355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2007 № 03 » Текст книги (страница 4)
Юный техник, 2007 № 03
  • Текст добавлен: 8 октября 2016, 16:46

Текст книги "Юный техник, 2007 № 03"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

КОЛЛЕКЦИЯ ЭРУДИТА
Ешьте яблоки и радуйтесь!


Говорят: хочешь похудеть – ешь яблоки.

Недавно справедливость этого утверждения решили проверить японские ученые. Эксперименты проводили специалисты компании «Асахи брюэрис». Группе людей давали до обеда по три яблока. И выяснили, что содержащееся в плодах вещество полифенол способствует сжиганию жиров. Более того, яблочная диета помогает детям исправить характер.

Дело в том, что так называемое плохое поведение – раздражительность и связанное с ним непослушание – часто связано с нарушением обмена веществ. Его-то и помогает наладить яблочная диета.

НАШ ДОМ
Не сверлом единым…



Мы как-то не очень замечаем, насколько часто нам приходится проделывать отверстия. Вот мастерица шьет одежду: игла в ее руках или в швейной машине скрепляет отдельные детали нитью, продевая ее в проделанные в ткани отверстия. Сапожники шьют обувь. А столяры и плотники не могут собрать стол или табуретку, покрыть крышу или навесить дверь, не проделав целого ряда отверстий.


Но как их делают? Кажется, проще всего продавить, пробить. Но игле, шилу, гвоздю, дыроколу поддаются лишь сравнительно мягкие и тонкие материалы. Желание пробить отверстие в каменной плите, скажем, молотком скорее всего приведет к тому, что вы пробьете неаккуратную дыру, а то и вообще расколете камень. А толстый металлический лист так и вовсе пробить не удастся. Придется его сверлить…

Между тем бурав и сверло, коловорот и дрель были придуманы далеко не сразу. А первые отверстия первобытные мастера не сверлили, а… скоблили.

Знаете, как, например, обойтись без сверла при изготовлении свистка из абрикосовой косточки? Надо с нажимом потереть косточку ребром о камень. Постепенно на косточке образуется все увеличивающаяся лыска. Наконец она вскрывается – оболочка косточки протирается насквозь и получается щелочка, продолговатое отверстие. Через него остается иголочкой по крупицам удалить зернышко, вот свисток и готов!

Этому способу проделывания отверстий, кстати, многие десятки, а то и сотни тысяч лет! Еще во времена палеолита тогдашние умельцы завели обычай, взяв в руки рубило, вращать его острие вправо-влево, пока в обрабатываемом предмете не появлялось сначала углубление, а потом и сквозное отверстие…

Впоследствии, во времена неолита, некоторые рубила трансформировались в каменные сверла. Поначалу отверстия ими продолжали выскабливать. Потом додумались каменное сверло привязать к древку, чтобы вращать его двумя руками. А отсюда оставался один шаг до изобретения лучкового сверла. Достаточно обмотать тетиву лука вокруг древка и двигать лук от себя и к себе, а другой рукой придерживать древко сверху. Такое лучковое сверление оказалось почти в 20 раз производительнее ручного.

К чести безвестных изобретателей, многие из них догадались, как можно просверлить даже камень, скажем, сверлами из бамбука или из трубчатых костей. И в южных краях, где рос бамбук, и в северных, где в основном использовали кости, практически одновременно придумали подсыпать в проделываемое отверстие песок, например кварцевый. Таким образом достигалась значительная экономия сил. Ведь до 70 процентов материала в зоне отверстия не разрушалось, а оставалось в виде каменных столбиков. Эффективность такого сверления с абразивными частичками и смазкой водой оказалась настолько высокой, что его с успехом применяли и в бронзовом веке.


За последние десятилетия основной инструмент для сверления – электрическая дрель – значительно усовершенствовался… Тем не менее совершенствование инструмента продолжается.

А североамериканские индейцы прославились тем, что придумали первый сверлильный станок с маховиком на оси и бечевкой, соединенной с планкой. Тяжелый маховик не только давил на сверло собственным весом, но и заставлял его вращаться, используя инерцию массы.

В Старом Свете до такого новшества не додумались и еще долго использовали лучковый способ сверления. Он, кстати, красочно описан Гомером в «Одиссее», написанной свыше 2500 лет тому назад. Когда путешественникам пришлось вступить в сражение с одноглазым Циклопом, то Одиссей придумал, как его ослепить. Он обжег в огне костра один конец кола и…

…Начал вертеть, как вертит буравом корабельный строитель. Толстую доску пронзая: другие же ему помогают, ремнями Острый бурав обращая, и, в доску вгрызаясь, визжит он.

Сверлить умели и в Древней Руси. Вот что пишут по этому поводу, например, исследователи технологий древности В.Д. Евдокимов и С.Н. Полевой. «Археологические находки и письменные источники, относящиеся к IX–XI векам, дают представление о двух видах сверл по дереву, – сообщают они. – Это спиральные сверла – бурав, сверель, которые имели правое, по часовой стрелке, рабочее вращение и достигали длины до 370 мм при диаметре от 6 до 21 мм. Были в обиходе мастеровых и перовидные сверла – напарья, похожие на ложку, которыми сверлили отверстия побольше диаметром»…

Кстати, технология изготовления таких сверл требовала высокого мастерства. Ведь винтовые канавки на буравах выбивались с помощью молотка и зубила с закругленным лезвием. А само металлическое острие бурава подвергалось закалке и заточке. Применялась и цементация, повышавшая твердость инструмента. Для этого бурав покрывали салом, обматывали полосками из козлиной кожи, затем обмазывали глиной и помещали в кузнечный горн. Держали в огне до сгорания кожи, а потом окунали в воду.

Спиральные бурава и перовидные напарья почти в неизменном виде продолжали применяться и в XVII–XVIII веках. И лишь в 1822 году появилось всем известное сверло с винтовыми канавками.


Сверлить отверстия научились еще в каменном веке с помощью бамбуковых палок, трубчатых костей, воды и песка ( а), вращая их между ладонями или с помощью лучковой дрели ( б).

Большие каменные сверла держали рукой ( в), а маленькие ( г) закрепляли в разрезе древка ( ж).

При трубчатом сверлении в центре образовывался каменный стержень ( д).

В случае сверления камня с двух сторон получалось отверстие с двумя конусами ( е).

Согласитесь, первобытные сверла разительно отличаются от сверл русских мастеровых IX–XI вв. ( з, и) и сверл-буравов XVII в. ( к).

И поныне сверло продолжает совершенствоваться. Ведь по существу основную работу выполняет лишь острие сверла, небольшой конический участок его, который называют режущей частью. А винтовые канавки нужны лишь для того, чтобы транспортировать из отверстия накапливающуюся стружку.

Да и здесь не все бывает гладко. Иначе для чего пришлось бы изобретать магнитное сверло? Между тем наш изобретатель А.Е Сегаль в свое время предложил пропускать сверло, как сердечник, через катушку с обмоткой. И когда на катушку подается ток, она становится электромагнитом, намагничивается и само сверло. И, выходя из отверстия, тянет за собой стружку. Особенно эффективным такое новшество оказалось при сверлении глухих, несквозных отверстий.

Еще одно новшество связано с эффектом термоэлектричества, открытым около двухсот лет назад немецким физиком Зеебеком. Суть его в данном случае сводится к следующему. Сверло и деталь, которую надо просверлить, как правило, состоят из разных материалов и при работе нагреваются от трения неодинаково. При этом в месте их контакта возникает термоЭДС, дополнительно разогревающая и размягчающая кончик сверла. И оно быстро тупится.

Тогда наш физик М.Т. Галей высказал мысль, что нужно по цепи сверло – деталь – станок пропустить ток противоположного направления, нежели тот, что возникает при эффекте Зеебека. Тем самым мы заменим один эффект другим, и на нас уже будет работать эффект Пельтье. Согласно ему под влиянием электрического тока будет происходить охлаждение места контакта, и стойкость сверла увеличится.

На основе этой идеи сотрудники Ростовского-на-Дону института сельскохозяйственного машиностроения А. Аваков и А.Рыжкин создали устройство, позволяющее с помощью батарейки от карманного фонарика увеличить стойкость сверл в 3–4 раза!

В заключение несколько советов для тех, кто выбирает сверла в магазине. Во-первых, надо точно себе представлять, для чего именно служит данное сверло. Если вы станете сверлить металл сверлом по дереву, ничего путного у вас не выйдет. Не стоит и сверлом по металлу буравить бетонную стенку – загубите инструмент.

Кроме того, старайтесь использовать в работе сверла зарекомендовавших себя фирм. Немецкие, шведские, российские сверла себя показывают неплохо. А вот китайский инструмент лучше не покупать.

Для строительных работ лучше всего использовать в работе электродрель, у которой есть вибрационный режим.

А. ПЕТРОВ

КОЛЛЕКЦИЯ «ЮТ»


Фирма Honda, известная своими мотоциклами и автомобилями, 8 декабре 2003 г. представила сверхлегкий реактивный самолет бизнес-класса. Для Honda Jetбыл разработан специальный турбореактивный двигатель, особый профиль крыла. Фюзеляж выполнен из углекомпозитных материалов с алюминиевыми усиливающими элементами, носовая часть сглажена.

Компания утверждает, что в результате сопротивление фюзеляжа снижено на 10 % по сравнению с обычными фюзеляжами того же размера, а в целом самолет потребляет на 40 % меньше горючего, чем машины того же класса, пролетая 3,3 километра на 1 килограмме топлива.


Техническая характеристика:

Длина… 12,71 м

Высота… 4,03 м

Размах крыльев… 12,15 м

Крейсерская скорость… 778 км/ч

Практический потолок… 12 500 м

Скорость набора высоты… 20,2 м/с

Максимальная дальность… 2185 км

Длина разбега при взлете… 950 м

Длина пробега при посадке… 760 м

Максимальная взлетная масса… 4,173 т

Количество мест… 5


Микроавтомобили марки Smart(в переводе «Умник») производства компании Smart GMBH, входящей в международный автопромышленный концерн Daimler-Chrysler, были представлены впервые на автосалоне во Франкфурте в 1997 г. Серийное производство ведется во французском городе Амбаш с 1998 г. Примечательно, что у истоков создания этого маленького автомобиля стояла швейцарская компания Swatch, специализирующаяся на производстве часов.

Автомобиль легок, экономичен и достаточно быстроходен. При этом он очень безопасен, так как кабина представляет собой капсулу особой конструкции, принимающую на себя энергию удара, а центр тяжести расположен так низко, что перевернуть машину трудно даже на самом крутом повороте.


Техническая характеристика:

Количество дверей… 3

Длина… 2,50 м

Ширина… 1,54 м

Высота… 1,55 м

Колесная база… 1,81 м

Объем двигателя… 698 см 3

Мощность двигателя… 75 л.с.

Снаряженная масса… 740 кг

Максимальная скорость… 150 км/ч

Время разгона до 100 км/ч… 12,3 с

Средний расход топлива на 100 км… 5,3 л

Объем топливного бака… 33 л

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Дифракция по Фраунгоферу

Казалось бы, свет распространяется прямолинейно. Но в действительности он способен огибать преграды. Это явление называется дифракцией. Проткните иголкой небольшое отверстие в листе черной бумаги. Подсветите его лампочкой карманного фонаря и рассмотрите с обратной стороны через увеличительное стекло. Вы увидите целую систему разноцветных концентрических колец. Вызваны они как раз отклонением света. Физика этого явления связана с волновой природой света и хорошо объяснена в учебниках. Мы же коснемся ее в общих чертах.

Чем больше длина волны, тем сильнее ее отклонение при дифракции. Слабо отклоняются синие лучи самой короткой длины волны, сильнее всего – длинноволновые красные.

Показать дифракцию при прохождении света через отверстие или щель с помощью проектора всему классу нелегко. На экран попадает лишь ничтожная часть света лампы. Концентрация света при помощи линз, повышение яркости лампы, применение электрической дуги помогают мало. Яркости хватает лишь для демонстрации в затемненном помещении. С лазером картина получается яркой, но одноцветной.

Есть, однако, путь, позволяющий получить на экране в сотни раз больше света даже при освещении лампой накаливания и позволяющий видеть спектр дифракции во всей красе. В 1821 г. немецкий оптик Иосиф Фраунгофер изобрел дифракционную решетку, состоявшую из множества одинаковых параллельных щелей (рис. 1).


Так же одинакова ширина всех щелей и расстояние между ними. Вот как эта решетка действует.

Обычный белый свет – это смесь световых лучей разных длин волн, а значит, и разного цвета. Проходя через щель, свет испытывает дифракцию, и составляющие его лучи перераспределяются. Так, синий луч отклоняется на один угол, зеленый и желтый – на другой, красный – на третий, самый большой. Очень важно, что эти отклонения в каждой из щелей одинаковы. (Происходит это потому, что каждая из них имеет одну и ту же ширину.) В результате мы имеем систему параллельных лучей разного цвета.

И тут И. Фраунгофер поставил на их пути собирающую линзу. А она имеет свойство собирать пучки параллельных световых лучей в одной точке. Но точки эти разные. Синие лучи собираются в одном месте, желто-зеленые в другом, красные – в третьем. В результате на экране возникает точно такая же по своей природе система разноцветных полос (спектр), как при прохождении света через щель. Но яркость этих полос в сотни раз выше, чем у отдельной щели. Наибольшая часть света сосредоточена в центре дифракционной картины.

Таким же способом можно показать дифракционную картину на отверстии. Делают рисунок, состоящий из множества круглых одинаковых точек. Его фотографируют и получают негатив из множества отверстий на темном фоне. Каждое отверстие дает свою дифракционную картину, а все они складываются на экране в яркую картину при помощи линзы.

Изобретение И.Фраунгофера нашло применение в спектральном анализе. Вот что это такое.

Любой химический элемент при сильном нагревании переходит в газообразное состояние и светится одним, только ему присущим, светом. Убедиться в этом легко. Бросьте в бесцветное пламя газовой горелки щепотку поваренной соли, и оно вспыхнет желтым. А если внести в него медный купорос, пламя станет зеленым. Но если такой свет пропустить через призму, он распадется на множество разноцветных полос. Каждая из них представляет собою свет строго определенной длины волны. Они образуют как бы штрих-код каждого элемента. Если в пламени присутствует только один элемент, то распознать его по этому «штрих-коду» достаточно легко. Но когда анализируют смесь элементов, то в некоторых случаях спектральные полосы оказываются слишком близко друг к другу, и распознать элементы не удается.

В таких случаях свет пропускают через несколько призм, но возможности этого метода ограничены. Если же свет пропустить через дифракционную решетку, то расстояния между спектральными линиями получаются гораздо шире. На этом и основаны спектроскопы – приборы, позволяющие распознавать смеси множества элементов. Так, например, впервые удалось определить химический состав Солнца и звезд.

Дифракционная решетка позволяет разделить на спектральные составляющие не только свет, но и невидимые – ультрафиолетовое и инфракрасное – излучения. В этих случаях их регистрируют при помощи фотопластинок.

В 1895 году немецкий физик Вильгельм Конрад Рентген открыл странное невидимое излучение. При прохождении через вещество оно почти не преломлялось и не разлагалось на составные части, проходя через дифракционную решетку. Поэтому сначала полагали, что оно не имеет волновой природы. Однако, по мере развития квантовой механики, удалось понять природу возникновения этих лучей, получивших имя рентгеновских. Возникла уверенность в том, что они все же имеют волновую природу, только длина волны у них в сто тысяч раз короче, чем у световых.

Ширина щели самой совершенной дифракционной решетки, применяемой в оптике, была сравнима с длиной световой волны и составляла 0,001 мм. Если действительно длина волны рентгеновских лучей столь мала, то такая щель влияет на них не более, чем десятиметровые ворота на проходящий через них свет! Вот если бы удалось сделать решетку с шириной щели хотя бы в сотни раз меньше, чем у существующих, то удалось бы обнаружить дифракцию и измерить длину волны рентгеновских лучей. Техника таких возможностей не имела. Но нельзя ли такую решетку найти в природе?

Немецкий физик Макс фон Лауэ в 1912 г. поставил такой опыт. При помощи двух свинцовых диафрагм с крохотными отверстиями он получил узкий пучок рентгеновских лучей, пропустил его через кристалл каменной соли и получил на фотопластинке четкую картину дифракции (рис. 2).


Рис. 2

Объяснялось это легко.

Кристалл представляет собой собрание атомов, расположенных в пространстве в виде правильной решетки. Эти слои работали как дифракционная решетка с шириной около 3х10 -10м. Так удалось измерить длину рентгеновских лучей. На дифракционной картине, которую давали кристаллы, кроме параллельных полос, получались и системы кругов. Это было результатом дифракции на атомах, сидящих в узлах кристаллической решетки. Здесь, хоть линза не применялась, сохранялся тот же эффект, что и в опытах Фраунгофера – дифракционные картины отдельных атомов складывались.

На этом явлении был создан рентгеноструктурный анализ вещества. Он позволяет раскрыть положение в пространстве атомов кристалла или молекулы. Этим способом, кстати, открыли структуру ДНК.

Но вернемся к началу и разберемся, чем плох для изучения спектров дифракции проектор.

Современное телевидение и фотография, казалось бы, достигли в области передачи цвета огромного совершенства. Но знаете ли вы, что все дело в обмане зрения?

Действительно, смешивая желтую и синюю краски, мы видим зеленый цвет. Тот же результат можно получить, направив на экран синие и желтые лучи. Реально же зеленого цвета ни на экране, ни на бумаге нет. Он нам лишь кажется. Это легко определить с помощью спектроскопа.

А вот еще одно доказательство ложности цвета на картинах и фотографиях. Бросьте щепотку соли в пламя газовой горелки и сфотографируйте желтую вспышку пламени. Она прекрасно получится на цветной фотографии. Но наведите на нее спектроскоп. Линии натрия в изображении этого пламени вы не найдете. Поэтому, глядя на экран с изображением спектров, полученных при помощи проектора, следует четко понимать, что перед нами всего лишь картина, вызывающая ощущение спектральных цветов, хотя многих этих цветов на экране нет. Правда, так бывает не всегда.

Известен метод фотографии, позволяющий регистрировать цвет не с точностью до ощущения, а с точностью до длины волны. Но это тема отдельного разговора.


А. ИЛЬИН

Рисунки автора

ПОЛИГОН
На крыльях летучей мыши


Автомобиль, способный уверенно лететь и так же уверенно двигаться по дороге, пытались построить множество раз. Сделаем такую попытку и мы. Тем более что построить модель летающего автомобиля гораздо проще, чем полноразмерную машину.

Самое сложное здесь – крылья. Они занимают много места и могут мешать движению по дороге.

Не станем выдумывать что-то особенное. Известны крылья, складывающиеся легко и просто, словно веер. На заставке вы видите мотодельтаплан, созданный в КБ имени Антонова в начале 1980-х годов. Как сообщали тогда газеты, тележка этого аппарата была снабжена управляемым колесом и могла за счет тяги винта двигаться по земле со сложенным крылом.

С тех пор в развитии крыла дельтаплана сделаны значительные успехи. Возросло, например, его аэродинамическое качество – отношение подъемной силы к сопротивлению. Сегодня оно достигает 10 и более.

Кроме того, крыло легко складывается и совсем не много весит. Все это говорит в пользу летающего автомобиля с крылом дельтаплана (рис. 1).


Представим себе мотодельтаплан с крылом, оснащенным механизмом для быстрого складывания, закрытой кабиной и приводом на колеса с независимой подвеской. Необходимость соединения двигателя такого аппарата то с винтом, то с колесами задача довольно трудная. Попробуем решить ее на уровне XXI века. Двигатель вращает электрогенератор, а от него работают электродвигатели, вмонтированные в каждое колесо. Тогда наш аэромобиль становится полноприводным вездеходом, сможет быстро и устойчиво двигаться по шоссе и даже по бездорожью.

Но есть еще одна стихия, движение по которой не менее трудно, чем по болотистой местности. Это улицы, с их пробками и частыми остановками и стартами, приводящими к огромному расходу топлива. С выбранной схемой решается и эта проблема. Поставим между генератором и моторами молекулярный конденсатор. Тогда основной двигатель сможет работать на малой мощности в самом экономичном режиме, постоянно заряжая этот конденсатор. При необходимости быстрого разгона после остановки на светофоре моторы колес возьмут из него добавочную электроэнергию. Расчеты, проделанные автомобилистами, показывают, что при такой схеме автомобиль при езде по городу будет расходовать 3–5 л бензина на 100 км.

Схема с конденсатором полезна и для автомобиля летающего, поскольку ему важен как можно более короткий пробег на взлете. Для этого необходимо максимально поднять мощность двигателя на взлете. Вспомним, что электрогенератор легко обращается в двигатель, стоит лишь подать напряжение от конденсатора на его клеммы. И тогда его мощность добавится к мощности двигателя, вращающего винт, что, несомненно, должно уменьшить длину разбега.

На модели можно это сделать иначе, подключая при разбеге двигатели колес к конденсатору и работающему на максимальной мощности генератору. Крыло модели (рис. 2) имеет два лонжерона, выгнутых из дюралюминиевой трубки диаметром 10 мм. На них надета обшивка из плотной, но легкой ткани.


Рис. 2

В заднюю кромку обшивки крыла вставлена сложенная вдвое стальная авиамодельная корда. Ее натяжение регулируется специальными винтами по концам лонжерона. Профиль крыла создает единственная нервюра из стальной проволоки диаметром 3 мм. В средней части крыла корда закреплена на штифте, установленном в поперечной балке. Лонжероны, нервюра и поперечная балка соединяются в один узел при помощи кусочка дерева с отверстиями и закреплены на клею. Все остальные элементы конструкции выполнены из дюралюминиевых трубок диаметром 6 мм. Крыло получается очень легким и настолько жестким, что ему не требуются расчалки.

Крыло подобной конструкции, но с мощными лонжеронами обтекаемого профиля можно применить и на «настоящем» аэромобиле. В узлах соединения лонжеронов с нервюрой и корпусом можно поставить замки и шарниры, которые позволят разворачивать и складывать крыло в считаные минуты. Но вернемся к модели.

При весе около 1 кг для нее подойдет двигатель мощностью 200 Вт. Можно применить электродвигатель МУ-50 с питанием от источника постоянного тока 36 В. Время работы его в таком режиме не должно превышать 2–3 минут, что для пробных полетов достаточно. На первых порах лучше применить электромотор с подачей электроэнергии по проводам.


Авион Адера, самолет со складными крыльями летучей мыши (1890 г.).

Для привода колес возьмите агрегаты от старой модели танка, соединенные с задними колесами при помощи пассиков. Переднее колесо сделано свободным, поворотным, самоустанавливающимся. При такой схеме управление автомобилем можно производить так же, как у танка и трактора, изменяя скорость и направление вращения моторов задних колес.

Степень сложности модели зависит от намерений. На ней можно проработать общий дизайн аэромобиля. Корпус ее можно выклеить на болванке из стеклоткани или из бумаги. Это гораздо проще. Бумажная «скорлупка» должна быть отшпаклевана и покрашена нитроэмалью.

Если у вас появилось желание строить полноразмерный аэромобиль, то учтите, что описанная модель поможет нам продемонстрировать лишь отдельные моменты ее взлета и посадки, но ничего не скажет о ее устойчивости в свободном полете. Вообще степень схожести модели летательного аппарата с оригиналом зависит от отношения длины модели к ее скорости, выражаемой так называемым числом Рейнольдса. Более подробно о связи между моделью и оригиналом вы можете узнать из книги В. Костенко, Ю. Столярова «Мир моделей», Москва, 1989 г.


    Ваша оценка произведения:

Популярные книги за неделю