412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Яков Перельман » Циолковский. Жизнь и технические идеи » Текст книги (страница 6)
Циолковский. Жизнь и технические идеи
  • Текст добавлен: 26 июня 2025, 02:01

Текст книги "Циолковский. Жизнь и технические идеи"


Автор книги: Яков Перельман



сообщить о нарушении

Текущая страница: 6 (всего у книги 9 страниц)

«Исполнение венчает дело»

Мы уже рассказывали, какая трагическая участь постигла замечательные изобретения Циолковского в царской России: не было и проблеска надежды на то, что металлический дирижабль его системы когда-нибудь получит осуществление.

Положение круто изменилось с приходом к власти революционного пролетариата, особенно с того времени, как советская промышленность окрепла.

Благодаря поддержке Осоавиахима, Циолковский мог изготовить в 1931 г. довольно крупную, в 11,3 метра длиной, модель оболочки своего дирижабля.

Дальнейшее развертывание работ по постройке воздушного корабля перешло в комбинат Дирижаблестроя в Москве, который образовал в своем составе особое конструкторское бюро по сооружению воздушного корабля Циолковского. Осенью 1935 г. это бюро, по сообщению начальника Дирижаблестроя, «успешно разрешило ряд сложнейших технических проблем конструирования и производства этого корабля. Для проверки работ строится модель корабля в 1000 куб. метров, которая позволит окончательно уточнить методы производства. После этого будет заложен корабль средней кубатуры по полной схеме Циолковского».

Циолковский, как мы уже упоминали, не ограничивался составлением подробного проекта своего воздушного корабля, но разработал и весь технологический процесс его осуществления[17]17
  Отметим между прочим, что некоторые из указанных Циолковским приемов работ получили применение в других областях техники. Так, например, придуманный им оригинальный способ гофрировки металла применяется при обтяжке цельнометаллических самолетов.


[Закрыть]
, заботясь о том, чтобы постепенностью в освоении последовательных стадий избавить строителей от дорого стоящих ошибок и неудач. Намеченный Дирижаблестроем порядок работ отвечает плану, предусмотренному Циолковским еще в 1930 г. и сводящемуся вкратце к следующему:

1. Построение пропорциональных моделей дирижабля, не летающих и не изменяющих объема, длиною до 1,8 метров.

2. Построение моделей, не летающих, но слегка изменяющих объем, длиною до 6 метров.

3. Модели нелетающих оболочек, способные складываться в плоскость, т. е. совершенно опоражниваться, длиною до 16 метров.

4. Устройство всех деталей дирижабля в натуральную величину.

(Первые три стадии и отчасти четвертая были уже пройдены в момент составления этого плана).

5. Заготовка машин-орудий для быстрого и дешевого изготовления деталей.

6. Верфи для изготовления гондол и оболочек.

7. Летающие оболочки, длиною до 18 метров.

8. Модель дирижабля несколько бòльших размеров, с гондолой, без людей.

9. Дирижабль упрощенной конструкции, длиною до 30 м, поднимающий до 5 человек.

10. Дирижабли лучшего устройства, длиною до 75 метров на 15 человек.

11. «Практические дирижабли, тем более совершенные и доходные, чем размеры их больше. Полное оборудование. Высота от 15 до 50 метров, длина от 90 до 300 метров, величина – до размеров океанского парохода. Несут от 17 до 1000 человек».

В августе 1935 г., незадолго до смерти, Циолковский в газете ЦАГИ, в номере, посвященном дню авиации[18]18
  С 1933 по 1940 год День Воздушного Флота Союза ССР (день авиации) отмечался 18 августа. – прим. Гриня


[Закрыть]
, так оценил состояние работ по осуществлению своего проекта:

«Группа Циолковского в Дирижаблестрое давно уже работает над цельнометаллическими дирижаблями. В настоящее время сооружают дирижабль в 1000 куб. метров. Но это игрушка, не имеющая транспортного значения по своей малой кубатуре. Нужно дойти до сотен тысяч кубометров, чтобы получить серьезные результаты. Необходим размер, не меньший цеппелиновского. Пока же совершаемые работы в высшей степени важны, как подготовка и учеба. Результатов транспортного характера от них можно ждать только по мере развертывания этого дела».

Согласно сообщению начальника конструкторского бюро по проектированию и построению дирижабля Циолковского (октябрь 1935 г.), длина оболочки, имеющей объем 1000 куб. метров, – 45 метров. Изготовляется она из листов нержавеющей стали в 0,1 миллиметра толщиною, соединяемых электросваркой. Если оболочка удовлетворит поставленным техническим требованиям, будет приступлено к изготовлению летающего дирижабля средней величины.


Последней мыслью Циолковского в области управляемого воздухоплавания было соединение ряда воздушных кораблей его системы в один поезд дирижаблей. В своей статье на эту тему он писал:

«Представим себе ряд связанных между собою (тросами) одинаковых или неодинаковых воздушных управляемых кораблей.

Самостоятельная скорость каждого из них пусть будет тем меньше, чем дальше отстоит дирижабль от главного переднего. Тогда задний будет тянуть второй, этот – третий, третий – четвертый и т. д., вплоть до главного. Такой системе трудно колебаться и изменять наклон продольной оси. Эта система будет устойчива даже при слабом оперении. Разумеется, разность между скоростями дирижаблей должна быть ничтожной, и дирижабли могут быть разных размеров. Размеры могут постепенно уменьшаться от переднего к заднему. Для устойчивости оси мы можем даже ограничиться одним или двумя небольшими задними дирижаблями.

Каковы еще преимущества такого поезда, помимо достижения горизонтальности оси и сопряженных с этим выгод безопасности и большой скорости поступательного движения?

Выгоды эти следующие:

1) взаимная поддержка и помощь в случае всякого рода аварий;

2) некоторое уменьшение сопротивления среды вследствие увлечения ее общим ходом многих дирижаблей.

Действие же пропеллеров не ослабится в виду их значительного расстояния.

Может быть, со временем найдут возможность сливать все дирижабли в один общий очень удлиненный воздушный гигант, который и будет двигаться с поражающей скоростью».


РАКЕТА

«Невозможное сегодня станет возможным завтра».

ЦИОЛКОВСКИЙ

Овладение ракетой

амое удивительное, смелое и оригинальное создание творческого ума Циолковского – его идеи в области ракетоплавания. Здесь он не имеет предшественников и надолго опережает своих зарубежных единомышленников. Ему довелось дожить до дней, когда заветная мысль о покорении надатмосферных высот, об управляемом летании в мировом пространстве перестала считаться несбыточной грезой и сделалась проблемой, интересующей техническую мысль современников. В Советском Союзе, как и в некоторых других странах, деятельно трудятся над разработкой идеи, впервые высказанной Циолковским, и всюду работа идет по путям, им намеченным.

Циолковский ракеты не изобрел, как ошибочно думают иные, но обосновал возможность ее применения. Ракетой пользовались за столетия до Циолковского; она давно находила себе не только увеселительное, но и военное применение. Мысль об использовании ее в транспортных целях, в воздухоплавании, также не нова; общеизвестно, что проект летательной машины, составленный знаменитым революционером Николаем Кибальчичем за несколько дней до казни, основан именно на принципе ракеты.

Поясним, что мы хотим этим сказать. До Циолковского пользовались ракетой, так сказать, вслепую; самая причина ее полета мало кем правильно понималась. Никакой теории ракетного движения не существовало; довольствовались внешним знакомством с свойствами ракеты, не давая себе отчета в тех законах механики, которые управляют ее движением. Циолковский первый в мире разработал научную теорию ракеты, глубоко проник в ее сущность и сковал математическими формулами ее полет.

«Мысль о применении реактивных (т. е. ракетных) приборов к движению в небесном пространстве едва ли новость, – писал мне Циолковский, – но оригинальные и точные расчеты о применении их к высоким целям, а также многие строго научные соображения и выводы принадлежат только мне, по крайней мере, я ни у кого их не заимствовал».

Более того: Циолковский предуказал для ракеты путь дальнейшей эволюции; на десятилетия вперед были им намечены те изменения, которые должна ракета претерпеть, чтобы увеличить свою мощь и сделаться способной к разрешению заманчивых задач, невыполнимых никакими другими техническими средствами.

Мы поймем, почему именно на ракету возлагается Циолковским задача разрешения проблемы покорения заатмосферных пространств, если внимательно разберемся в причине полета зажженной ракеты. Остановимся же немного на обыкновенной фейерверочной ракете, вникнем в то, как она устроена и как летит.


Механика ракетного полета

«Долго на ракету я смотрел, как все: с точки зрения увеселений и маленьких применений», – сознается Циолковский. Привычность ракеты, ее декоративное применение для украшения вечерних гуляний в садах и парках являются, вероятно, причиной того, что над этой старинной игрушкой никто глубоко не задумывался. На вопрос: почему зажженная ракета взлетает вверх? – у большинства готов ответ: ракета летит потому, что отталкивается от воздуха струей вырывающихся из нее пороховых газов. Мало кому известно, что это старинное объяснение, которое уподобляет летящую ракету рыбе, отталкивающейся от воды своим хвостом, совершенно неправильно. Ракета при полете в воздухе вовсе не опирается об этот воздух; она взлетела бы и в безвоздушном пространстве. Это знал еще Кибальчич, но не знает огромное большинство людей, даже знакомых с физикой. Опыты, произведенные в 1918 г. американским ученым проф. Годдардом, доказали, что в пустоте зажженная ракета должна развить даже бòльшую скорость, нежели в воздухе, который своим сопротивлением замедляет всякое быстрое движение. (Не приходится опасаться, что заряд ракеты в пустоте вообще гореть не будет: порох заключает кислород в своем составе и не нуждается для горения в притоке кислорода извне.)

Но обратимся к устройству пороховой ракеты.

Слово «ракета» – итальянское и означает «трубка»; ракета – трубка, набитая порохом. В картонную трубку плотно набивают порох так, что при поджигании с одного конца, масса заряда не загорается вся сразу, а горит постепенно. С одного конца трубка закрыта, с другого оставляется открытой; здесь делается лишь сужение просвета трубки. Против отверстия трубки вдавливается в плотной массе пороха продольная полость, так называемое «пролетное пространство». Ракету зажигают с помощью шнура, введенного через отверстие. Пороховая масса загорается, и ракета стремительно летит закрытым концом вперед.

Почему? Истинная причина взлета зажженной ракеты такова: в трубке ее скопляются при горении пороха газообразные продукты сгорания. Сжатые с тесном объеме, они давят во все стороны – в бока, вверх, вниз. Боковые давления не могут двигать ракеты; они взаимно уравновешиваются, но напор вверх не уравновешивается напором вниз, так как стенка имеет внизу отверстие; напор на нее, следовательно, меньше (часть газов свободно вырывается наружу). Давление вверх превозмогает, и избыток напора увлекает ракету в сторону закрытого конца.

Отсюда ясно, что ракета движется напором не того газа, который из нее вытекает, и не того, который находится под ней, а того газа, который заключается внутри ее самой. Вот почему ракета способна к управляемому полету за пределами атмосферы, и вот почему на ракетные аппараты возлагается задача завоевания безвоздушного мирового пространства.

Аэроплан, дирижабль так или иначе опираются о воздух; вне атмосферы они не только не могут управляться, но даже держаться. Ракетный корабль, т. е. огромная ракета с каютой для людей, – единственный аппарат, который сможет, управляясь, двигаться в безвоздушном пространстве.

У ракеты есть и еще одна важная особенность, также имеющая решающее значение в рассматриваемой проблеме. Вынестись за границы атмосферы мог бы со временем, пожалуй, и пушечный снаряд; родоначальник научной фантастики, Жюль Верн, произведения которого и послужили толчком для Циолковского[19]19
  «Стремление к космическим путешествиям заложено во мне известным фантазером Жюль Верном. Он пробудил работу мозга в этом направлении. Явились желания. За желаниями возникла деятельность ума. Конечно, она ни к чему бы не повела, если бы не встретила помощь со стороны науки». Так начинает Циолковский заключительный выпуск своего «Исследования мировых пространств реактивными приборами» (1925 г.).


[Закрыть]
, мечтал о полете на Луну внутри снаряда исполинской пушки. Но если бы пушка и могла когда-нибудь закинуть снаряд на Луну, в нем не уцелели бы люди; они неминуемо погибли бы в момент выстрела, так как человеческий организм не может перенести подобного сотрясения. Человеку внутри снаряда, – это сознавал еще и Жюль Верн, – грозит при выстреле совершенно такая же опасность, как если бы он находился у жерла пушки, направленной в него в упор. Резкий переход от состояния покоя к быстрому движению (а для вылета в мировое пространство нужна огромная скорость) есть лишь иное обозначение того, что мы называем сотрясением.

Совершенно другие условия будем мы иметь в ракетном корабле. Он летит не менее быстро, чем пушечное ядро, но огромная его скорость накопляется постепенно: переход от покоя к стремительному движению совершается плавно, не угрожая жизни пассажиров.

Заслуга Циолковского состоит, как уже было сказано, не в том лишь, что он указал на ракету, как на орудие будущего заатмосферного транспорта, но и в том, что он разработал теорию ракетного движения, установив математически зависимость между скоростью ракеты и другими факторами. Для полетов вне атмосферы чрезвычайно важно развить достаточную скорость движения[20]20
  Почему – будет объяснено несколько далее.


[Закрыть]
. Циолковский доказал, что ракета может получить любую, сколь угодно большую скорость, если в ней сгорит достаточное количество горючих веществ: чем больше сгорит топлива и чем бóльшую скорость имеет струя вытекающих продуктов, тем значительнее окажется скорость ракеты по окончании горения. Точная зависимость между этими тремя величинами – количеством потребленного горючего, скоростью вытекания газов и скоростью самой ракеты, выраженная математически, впервые установлена была Циолковским и является основанием теории реактивного движения. Это «уравнение ракеты» часто называется теперь уравнением или формулой Циолковского.

В настоящей книге было бы неуместно углубляться в математические соотношения; интересующиеся могут найти их в другом сочинении того же автора «Межпланетные путешествия». Попытаемся здесь лишь помочь читателю ощутить своеобразный характер зависимости, о которой идет речь, причем воспользуемся отрывком из недавно опубликованной статьи Циолковского[21]21
  «Труды о космической ракете» (1927 г.); рукопись хранится у Я. И. Перельмана.


[Закрыть]
:

«Вообразим для простоты вывода, что тяжесть отсутствует. Обозначим массу ракеты без взрывчатых веществ через 1. Пусть и количество взрывчатых веществ такое же. Равные массы взаимно отталкиваются и приобретают равные скорости. Значит, если скорость вытекания продуктов взрывания, скажем 5 километров в секунду, то и ракета приобретает секундную скорость в 5 километров. Если ракета возьмет с собою 3 части взрывчатых веществ на 1 часть собственного веса, то скорость ее, как легко показать, должна удвоиться. Действительно, выбрасывая сначала 2 части горючего, мы остальной части ракеты (равной массы сообщим скорость в 5 километров. Выбрасывая затем имеющуюся у нас еще 1 часть горючего, сообщим ракете (равной массы) добавочную скорость в 5 километров, т. е. в конечном итоге 10 километров в секунду. Вообще, если будем брать последовательно запасы горючего:

1, 3, 7, 15, 31 часть,

то окончательные скорости ракеты будут

5, 10, 15, 20, 25 км.

Но числа первой строки есть последовательные степени числа 2, уменьшенные на 1:

1=2-1
2=22-1
7=23-1
15=24-1
31=25-1

Становится ясно, что

с возрастанием относительного количества взрывчатых веществ в геометрической прогрессии (приблизительно) скорость ракеты растет в прогрессии арифметической».

Это так называемая «четвертая теорема Циолковского».


За новую ракету

Создав теорию ракеты, Циолковский, верный своему правилу: «знать – чтобы улучшать», указал путь ее коренного переустройства. Ракета для усиления своей мощности, учил Циолковский, должна порвать вековую связь свою с порохом и получить иное энергетическое вооружение. В древнее тело ракеты надо влить свежую кровь. Взамен опасного, легко взрывающегося пороха, новая ракета должна получить высококалорийное промышленное горючее. Это не только сообщит ракете бóльшую безопасность, но и даст ей возможность выполнять задачи, недостижимые для ракеты пороховой: накоплять бóльшие скорости, покрывать в полете бóльшие расстояния, брать бóльшие высоты, переносить бóльшие грузы.

Распространенное убеждение, будто порох развивает при сгорании огромные количества энергии, совершенно ошибочно. По заложенному в нем запасу энергии порох в ряду горючих веществ занимает последнее место, далеко позади бензина, керосина, нефти, спирта. В технике огнестрельного оружия порох ценится вовсе не благодаря своей высокой энергоёмкости, а из-за способности быстро, почти мгновенно сгорать. В огнестрельном оружии такое быстрое сгорание заряда, сосредоточение подаваемой энергии на небольшом промежутке времени, играет решающую роль. Ради этого и приходится предпочитать порох всем другим, гораздо более энергоёмким видам горючего. Но если бы керосин или спирт сгорали столь же быстро, как порох, артиллеристы, не колеблясь, стали бы заряжать пушки керосином или спиртом.

В отличие от огнестрельного оружия, ракета совершенно не нуждается в быстром сгорании ее заряда: окончательная скорость, приобретаемая ею после сгорания заряда, не зависит от того, происходило ли горение быстро или медленно. Одно из положений, установленных Циолковским, так называемая вторая его теорема, гласит:

«окончательная скорость (ракеты) не зависит от времени и порядка взрывания. Происходит ли оно равномерно или нет, длится ли секунды или тысячелетия – это все равно. Даже перерывы ничего не значат».

Скажем больше: в ракете, предназначаемой для транспорта, чрезмерная быстрота сгорания есть именно то, чего следует избегать. Ракета только тогда сможет выполнять возлагаемые на нее новые технические задачи транспортного характера, когда огромная ее окончательная скорость будет возникать не сразу, в результате мгновенного взрыва, а станет накопляться с плавной постепенностью в результате медленного сгорания. Слишком стремительный темп нарастания скорости создал бы для конструкции ракеты и находящихся внутри приборов такие напряжения, которые угрожали бы их целости, а в организме пассажиров породили бы нарушения, опасные для жизни.

Вот почему Циолковский поставил вопрос о необходимости создать новый тип ракеты, в которой порох заменен был бы жидким горючим и жидким окислителем. Ракета должна быть снабжена зарядом, горящим без взрыва и дающим при сгорании значительно больше энергии, нежели порох. Первоначально Циолковский предлагал в качестве заряда для новой ракеты сжиженный водород и сжиженный кислород; при горении водорода в кислороде развивается огромное количество теплоты, и образующийся водяной пар с весьма большой скоростью вырывается из трубы (сопла) ракеты. Впоследствии, когда выяснилось, что жидкий водород чрезвычайно легок – в 14 раз легче воды – и что, следовательно, для хранения его понадобятся чересчур объемистые вместилища, Циолковский отказался от водорода и заменил его другими, более плотными горючими жидкостями. Ракеты с жидким зарядом принято теперь называть «жидкостными».

Прежде чем перейти к дальнейшему изложению, уместно будет разъяснить один пункт, вызывающий нередко недоумение. Почему нужна для межпланетного полета огромная скорость в 11 километров в секунду? Ведь притяжение Земли уменьшает скорость взлета ежесекундно всего лишь на 10 метров в секунду. Казалось бы, достаточно поэтому сообщить звездолету скорость чуть побольше 10 метров в секунду, и ракетный корабль удалится от Земли навсегда.

Такие возражения высказывали Циолковскому иные читатели его книг, недостаточно знакомые с физикой. Мысль эта совершенно ошибочна. Верно то, что в первую секунду ракета-звездолет, брошенная ввысь, потеряет из своей секундной скорости только 10 метров. Но не надо забывать, что в течение второй секунды полета она потеряет еще 10 метров секундной скорости, в третью секунду – новые 10 метров и т. д. Если бы звездолет отправился в путь, имея даже начальную скорость в 1000 метров в секунду, то уже через 100-секунд вся эта скорость была бы без остатка израсходована на борьбу с тяжестью: менее чем через две минуты от начала полета такой звездолет начал бы неудержимо падать на Землю. Нетрудно вычислить по формулам элементарной механики, что при полном отсутствии воздушного сопротивления звездолет, покинувший Землю с указанной начальной скоростью, поднялся бы только до высоты 50 километров.

Как видим, даже скорость ружейной пули слишком недостаточна для совершения подлинно космического рейса. Звездолету нужна значительно бóльшая скорость – согласно расчету, не ниже 11 километров в секунду. Тогда он достигнет высот, где начинает заметно сказываться ослабление земного притяжения; секундное убывание скорости будет становиться все незначительнее; ракета успешнее будет бороться с замедляющим действием земного притяжения и долетит (при полете на Луну, например) до той границы, за которой притяжение Луны берет верх над земным. Дальнейшее движение звездолета будет уже не чем иным, как падением на Луну.



    Ваша оценка произведения:

Популярные книги за неделю