Текст книги "Капля"
Автор книги: Яков Гегузин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 2 (всего у книги 9 страниц)
Куда же эта энергия денется, на что она способна, что может произойти после того, как капле эта энергия в качестве поверхностной станет не нужна? Какие процессы могут сыграть роль «стоков» выделившейся энергии? Очевидно, некоторая часть энергии должна будет израсходоваться на то, чтобы осуществить перемещение вещества капли, в результате которого капля станет сферической. Дело в том, что жидкость, из которой капля состоит, обладает некоторой вязкостью, и поэтому всякое изменение формы капли связано с необходимостью преодолеть сопротивление вязкой жидкости ее деформированию, т. е. с необходимостью совершить некоторую работу против сил трения. Кроме того, часть освободившейся энергии может израсходоваться на нагрев капли. Можно ожидать, что, приобретая сферическую форму, капля будет сама себя подогревать. Кроме того, может нагреваться и пространство, окружающее каплю. В этом случае сфероидизирующаяся капля будет играть роль своеобразной печки, отапливающей пространство вокруг себя.
Кроме названных «стоков» для избыточной энергии можно указать еще один – в основном о нем далее и будет разговор. Если приплюснутая несферическая капелька лежит на твердой пластинке и если почему-либо она должна преобразовать свою форму из несферической в сферическую, можно ожидать, что в момент преобразования она оттолкнется от пласт ин ки и подскочит вверх, как может подскочить каждый из нас, оттолкнувшись от земли. Для совершения такого скачка капля, естественно, нуждается в энергии, которая может быть частью энергии, выделившейся при сокращении поверхности капли.
Как видите, стоков энергии много, и, очевидно, все «работающие», но скорость их действия и «поглощательная способность», конечно же, различны. Совершенно ясно, что капля не подпрыгнет, если изменение ее формы будет происходить медленно. В этом случае принципиально возможный расход энергии на скачок не произойдет. И на борьбу с сопротивлением жидкости изменению ее формы тоже будет расходоваться мало энергии, потому что этот расход, как оказывается, тем больше, чем быстрее должно произойти изменение формы. При медленной сфероидизации капли выделяющаяся энергия была бы израсходована в основном на ее нагрев и нагрев окружающего пространства. Увидеть, как капля подпрыгнет, можно лишь при условии, что преобразование ее формы будет происходить быстро. Если, присев на корточки, мы будем медленно распрямляться, прыжок не получится: чтобы подпрыгнуть, надо, быстро распрямляясь, оттолкнуться от земли. Но что значит «быстро» применительно к капле, которая изменяет свою форму? Капле, чтобы подпрыгнуть, надо побороть силу тяжести, препятствующую прыжку.
На каплю в момент ее прыжка действуют две силы.
Итак, возникает задача, которую можно сформулировать следующим образом. Допустим, что вся энергия, которая выделяется в процессе сфероидизации капли, должна быть израсходована только на ее подпрыгивание. Пусть другие стоки энергии каким-то образом запрещены. Спрашивается, при какой длительности процесса преобразования формы капли в сферическую капля оторвется от твердой пластинки, на которой она лежит? Решить такую задачу просто. Это могут сделать восьмиклассники в начале учебного года, узнав, что кинетическая энергия тела равна половине произведения его массы на квадрат скоро-
При такой оценке времени кажется, что надежда наблюдать подпрыгивающую каплю становится иллюзорной. Но, если каплю на подложке перевести в состояние невесомости или близкое к нему, произойдет то, к чему мы стремимся: потеряв вес, капля приобретает сферическую форму и на нее перестает действовать сила тяжести, мешающая оторваться от пластинки, на которой она лежит. В состоянии невесомости величина g, которая стоит в зна менателе последней формулы, обращается в нуль, а это значит, что т становится равным бесконечности, и капля подскочит даже при сколь угодно медленном преобразовании ее формы. При малейшем изменении формы она оторвется от пластинки и с некоторой скоростью начнет двигаться от нее. Ситуация совершенно аналогична той, в которую попадают космонавты во время полета, когда им приходится специально заботиться, чтобы случайное движение не вынудило их покинуть рабочее место.
Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх
Вот теперь можно рассказать о великолепном эксперименте, который в 1970 г. поставили советские физики И. М. Кирко, Е. П. Добычин и В. И. Попов. Их эксперимент состоял в следующем. Тяжелый контейнер, в котором располагались прозрачный сосуд с двадцатиграммовой каплей ртути, залитой раствором соляной кислоты, и автоматически работающая кинокамера, сбрасывался с высоты 20 м. Во время свободного полета, длившегося 2 сек., все содержимое контейнера было практически в состоянии невесомости. Кинокамера зафиксировала происходящее в полете: ртутная лепешка, превращаясь в сферу, подпрыгнула и полетела прочь от дна прозрачной кюветы со скоростью 8,7 см/сек. Это главное наблюдение, сделанное камерой. Проверим, как оно согласуется с величиной энергии, которая должна выделиться при сфероидизации капли. Именно для этой проверки в начале очерка была названа энергия, которая выделяется при сфероидизации ртутной капли весом 20 г. Получив скорость 8,7 см/сек., она унесет с собой энергию Wk = mν 2 /2= 752 эрг,
т. е. большую часть всей выделяющейся энергии. Не использованными при прыжке остались 1060 – 752 = 308 эрг. Как показала кинокамера, основная часть этой энергии была израсходована на преодоление сопротивления вязкой ртути ее деформированию – движущаяся капля пульсировала, колебалась, и на это расходовалась энергия.
При опытах обнаружился еще один сток энергии – на этот раз энергии движущейся капли. Когда капля подходила к границе соляная кислота – воздух, граница изгибалась и отражала от себя каплю, заставляя ее двигаться в обратном направлении. Часть энергии капли расходовалась на изгиб границы. Ртутная капля, подобно мячику, металась между дном кюветы и границей между соляной кислотой и воздухом. Именно поэтому свою статью, опубликованную в «Докладах АН СССР» (1970, т. 192, № 2), экспериментаторы назвали не совсем академично, но точно и выразительно: «Явление капиллярной игры в мяч в условиях невесомости».
Возникает естественный вопрос: почему этот опыт, в основе своей «классический», постановка которого не предполагает использования каких-либо новых «квантовых» идей, не был осуществлен, скажем, 150 лет назад? Неужели потому, что тогда не было автоматических кинокамер? Но мог же какой-нибудь энтузиаст-естествоиспытатель, держа в руках перед глазами прозрачную кювету с ртутной лепешкой, покрытой соляной кислотой, прыгнуть «солдатиком» в воду с десятиметровой вышки! Вынырнул бы и сообщил, что капля подпрыгнула. И скорость мог бы ее определить по зарубкам на кювете. А вот не прыгнул. Видимо, не было интереса к тому, что может произойти в невесомости. А сейчас, в наш век, интерес к невесомости огромный. Вот и пришла в голову мысль сбросить с высоты контейнер с ртутной каплей и автоматической кинокамерой.
Фильм о слиянии двух капель
Этому фильму предшествовала 26-летняя история. Ее начало восходит к 1944 году, а фильм был снят в 1970-м. Прежде чем всмотреться в кадры фильма, пожалуй, стоит проследить этапы этой истории. Началась она в Казани. Я. И. Френкель был в этом городе в эвакуации и работал над развитием теории жидкости и твердого тела. Он обдумывал вопрос, который и до него возникал перед многими: каким образом твердые, скажем металлические, порошинки, которые соприкасаются лишь в отдельных точках, после длительного отжига при высокой температуре оказываются прочно соединенными, приблизившимися друг к другу,– вопрос, рожденный необходимостью понять физику процессов, которые происходят при спекании спрессованных порошков, процессов, лежащих в основе порошковой металлургии.
Ученый последовательно развивал мысль: в строении твердых и жидких тел много общих черт и процесс плавления не бог весть какое революционное событие в жизни вещества, так как плотность при этом изменяется незначительно, незначительно меняется и расстояние между атомами, а следовательно, и силы, связывающие их. При плавлении катастрофически уменьшается вязкость вещества – жидкость течет даже при малых воздействиях на нее, а твердое тело при таких воздействиях зримо остается неизменным, сохраняя свою форму. В действительности, однако, и оно течет, но это происходит во много раз медленнее, чем в жидкости.
Такое различие свойств жидкости и твердого тела Френкель считал не принципиальным, а только количественным. В кругу этих идей у него и появился ответ на вопрос о том, каким образом твердые порошинки при высокой температуре самопроизвольно сближаются и соединяются в одно целое. Они просто сливаются, подобно тому как сливаются две соприкоснувшиеся жидкие капли. Такое слияние и в случае твердых крупинок, и в случае жидких капель оправданно и выгодно потому, что сопровождается уменьшением поверхности порошинок – капель. Вот, пожалуй, основная идея: порошинки сливаются, и этот процесс приводит к выигрышу энергии. Теперь нужен расчет скорости процесса слияния капель или крупинок. Он завершится формулой, затем эту формулу следует вручить экспериментатору, который выступит третейским судьей между теоретиком и явлением.
Профессор Френкель как-то писал о том, что хороший теоретик обычно рисует не точный портрет явления, а карикатуру на него. Это значит, что подобно карикатуристу, он отбрасывает не очень существенные детали явления и оставляет лишь наиболее характерные его особенности. Талантливый карикатурист нарисует несколько завитков на лбу, кончики пальцев, держащих сигару, узел галстука – и все уже знают, кого он изобразил. Перед физиком-теоретиком почти та же задача. Реальное явление, как правило, очень сложно и описать его абсолютно точно чаще всего просто немыслимо. И Френкель, великолепный теоретик, нарисовал «карикатуру» процесса: вместо реальных крупинок произвольной формы он примыслил две сферические крупинки, вместо реального контакта по какой-то сложной поверхности – контакт в одной точке. И еще одно упрощение он вынужден был сделать: решил описать лишь начальную стадию процесса, когда на образование контактного перешейка между двумя каплями расходуется так мало вещества, что радиусы сливающихся капель можно считать практически не– изменившимися. Он считал, что на этой стадии слияние сферических капель происходит под действием сил, которые приложены только к вогнутым участкам поверхности формирующегося перешейка, движутся только эти участки поверхности, а вся прочая поверхность сфер в процессе участия не принимает.
Теоретик сделал главное: предложил идею и определил условия, в которых проявляются наиболее существенные черты явления. После этого формула появилась без особого труда. Оказалось, что площадь круга, по которому соприкасаются сферические капли, равномерно увеличивается со временем: время увеличилось вдвое и площадь – вдвое, время – втрое и площадь – втрое.
Неизвестно, заботился ли Френкель лишь об удобствах теоретика, определяя черты «карикатуры», или думал и об экспериментаторе, но модель сливающихся сферических капель была экспериментаторами охотно взята «на вооружение». Они припекали друг к другу маленькие стеклянные бусинки, нагретые до высокой температуры. Подчеркнем слово «маленькие» – сферические бусинки имели диаметр не более долей миллиметра. С бусинками более крупными экспериментировать нельзя, так как они будут деформироваться под влиянием собственной тяжести, а этого модель Френкеля не предусматривает. Специально не подчеркивая этого, Френкель предполагал, что капли подвержены лишь силам, которые обусловлены наличием поверхностного натяжения, т. е. находятся в невесдмости.
Опыт ставился следующим образом: соприкасающиеся бусинки выдерживались при высокой температуре некоторое время, затем охлаждались. На охлажденных бусинках измерялась ширина контактного перешейка, а потом все повторялось сначала: нагревались, выдерживались, охлаждались, измерялись. В каждом таком цикле добывалась одна экспериментальная точка. По 5—10 точкам строилась зависимость; квадрата ширины контактного перешейка (эта величина пропорциональна площади контакта) от времени. Экспериментальные точки не совсем точно укладывались на прямую, но в общем, как и предсказывает формула Френкеля, прямая получалась.
Итак, как будто круг замкнулся. Экспериментатор подтвердил правоту теоретика, узнал в «карикатуре» истинную натуру. И все же, может быть, он увидел не все? Возможно, согласие теории и эксперимента иллюзорно, оно .не точное, а, как говорят, «в общих чертах»? Теоретику, определившему задачу, те допущения, которые он делает, решая ее, «карикатура» простительна, а от экспериментатора можно потребовать подлинную фотографию с деталями,. которые не обязательны в карикатуре.
Опыты с микроскопическими бусинками – не лучшим образом поставленные опыты. Во-первых, бусинки малы, и поэтому некоторое изменение их формы в процессе взаимного слияния обнаружить непросто. Во-вторых, они не абсолютно сферические. В-третьих, пусть не много, но сила тяжести все же искажает форму бусинок, размягченных температурой. В-четвертых, 5—10 точек, рассеянных вокруг прямой,– не стопроцентная гарантия выполнимости предсказаний теоретика.
Теперь уместно перейти к фильму о слиянии двух капель. Он назван «Слияние вязких сфер в невесомости». Чтобы избавиться от перечисленных упреков в неточности, опыт, который должен был быть заснят на кинопленку, мы поставили так.
Два одинаковых по весу бесформенных кусочка вязкого вещества, допустим смолы, следует поместить в жидкость, плотность которой в точности совпадает с плотностью смолы. Вскоре, если температура жидкости достаточна, бесформенные кусочки превратятся в идеальные сферы, как это было в опыте Плато. В этом случае не следует бояться, что сила тяжести исказит форму сфер, поскольку они находятся в невесомости. Это дает экспериментатору возможность изучать не микроскопические бусинки, а крупные сферы. Снимая этот фильм, мы экспериментировали со сферами диаметром 5 см. Разобщенные сферы . приводились в контакт, и все происходящее с ними снималось кинокамерой. Две пятисантиметровые сферы сливались в одну приблизительно за 1 мин. Так как скорость съемки 24 кадра в секунду, то весь процесс оказывался запечатленным на огромном количестве кадров – более тысячи. Для игрового фильма это число кадров ничтожно, а для экспериментатора 1000 кадров – это 1000 экспериментальных точек! По этим точкам можно построить надежную кривую, отражающую зависимость изучаемой характеристики от времени.
Слияние капель эпоксидной смолы в невесомости
Наблюдая за слиянием сфер в невесомости с помощью кинокамеры, можно получить истинный «портрет» явления и оценить интуицию и зоркость теоретика.
Кадры фильма свидетельствуют о том, что в основном Френкель был прав, но только в основном. Действительно, быстрее иных участков поверхности движется вогнутая область контактного перешейка, но движется не только она. Оказывается, что, стремясь поскорее слиться, сферы меняют свою форму и рядом с перешейком. Поэтому центры сфер сближаются быстрее, чем это следует из расчетов Френкеля. Поэтому и площадь контакта со временем изменяется по очень сложному закону, а закон, выведенный Френкелем, проглядывает сквозь последовательность огромного числа точек лишь как нечто усредненное, справедливое приближенно. На киноленте, кроме того, были запечатлены и более далекие стадии слияния сферических капель, которые описать с помощью формул чрезвычайно трудно. Начинает перемещаться вещество во всем объеме сферы, в каждой точке с разной скоростью и в разных направлениях, и оказывается практически невозможным усмотреть черты, пригодные для создания похожей «карикатуры».
Бот уже четверть века идея Френкеля определяет деятельность всех тех, кто занимается изучением процесса спекания. Кинокамера не отменила исследование 26-летней давности, а лишь указала на детали, от которых освободила сложное явление интуиция теоретика.
Статья Эйнштейна о лорде Кельвине
В конце 1924 года в немецком журнале «Naturwissenschaften» появилась статья Эйнштейна «К столетию со дня рождения лорда Кельвина». Эйнштейн счел своим долгом почтить память лорда Кельвина-Томсона – выдающегося английского физика прошлого века. Статья начинается с характеристики Кельвина – «...один из наиболее сильных и плодотворных мыслителей XIX столетия...», «...основатель теоретической школы, из которой вышел гениальный теоретик нового времени К .Максвелл...», «...одаренный богатой фантазией, редким умением применять математический аппарат и проникновенным умом...», «.. .не многие ученые были столь же плодотворны». А затем – о конкретных заслугах и достижениях. «Наиболее существенный вклад Томсона в развитие физики – это основание термодинамики...»; «В возрасте 23 лет он вводит одно из фундаментальнейших понятий современной физики – абсолютную температуру...»; «Обилие результатов... в области учения о теплоте, гидродинамики, учения об электричестве, навигации, физической географии и измерительной техники...»
Схема опыта Кельвина, в котором с помощью капель получено высокое напряжение
В мемориальной статье Эйнштейн стремится принести дань глубокого уважения блестящему ученому и решает не писать о всей деятельности Кельвина, а показать четкость его исследовательской мысли на нескольких примерах, которые в свое время Эйнштейна особенно восхитили. Из множества работ Кельвина он выбрал те, которые имеют касательство к каплям, вернее, из трех работ Кельвина, особенно поразивших Эйнштейна, две оказались о каплях. О них и рассказ.
В первой работе предлагается идея генератора высокого напряжения, в котором главным работающим элементом являются капли. Вместо пересказа принципа работы генератора я приведу цитату из статьи Эйнштейна.
«Из заземленной водонаполненной трубки [см. рисунок] вытекают две струи, которые внутри пустотелых изолированных металлических цилиндров С и С' разбиваются на капли. Эти капли падают в изолированные подставки А и А' со вставленными воронками. С соединен проводником с А', а С' с А. Если С заряжен положительно, то образующиеся внутри С капли заряжаются отрицательно и отдают свой заряд А , заряжая тем самым С' отрицательно. Из-за отрицательного заряда С' образующиеся внутри него водяные капли получают положительный заряд и разряжаются в А', увеличивая его положительный заряд. Заряды С , А' и С', А возрастают до тех пор, пока изоляция препятствует проскакиванию искры».
Идея Кельвина изумительна по простоте и очевидности, и мы в своей лаборатории решили воплотить ее в реальных каплях и металлических бездонных цилиндрах и стаканах. Все, что изображено на рисунке, мы разместили под стеклянным колпаком, оградив от различных внешних воздействий, а от цилиндров С и С' вывели из колпака проводники и присоединили их к двум одинаковым металлическим шарикам диаметром 1 см. Шарики укрепили на специальной подставке, и расстояние между ними сделали неизменным – 1 мм. Затем, открыв зажимы, дали возможность каплям падать и начали наблюдать: подсчитывали число упавших капель и следили, когда между шарами проскочит искра.
В тот момент, когда проскочила искра, между шариками была разность потенциалов 3000 вольт! Никто в наши дни не пользуется капельным методом, чтобы создавать высокие напряжения,– существуют способы помощнее... И все же нельзя не понять Эйнштейна, который был восхищен кельвиновской идеей.
В мемориальной статье Эйнштейн рассказал еще об одной идее Кельвина, имеющей прямое отношение к капле. Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широкое блюдце. В поисках ответа па этот вопрос Кельвин рассуждал так. Допустим, что в сосуд с жидкостью погружена тонкая трубка, внутренний радиус которой R . Если жидкость не смачивает материал, из которого сделана трубка, то ее уровень в трубке расположится ниже, чем в широком сосуде, в который налита жидкость. Произойдет это по причине очевидной: в связи с тем что жидкость не смачивает стенок трубки, поверхность жидкости в ней будет выпуклой, полусферической, именно поэтому к жидкости будет приложено давление, направленное внутрь, то самое лапласовское давление, с которым мы уже встречались, обсуждая опыт Плато. Под влиянием этого давлений уровень жидкости в трубке опустится ровно настолько, чтобы давление из– sa разности уровней жидкости в трубке и вне ее в точности равнялось лапласовскому. Его ве личину мы знаем: Р л = 2 α / R Разность уровней h обусловит давление Р = ρ gh . Буквами обозначены следующие величины: α – поверхностное натяжение жидкости, ρ – ее плотность, g – ускорение силы тяжести. Приравняв два эти давления, мы убедимся, что разница уровней h = 2α/ ρ gR .
Таков результат первого этапа рассуждений Кельвина.
К расчету влияния кривизны поверхности жидкости на давление пара над ней
Второй этап – естественное продолжение первого. Над всей поверхностью жидкости – и той, которая в трубке, и той, которая в широком сосуде,– имеется пар этой жидкости, однако не везде давление, оказываемое им на жидкость, одинаково: несколько большим оно будет над поверхностью жидкости в трубке, так как слой пара над ней толще на величину h . Очевидно, дополнительное давление этого слоя равно Δ Р = ρ 0 gh, где ρ 0 – плотность газа, которая много меньше плотности жидкости. Величину h мы знаем – она была найдена на первом этапе рассуждений – и, следовательно, можем определить величину Δ Р. Она очень важна, и поэтому формулу, которая определяет эту величину, мы вынесем на отдельную строку:
По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».
Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жидкости капилляр и т. д. А пришел к закону природы огромной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуждался. Разве что только R – радиус тонкой трубочки. Но ведь трубочка, как оказалось, нужна была только для
того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.
Вспомним о капле – она вся ограничена изогнутой поверхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельвина: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов – далее мы с ними еще встретимся, а здесь, вместе с Эйнштейном, восхитимся талантом Кельвина – его проницательным умом и великолепной логикой.
Капля пустоты
Много лет подряд вместе с моим покойным учителем Борисом Яковлевичем Пинесом мы занимались изучением пористых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты – поре в кристалле. А сейчас, к сожалению, спросить уже некого и остается лишь строить догадки, сопоставляя факты и отрывки случайных разговоров.
Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыслить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рождения образа капли пустоты можно проследить, как вяжется логическое кружево мысли ученого, где сосуществуют и конкурируют фантазия и строгая формальная логика.
Борис Яковлевич не очень был склонен к аналогиям, упрощенным моделям, картинам, иллюстрирующим мысль. Он часто повторял, что картина – образование двумерное и, следовательно, неглубокое. Аналогия может появиться позже, а вначале должна быть формула, численная оценка. И еще, посмеиваясь, он любил говорить о том, что иных формулы гипнотизируют, поскольку формула – это математика, а математика, как известно, наука точная. Это преувеличенное почтение к формулам обычно испытывают люди, которые никогда не создавали их и поэтому не чувствуют ни их слабостей, ни таящихся в них возможностей.
Первая работа Бориса Яковлевича, посвященная изучению поведения пор в кристаллах (она появилась еще в 1946 году), начинается с анализа давно известной формулы лорда Кельвина, которая устанавливает связь между давлением пара вблизи изогнутой поверхности капли ( Р R ), ее радиусом ( R ) и давлением пара вблизи плоской поверхности жидкости, из которой капля состоит ( Р0 ). Вот эта формула:
В нее входят величины поверхностного натяжения ( α ), объема, приходящегося на один атом в жидкости ( ω ), температуры ( Т ) и некоторая постоянная величина к , так называемая постоянная Больцмана.
Легко заметить, что в формуле Кельвина нет ничего специфически «жидкого» и ее можно применять и к твердым закристаллизовавшимся каплям. Надо только при этом помнить, что поверхностное натяжение зависит от ориентации кристаллографических плоскостей, охраняющих застывшую каплю. Но это деталь, а в главном формула применима к твердым кристаллическим каплям. Из формулы следует, что, чем меньше капля, т. е. чем меньше ее радиус, тем на большую величину давление пара вблизи ее поверхности превосходит давление пара вблизи плоской поверхности вещества, из которого капля состоит.
Понять это легко. Ведь что означают слова «упругость пара больше» или «упругость пара меньше»? Они означают, что при прочих равных условиях в газе вблизи поверхности будет большая или меньшая концентрация атомов вещества капли. Атом, который расположен на искривленной поверхности капли, имеет меньшее число соседей, чем тот, который расположен на плоской. В случае предельно маленькой капли, состоящей из одного атома, этот атом и находился бы па «поверхности» в единственном числе, вообще не имея соседей. Капля из одного атома, конечно же, никакая не капля, но эта условность помогает почувствовать тенденцию: чем меньше капля, тем меньше соседей у атома, сидящего на ее поверхности. А меньше соседей – меньше связей, удерживающих атом на поверхности, меньше связей – легче оторваться, легче оторваться – большее число атомов это совершит, и следовательно, большая их концентрация будет в газе вблизи поверхности. Именно это строго и описывает формула.
Борис Яковлевич прочел эту формулу по-своему, неожиданно и формально очень строго. Он обратил внимание на то, что она примечательна не только теми величинами, которые входят в нее, но и теми, которые в ней отсутствуют. Из величин, характеризующих вещество капли, в формулу входят лишь поверхностная энергия и объем, приходящийся на один атом. Масса атома не входит. Формально это означает, рассуждал он, что формула годится для вещества с любой массой атома, от бесконечной до равной нулю. Бесконечная масса – это по ту сторону разумного, а вот о «веществе» с нулевой массой «атома» можно говорить вполне серьезно, не забывая, однако, о кавычках. Таким «веществом» является пустота.
Несколько странное соседство слов «вещество» и «пустота». В действительности имеется в виду не «вещество», а отсутствие вещества. Например, в узле кристаллической решетки нет атома, которому следовало бы в этом узле быть. Этот свободный от атома узел можно назвать «атомом пустоты», а физики его иногда называют «вакансией». Очевидно, скопление большого количества «атомов пустоты» должно образовать «каплю пустоты», т. е. пору. Все это по аналогии с реальными атомами и реальным веществом: скопление большого количества, скажем, атомов железа, образует каплю железа. Разумеется, при температуре более высокой, чем температура плавления железа.
Итак, пустой узел в кристаллической решетке – «атом пустоты», пора в кристалле – «капля пустоты», и они должны подчиняться формуле, которая впервые была написана более 100 лет назад и применительно к «капле пустоты» впервые прочтена Борисом Яковлевичем Пинесом.
Теперь о следствиях нового прочтения формулы. И не о всех, а о самом главном, ради которого стоило пристально всмотреться в старую формулу и заново ее прочесть.
Перенос жидкости из капли в блюдце
Капля пустоты (пора) испаряется в кристалл. Вблизи поры много вакансий (зачерненные кружки), вдали – мало
Вот опыт, который демонстрируют на школьных уроках физики или рассказывают о нем. Небольшой стеклянный колпак (перевернутый стакан) установлен на стекле. Под колпаком блюдечко с водой и рядом на предметном стеклышке капли воды. Эти капли надо поместить на стеклышко после того, как пространство под колпаком насытится водяным паром, который образуется над плоской поверхностью воды в блюдце. Через некоторое время капли исчезнут – они испарятся, а возникшие при этом в водяном паре молекулы воды сконденсируются на поверхности воды в блюдце.
Итак, в начале опыта под колпаком было три объекта: вода в блюдце, вода в каплях и насыщенный водяной пар. Опыт окончился, когда один из объектов исчез – капель не стало. Здесь все ясно: согласно формуле, давление пара над изогнутой поверхностью водяной капли больше, чем над плоской поверхностью воды в блюдце, и пар под влиянием этой разности давлений двигался по направлению к блюдцу – уходил оттуда, где его давление больше, и приходил туда, где его давление меньше. Чтобы вблизи своей поверхности поддерживать давление, предписываемое ей формулой, капля должна все время испаряться. Она это добросовестно делала и в конце концов исчезла.
А теперь тот же опыт только не с каплями и атомами реальной жидкости, а с «каплями» и «атомами» пустоты. Вместо колпака с блюдцем и каплей – монокристалл. Он огранен плоскими поверхностями и в объеме имеет одну пору сферической формы. Вблизи изогнутой поверхности поры (капля!) концентрация вакансий повышена, а вблизи плоской поверхности, которая отделяет кристалл от окружающего пространства (вода в блюдце!), концентрация вакансий нормальная, не повышена. Очевидно, появится поток вакансий от поры к поверхности кристалла, и, подобно капле воды, пора исчезнет – «испарится в кристалл». Образовавшийся при этом в кристалле избыток вакансий со временем сгладится – вакансии либо поглотятся внутренними стоками, либо с помощью диффузии переместятся к внешней поверхности кристалла.