегодня работают специалисты, их изобретатели называют «интеллигентными». За столь обязывающим определением скрываются материалы, обладающие полезными для человека свойствами. Когда холодно, они греют, при жаре – охлаждают, удаляют пот и дают возможность коже дышать. И даже – пусть не завтра – помогут человеку поговорить по спутниковому телефону или подключиться к Интернету.



Нужна ли рыцарю прачечная?

Недавно довелось прочитать рассказ об ученом, который постоянно ходил в белом костюме. Все вокруг удивлялись: «Посмотрите, какой чистюля!..» А в конце выяснилось, что он изобрел такое синтетическое волокно, к которому совершенно не пристает грязь…

А можно ли на самом деле создать такой материал, который не нужно стирать?

Химики-текстильщики меня разочаровали. По их словам, создать ткань, к которой не будет прилипать грязь, довольно просто.

Да вот загвоздка – ходить в таком костюме – сущее мучение: синтетика не позволяет телу дышать, нормально испарять с поверхности кожи влагу, не вбирает в себя пот и мельчайшие чешуйки кожи, которые постоянно от нее отслаиваются.

Люди постарше хорошо помнят те времена, когда в нашей стране царила повальная мода на все синтетическое: люди ходили в нейлоновых и лавсановых рубашках и блузках, дакроновых и тетраленовых костюмах, шубах из искусственного меха… Но мода эта вскоре прошла, поскольку все убедились, что ходить в такой одежде ничуть не удобнее, чем, скажем, в рыцарских латах. Мучения такого латника, кстати, красочно описаны в романе Марка Твена «Янки при дворе короля Артура».

В жаркий день латы раскалялись на солнце, вечером столь же быстро охлаждались, а когда под панцирь главному герою заполз муравей, тот чуть было не сошел с ума от щекотки…

А потому синтетическим волокнам и тканям нашли другое применение. Из них шьют паруса, парашютные купола, вяжут рыбацкие сети, плетут сверхпрочные канаты… И те прекрасно служат, отторгая влагу, соль и грязь, не поддаваясь гниению…



Волокно под микроскопом

Первое чисто синтетическое волокно – нейлон – американец концерн «Дюпон» выпустил 60 лет назад. Затем появились акрил, полиамид полиэстер и другие волокна, родившиеся в лабораторных ретортах.

С той поры химики и текстильщики стараются их улучшить, сделать так, чтобы синтетика служила людям не хуже природных волокон.

Однако прошло немало времени, прежде чем удалось понять и сгладить границу между природными и синтетическими тканями. Новшества затронули прежде всего геометрию волокон. Ныне изготовители текстильного сырья стремятся сделать нити как можно тоньше. Так называемые микроволокна имеют диаметр в 0,006 мм, то есть они в 10 раз тоньше волоса и вдвое – шелка.

Трех килограммов таких нитей достаточно, чтобы опоясать земной шар. Подобные микроволокна позволяют ткать материалы, которые мягки, защищают от сырости и вместе с тем хорошо пропускают воздух.

А если сделать такое волокно трубочкой, как макаронину, ткань из него лучше греет. Причем если сечение «микромакаронины» не круглое, а овальное, ткань из него лучше удаляет с кожи пот.

Одна из английских фирм по производству синтетики встраивает в акриловое волокно вещество триклозан, останавливающее размножение бактерий, которые, кстати, прекрасно себя чувствуют именно в поте, выделяемом кожей, и к тому же синтезируют масляные кислоты, обладающие неприятным запахом.

Все больше совершенствуются и сами ткани. Например, при их производстве сумели объединить технику ткания и вязания. В зависимости от программы современная ткацкая машина способна одновременно создавать до пяти разнородных по структуре слоев полотна, причем в плетеную структуру ткани могут включаться несколько видов пряжи, в том числе даже металлические нити.

Излюбленный материал сегодняшних модельеров – эластик, он удобен не только в спортивной одежде, но и в костюмах для повседневной жизни. Уже существует ткань, в основе которой размещены мельчайшие стеклянные шарики, отражающие свет; одежда из такой материи – хорошая защита для тех, кто ночью находится на улице.

Автомобильная фирма BMW заказала для костюмов мотоциклистов ткань, содержащую одну из разновидностей кевлара – синтетика, в пять раз более прочного на разрыв, чем сталь.

Выпускаются и пуленепробиваемые куртки, жилеты, пиджаки, ничем на вид не отличимые от обычной одежды.

Фантастической кажется технология создания ткани, которая может охладить человека в жару и согреть в холод. Но на самом деле тут все довольно просто. Секрет заключен в миллионах микроскопических капсул, встроенных в структуру ткани. Капсулы содержат парафин, который при нагревании плавится и отбирает тепло, например, у тела разгоряченного горнолыжника, неся ему прохладу. А когда спортсмен спустится с горы и присядет на скамейку подъемника, чтобы подняться снова на вершину, те же парафиновые шарики начнут отвердевать под действием наружного холода. Причем застывание их сопровождается выделением тепла, которое согреет ткань и тело спортсмена, не позволяя ему замерзнуть.

Подбирая соответствующие парафины, можно добиться точного, до градуса, порога при нагревании или охлаждении. Например, торс человека предпочитает температуру 35 °C, а ноги и руки – 32 °C. Поэтому ткань для груди и спины начиняют шариками с парафинами, имеющими так называемый фазовый переход при 35 °C, а рукава и штанины – при 32 °C.

Впрочем, на подобное «чудо» способны не только парафиновые шарики, но и, например, тончайшие мембраны из полиуретана. Став составной частью ткани, они не выпускают тепло, генерируемое телом, если человек находится в холоде. Но как только внешняя температура повысится или обладателю такой одежды станет жарко, атомы мембраны усилят свое движение, поры приоткроются, и воздух, а также водяные пары получат выход наружу.

Такой материал называют диаплексом, производят его американские и японские фирмы. Используются же такие «активно дышащие» материалы не только в спортивной одежде, но и в костюмах космонавтов, летчиков, водолазов…


На фотографиях, сделанных под микроскопом, показаны:

а – ткань из тончайших волокон; с нее стекает влага, а между нитями легко проходит воздух;

б – отслаивающиеся волоски вискозы создают ощущение «персиковой кожицы»;

в – микроскопические капсулы могут вбирать тепло и отдавать его.


Схемы тканей с «хитринкой»:

а – влажное тепло человеческого тела открывает капсулу с лекарством;

б – парафиновые шарики при отвердевании (реют человека;

в – мембрана избирательно пропускает тепло и холод.


Костюм-компьютер

Английские технологи ведут эксперименты по созданию костюма, который одновременно сможет выполнять функции… вычислительного центра.

Прежде всего «стиляга» XXI века должен обуться в башмаки с фантастической подошвой. Она состоит из многих слоев и при каждом шаге генерирует электричество. Его, кстати, можно использовать для питания светящихся в темноте тканей одежды. Но основная задача «электрической» обуви – дать питание микрочипам – основным элементам тканого компьютера, представляющего собой сложный и мощный коммуникационный комплекс, в который войдут информационный терминал с выходом в Интернет, мобильный телефон, видеокамера, пейджер, записывающие устройства. Более того, работать этот компьютер сможет и от тепла человеческого тела, которое преобразует в электроэнергию опять-таки специальная ткань.

Компьютерная одежда способна также постоянно следить за физическим состоянием ее владельца, контролируя работу его основных органов, в первую очередь – сердца. В случае проявления симптомов недуга костюм способен самостоятельно связаться со «Скорой помощью».

Как ожидается, первые пиджаки-компьютеры могут появиться в магазинах уже в ближайшие пять лет. По мнению специалистов, их использование приведет как к подлинному перевороту в информатике, так и к созданию новых отраслей промышленности, опирающихся на новейшие образцы наукоемкой техники. В частности, к новой технологии уже проявляют внимание банковские и брокерские круги, которые заинтересованы в постоянном контакте с финансовыми и фондовыми рынками.

В то же время новейшие ткани открывают дорогу современным технологиям изготовления одежды.

Лазеры могут раскраивать материалы по меркам, снятым компьютером и соединенным с ним сканером, который обмеряет клиента, не прикасаясь к нему. Ультразвук или токи высокой частоты «сваривают» отдельные части в цельное изделие. Такое ателье уже действует в Германии, в городе Майнц.

Олег СЛАВИН


Заметки по поводу

ЧТОБЫ НЕ ПРИСТАЛА ГРЯЗЬ…

Кстати из пластических масс вовсе не обязательно отливать волокна, чтобы затем соткать из них ткань. Эти покрытия можно с не меньшей пользой применять, скажем, в виде лаков и красок.

Недавно, например, в Берлине создана краска, к которой совершенно не прилипает обычная грязь и даже другая краска. Специалисты НИИ по изучению дисперсных систем и поверхностных явлений имени Макса Планка уже давно работают над созданием покрытий, способных отталкивать грязь, лаки и краски. Главное направление поиска – синтетические углеродосодержащие полимеры. В результате многочисленных экспериментов ученым удалось на основе нескольких близких полимеров создать композиционное соединение, склонное к самоупорядочению. Иными словами, длинные молекулы этого соединения сами собой ориентируются, образуя пленку, имеющую как бы два слоя. Один – клейкий – обращен к обрабатываемой поверхности и накрепко сцепляется с ней. А к наружному вообще не пристают никакие загрязнения.

Новое покрытие представляет собой полигексафторэтилен, то есть является близким родственником пластика, более известного под названием тефлон. Новый полимер, как и тефлон, образует покрытие, состоящее из длинных цепочек атомов углерода и фтора.

Полимерное покрытие, предложенное берлинскими учеными, отталкивает лаки, краски, грязь и влагу эффективнее, чем любое другое. Единственное, что сдерживает его широкое применение, – относительно высокая стоимость. Однако технологи обещают, что при массовом производстве подобных материалов они будут не дороже обычных красок, которые применяются для покрытия стен.

При испытаниях нанесенный обычным полимерным валиком полимер вскоре высох и показал, что струи краски из баллончиков практически не оставляют на нем никаких следов. Заодно выяснилось, что новое покрытие может быть эффективно использовано и в авиации, для повышения эффективности антиоблединительных систем: на его скользкой поверхности не удерживаются капельки тумана, дождя, а стало быть, резко снижается опасность образования ледовой корки.

Таким образом новое покрытие позволит сэкономить многие тонны весьма дорогого и вредного антифриза, которым авиаторы вынуждены пользоваться сегодня.

СОЗДАНО В РОССИИ
Магнитная летопись Земли

Впервые в мире российские ученые построят единую кривую изменений магнитного поля нашей планеты за последние 600 млн. лет. Таким образом появилась принципиальная возможность проследить изменения земного климата в течение столь продолжительного времени: колебания геомагнитного поля оказались тесно связаны с глобальными изменениями климата.



«Динамо» планеты

Знаете, почему наша Земля – магнит? Впервые люди задумались над этим вопросом много тысячелетий назад, когда поняли, в чем загадка компаса. Однако точного ответа нет и по сию пору. Зато гипотез хватает. Долгое время, к примеру, считали, что магнитное поле планеты создает огромный магнит, спрятанный глубоко в недрах.

Сегодня большинство специалистов склоняются к иной точке зрения: геомагнитное поле рождают электрические токи непосредственно в жидком ядре Земли. Каким образом? По расчетам ученых, здесь задействован сложнейший физический механизм, который очень напоминает самовозбуждающееся динамо. Так что, шутят они, надо называть Землю большой геодинамо-машиной.

Как бы то ни было, но магнитное поле простирается не только в глубь недр, но и в космос на 20–25 земных радиусов, укутывая планету словно бы гигантским одеялом. Именно геомагнитное поле – наш главный защитник от космического излучения.

Поле это вездесуще и в то же время весьма капризно: постоянно изменяются, или, как говорят специалисты, «возмущаются», его напряженность, направление, полярность. Одни метаморфозы длятся всего сутки, другие – тысячи и даже миллионы лет. В любом случае важно знать, почему и как это происходит, присутствуют ли тут определенная закономерность и цикличность? Как вообще связаны процессы в ядре, мантии и литосфере? Без этого нельзя не только восстановить эволюцию планеты в далеком прошлом, но и трудно предвидеть, что ждет ее в будущем.

Даже наше самочувствие во многом связано с геомагнитной обстановкой. Магнитное поле Земли «пульсирует» с частотой от 8 до 16 колебаний в секунду. Некоторые ученые высказывают предположение, что с влиянием такой пульсации связан основной ритм биопотенциалов головного мозга, так называемый альфа-ритм, имеющий ту же частоту.

Хаотически изменяющиеся колебания магнитного поля Земли могут, образно говоря, сбивать биологические процессы с толку. Нервная система здорового человека в состоянии с этим справиться, а вот у тех, кто послабее, возникают трудности. Причем головная боль и нарушение сердечного ритма – далеко не все неприятности, которые несут магнитные бури. Статистика свидетельствует: в «неблагоприятные» дни резко возрастает число автомобильных аварий, нарушается радиосвязь.


Свидетели прошлого

Главное слово в разработке теории развития геомагнитного поля принадлежит палеомагнитологам. В частности, авторам той самой работы, что выдвинута на Госпремию России за 2000 год и о которой пойдет речь дальше. Их восемь – пять докторов физико-математических наук и три кандидата. Но независимо от «остепененности» каждый уже оставил заметный след в науке.

«Наверное, не все знают, что горные породы изначально намагничены, – говорит руководитель авторского коллектива, профессор Галина Николаевна Петрова. – Более того, у них есть, оказывается, замечательное свойство «запоминать» магнитное поле тех далеких времен, когда эти породы образовывались. Но самое, пожалуй, удивительное в другом: тайны прошлого через ту же намагниченность помогают раскрыть и обожженные когда-то человеком глины – посуда, кирпичи. В «остаточной» намагниченности записано все, что происходило с магнитным полем Земли в течение миллиардов лет. Сумеем расшифровать эту запись – прочитаем историю самого магнитного поля, а значит, и тех оболочек, с которыми оно связано, то есть летопись самой планеты».


Полюса жизни

У геомагнитного поля много характеристик. В числе основных – изменение его напряженности. На языке специалистов – вариации. Ученые составили каталог всех известных археомагнитных определений, который послужил основой анализа мировых данных. Позже, получая новые данные, ученые уточнили спектр вариаций, и сейчас он представлен в виде набора колебаний с определенными периодами. Наиболее ярко выражены колебания в 1200, 1800 и 8000 лет.

Но временами поле ведет себя не только строптиво, но даже взбалмошно. Его полюс как бы срывается с места и уходит в другое полушарие, а потом возвращается обратно. Эти «скачки», а по-научному – экскурсы, настолько неожиданны, что английские ученые даже окрестили их «драматическими событиями».

Поначалу ученые за рубежом вообще не воспринимали экскурсы как проявление изменчивости магнитного поля, считали их «ошибкой метода». Потом полагали, что они дают о себе знать лишь в определенном регионе: если «взбрыкнуло» поле, скажем, в Африке, то в Азии – тишь да гладь. Все точки над «i» расставили наши ученые.

Ведущий научный сотрудник Г. А. Поспелова, изучив сотни научных «объектов» в возрасте от 12 тыс. до 2,5 млн. лет, убедительно доказала: «скачки»-экскурсы не только реально существуют, но и носят глобальный характер – то есть одновременно распространяются по поверхности всего земного шара. А вместе с ними «гуляет» и погода, изменяется климат.

Большие значения напряженности магнитного поля приводят к повышению влажности и похолоданию. Очень низкие – дают сушь и потепления…

А наиболее важную информацию несут в себе, пожалуй, инверсии магнитного поля Земли. Так называют специалисты смены его полярности. Их изучением занимается заведующий лабораторией палеомагнетизма Геологического института Г.З. Гурарий. Он составил модель поведения поля более чем для ста временных уровней и вычислил: напряженность поля может уменьшаться почти в 20 раз! А такие колебания, между прочим, весьма сильно сказываются не только на самочувствии, но и развитии живых организмов. И это проверено экспериментом.

В одном из опытов в две камеры поместили мышей, семена клевера и пшеницы. Одну из камер оставили как есть, а другую, чтобы уменьшить напряженность магнитного поля в сотни раз, окружили мощным металлическим экраном. Через несколько месяцев мышки, оставшиеся без «магнитной защиты», потеряли весь волосяной покров и умерли. Анализ показал, что их кожа стала намного толще и просто-напросто вытеснила корневые мешочки волос. Длина и толщина корней проросших растений тоже намного увеличились в ущерб «наземной» части. Так что живым тканям магнитное поле нужно как воздух.

Многие ученые считают, что именно к таким циклам приурочена смена животного и растительного мира: исчезновение одних видов и рождение других. Во время перемены полярности магнитное поле сильно ослабевает, возможно, даже исчезает. Тогда на Землю, не защищенную «броней», свободно проникает космическое излучение, влияющее на флору и фауну. Некоторые высказывают смелое предположение, что и человек своим появлением обязан смене полярности магнитных полюсов.


«Кирпичики» эволюции

С изменениями положения магнитных полюсов, как уже сказано, меняется и климат планеты. Скажем, в свое время орды Чингисхана спокойно прошли через всю Среднюю Азию потому, что там тогда и в помине не было песков. У нас на глазах Каспийское море обмелело настолько, что в него едва не собрались принудительно закачивать воду. (Теперь выясняется, что море вновь наполняется без посторонней помощи.) По мнению профессора Д.М.Печерского, такие перемены в прошлом происходили неоднократно и в будущем вряд ли наша планета успокоится. Ученые ныне построили сводные шкалы геомагнитной полярности, амплитуды, направления и напряженности магнитного поля. Рифей, палеозой, кайнозой, неогей… По «кирпичикам» сложили они картину единого глобального эволюционного процесса и этапов развития Земли. Но многие механизмы этого процесса еще предстоит раскрыть.

Наивно было бы полагать, что магнитное поле и климат меняются «тютелька в тютельку». На их взаимосвязь влияют еще какие-то причины, характер которых еще предстоит выяснить. И потому работы продолжаются.

Авторы теории изучили геомагнитные поля на обширной территории – от Закарпатья до Охотского моря, от Молдовы до Кавказа, от Русской равнины до Средней Азии, Восточной Сибири… Они углубились на миллионы лет назад. Работа проделана кропотливейшая.

Скажем, с помощью вариаций геомагнитного поля ученые изучили серию геологических разрезов в районе строящейся Крымской атомной электростанции. Важно было определить, были ли здесь «подвижки» в земной коре в последние несколько тысяч лет. Если были – АЭС там не место. Выяснилось – были. Теперь специалистам придется подумать о дополнительных мерах безопасности.

Так что ученые не только изучают прошлое. И не случайно работа «Геомагнитные циклы в истории Земли» сотрудников Объединенного института физики Земли имени О.Ю. Шмидта и их коллег из родственных научных организаций выдвинута на соискание Государственной премии 2000 года.

Е.АНДРЕЕВ

Художник Ю.САРАФАНОВ

КОЛЛЕКЦИЯ ЭРУДИТА

ХОЧЕШЬ ЗНАТЬ БОЛЬШЕ? СПИ ДОЛЬШЕ..

Сон учебе не помеха, утверждают американские ученью. С их точки зрения, он даже является необходимым условием успешного обучения. В частности, эксперименты показали, что главным условием хорошего усвоения новых знаний или навыков является ежедневный сон продолжительностью не менее 8 часов.

По мнению психиатра Роберта Стикгодца, проводившего исследования совместно с коллегами из Лаборатории нейропсихологии Массачусетского центра психического здоровья в Бостоне, 8-часовой рубеж имеет решающее значение потому, что вмещает две фазы сна. Первые 2 часа протекают в глубоком «медленном» сне, а последние 2 – приходятся на «быструю» фазу, или фазу сновидений.

Для хорошего усвоения полученной информации важны обе. В течение каждой из них в мозгу происходят физические и химические процессы. взаимосвязь между которыми, возможно, и является главным условием прочного запоминания новых навыков и сведений.

На протяжении первых 2 часов сна, считает Р. Стикголд, идет «переброс» информации из гиппокампа – своего рода «накопителя» – в кору мозга. Следующие 4 часа мозг распределяет новые данные по различным сетям и категориям, и параллельно идет медленный процесс синтеза белка, закрепляющего связи между нервными клетками, которые получили новую информацию. В последние же 2 часа химические процессы в мозге резко меняются. Кора переходит в активное состояние сновидений.

Гиппокамп фактически отключается. И мозг начинает «повторять» выученное, закрепляя образовавшиеся в «банках» памяти новые связи. Ночная же зубрежка перед экзаменом малоэффективна: информация, поступившая в мозг в дни, когда человек недосыпает, надолго в памяти не задержится. Уже через несколько дней все постигнутое за время бессонных бдений начнет потихоньку забываться.

ТКАНЬ ИЗ… ПРОБКИ

Кора пробкового дуба широко применяется для изготовления обуви на высокой платформе, в качестве наполнителя линолеума и изоляционных плит и, конечно же, как сырье для герметичной укупорки бутылок. Но теперь она готова превращаться в водонепроницаемую ткань, которую можно стирать при температуре в 30 градусов.

Автор нового изобретения, магическая формула которого держится в строгой тайне, – итальянский химик Анна Гринди. Она работает на острове Сардиния, где, кстати, хорошо налажено производство пробки. Именно благодаря ее открытию этот материал растительного происхождения теперь вторгается в швейную промышленность.

По словам А. Гринди, она лишь погрузила на несколько минут лист из тончайшего слоя пробки, завернутый в марлю, в раствор из природных соединений – и судьба ее изобретения была решена. Теперь пробку можно встретить на показах моды, в новых коллекциях обуви и сумок, даже в виде обоев.

Самое интересное, что находкой итальянского исследователя уже заинтересовались американцы и японцы. Они намерены использовать ее в аэрокосмической промышленности, поскольку новая пробковая ткань почти не пропускает тепло и холод.


    Ваша оценка произведения:

Популярные книги за неделю