Текст книги "Как постепенно дошли люди до настоящей арифметики с таблицей"
Автор книги: Всеволод Беллюстин
Жанр:
Публицистика
сообщить о нарушении
Текущая страница: 5 (всего у книги 15 страниц)
Число и порядокъ дѣйствій, знаки и опредѣленія
На вопросъ, сколько ариѳметическихъ дѣйствій, теперь всякій, даже недоучившійся въ школѣ, можетъ отвѣтить, что ихъ—четыре: сложеніе, вычитаніе, умноженіе и дѣленіе. Но не всегда было такъ; прежде дѣйствій насчитывали больше: 5, 6, 7, и даже 9. Откуда же ихъ столько брали? Очевидно, изъ того же источника, т.-е. изъ ариѳметики, но съ раздѣленіемъ и дополненіемъ. Во-первыхъ, нумерацію принимали за особое дѣйствіе и такимъ образомъ насчитывали 5. Во-вторыхъ, долгое время у большинства писателей выдѣлялись еще въ особыя правила удвоеніе и раздвоеніе. Выходитъ дѣйствій семь. Къ нимъ иногда присоединяли возвышеніе чиселъ въ степень и извлеченіе корня, и получалось 9.
Происходила эта путаница отъ того, что авторы никакъ не могли согласиться, что разумѣть подъ дѣйствіемъ. Мы разумѣемъ подъ нимъ составленіе новаго числа по даннымъ числамъ и потому не считаемъ нумерацію за дѣйствіе.
Удвоеніе числа и дѣленіе пополамъ изстари, съ глубокой древности, еще со временъ египтянъ, считалось не видомъ умноженія и дѣленія, а особымъ дѣйствіемъ. Впрочемъ, отъ египтянъ его переняли не столько римляне, сколько арабы. Поэтому въ борьбѣ новой арабской ариѳметики со старой римской, когда въ XIII–XIV вв. столкнулись латинская схоластика съ индусской математикой, удвоеніе и раздвоеніе стояли на знамени новой науки и усиленно рекомендовались въ качествѣ очень полезной и важной мѣры для лучшаго усвоенія дѣйствій. Ученый англичанинъ Сакро-Боско, жившій въ XIII столѣтіи, рекомендовалъ начинать дѣленіе пополамъ справа, т.-е. съ низшихъ разрядовъ, подобно сложенію и вычитанію, а удвоеніе—слѣва, съ высшихъ разрядовъ, какъ это дѣлалъ онъ и въ умноженіи вообще и въ дѣленіи. Сейчасъ намъ совершенно непонятно, какія такія удобства могли бы представиться, если бы начинать дѣленіе справа, а умноженіе слѣва; мы, по крайней мѣрѣ, стали бы производить эти дѣйствія совершенно наоборотъ. Навѣрное, такія же причины заставили и средневѣковыхъ математиковъ поглубже вдуматься, есть ли, дѣйствительно, польза отъ того, чтобы удвоеніе и раздвоеніе отличать отъ простого умноженія и дѣленія; пришлось сознаться, что это только частные случаи главныхъ дѣйствій; первый, кто авторитетно заявилъ объ этомъ, былъ итальянецъ Лука Пачіоло (1500 г.). Онъ перешелъ къ нашему обыкновенному способу дѣленія.
Возвышеніе чиселъ въ квадратъ и кубъ и извлеченіе корней считалось необходимой принадлежностью ариѳметики почти до самаго послѣдняго времени. Эти два правила помѣщались въ ариѳметикѣ до 50-хъ и даже 60-хъ годовъ истекшаго[6]6
19-го, очевидно, т. к. книга писалась в 1906, то истекшее столетие – 19. Примечание авт. док.
[Закрыть] столѣтія. Теперь ихъ пропускаютъ, потому что, чтобы ихъ выяснить толково, надо знать алгебру, и, слѣд., лучшее имъ мѣсто въ алгебрѣ.
Арабскій математикъ Аль-Ховаризми (въ IX в. по Р. X.), въ честь котораго и вся система арабской ариѳметики получила названіе алгоритма, не считалъ нумерацію за дѣйствіе и принималъ только слѣдующія шѣсть: сложеніе, вычитаніе, дѣленіе пополамъ, удвоеніе, умноженіе и дѣленіе. Послѣдовательность дѣйствій у него, какъ видимъ, очень оригинальная, хотя ей нельзя отказать въ большой долѣ цѣлесобразности, въ смыслѣ перехода отъ легкаго къ болѣе трудному. Когда удвоеніе и раздвоеніе были оставлены, то многіе математики начали послѣ сложенія проходить прямо умноженіе, а потомъ ужъ вычитаніе съ дѣленіемъ. И они поступали въ этомъ случаѣ основательно, потому что умноженіе опирается на сложеніе, а дѣленіе можетъ приводиться къ повторительному вычитанію дѣлителя изъ дѣлимаго.
Въ только что минувшемъ XIX столѣтіи нѣкоторые нѣмецкіе педагоги придумали изъ одного дѣленія образовать 2 дѣйствія, именно, во-первыхъ, когда требуется раздѣлить число на нѣсколько равныхъ частей, и, во-вторыхъ, когда надо узнать, сколько разъ одно число содержится въ другомъ. Такое раздѣленіе надо признать излишнимъ, тутъ вовсе нѣтъ 2-хъ различныхъ дѣйствій, а есть только два вида одного дѣйствія, при чемъ въ первомъ видѣ отыскивается множимое по произведенію и множителю, а во второмъ – множитель по произведенію и множимому. Отдѣльные знаки для этихъ 2-хъ видовъ мы также полагали бы лишними: дѣлимъ ли мы, наприм., на пятерыхъ или дѣлимъ на пятки, и тутъ, и тамъ все дѣлимъ, поэтому и можно удовольствоваться однимъ знакомъ.
Поговоримъ теперь о знакахъ ариѳметичесвихъ дѣйствій и прежде всего отмѣтимъ, что потребность въ знакахъ начала чувствоваться такъ же давно, какъ и потребность въ цифрахъ. Какъ цифрами первоначально служили наглядныя фигуры и буквы алфавита, такъ и знаки образовались изъ чертежей и тоже буквъ. Еще древніе египтяне употребляли при сложеніи нѣчто въ родѣ нашего плюса. У грековъ знакомъ сложенія являлась косая черта, при вычитаніи писалась кавычка, и знакомъ равенства служила дуга (см. приложеніе 11-е въ концѣ книги). Позднѣе (въ IV в. по Р. X.) Діофантъ Александрійскій, знаменитый греческій геометръ; ввелъ вмѣсто знака равенства букву і, начальную букву слова «ισοι», что значитъ «равны». Арабы вовсе не употребляли знака сложенія въ томъ случаѣ, когда количества писались рядомъ, потому что, дѣйствительно, здѣсь можно подразумѣвать сложеніе само собой. Знакъ вычитанія у нихъ писался въ видѣ цѣлаго слова, которое, въ переводѣ на русскій языкъ, значитъ «безъ». Вычитаемое арабы ставили налѣво, а уменьшаемое– направо, потому что они, подобно всѣмъ семитическимъ народамъ, располагали слова отъ правой руки къ лѣвой, а не отъ лѣвой къ правой, какъ мы. Знакомъ равенства у нихъ было S; это есть послѣдняя буква слова «равняется». Нашъ настоящій знакъ равенства введенъ въ алгебру Робертомъ Рекордомъ въ 1556 году. Косой крестъ при умноженіи окончательно предложенъ Уттредомъ въ 1631 году. Но и до него этотъ знакъ употреблялся очень чагсто и считался очень удобнымъ, потому что онъ указывалъ не только дѣйствіе, но и порядокъ дѣйствія. Именно, старинный употребительный способъ умноженія былъ способъ «крестика», въ такомъ родѣ:
26
X
34
Чтобы умножить 26 на 34, брали 4 отдѣльныхъ произведенія: 20×4, 6×30, 6×4, 20×30, изъ нихъ два вертикально и два крестъ на крестъ. Этотъ способъ иначе называется хіазмомъ, потому что косой крестъ походитъ на греческую букву χ (хи), и самый знакъ умноженія назывался иногда «хи». Замѣчательно, что онъ же продолжительное время служилъ и знакомъ дѣленія дробей, такъ какъ въ этомъ случаѣ тоже приходится выполнять дѣйствіе крестъ накрестъ: числителя одной дроби помножать на знаменателя другой. Христіанъ Вольфъ въ XVIII ст. предложилъ обозначать умноженіе точкой. Наши знаки плюсъ и минусъ въ ихъ нормальной формѣ встрѣчаются въ первый разъ около 1489 г. въ ариѳметикѣ лейпцигскаго профессора Видмана. Съ 1600 г. уже во всѣхъ четырехъ дѣйствіяхъ можно видѣть настоящіе знаки.
Теперь поведемъ рѣчь объ опредѣленіяхъ дѣйствій. Что показываетъ опредѣленіе? Оно указываетъ смыслъ дѣйствія и его сущность. Такъ, напр., опредѣленіемъ умноженія цѣлыхъ чиселъ служитъ слѣдующее: «умноженіемъ называется такое ариѳметическое дѣйствіе, въ которомъ составляется сумма столькихъ слагаемыхъ, равныхъ первому даному числу, сколько единицъ заключается во второмъ данномъ числѣ». Надо сказать, что опредѣленія въ первоначальной арабской ариѳметикѣ были короткими и понятными и употреблялись только тогда, когда въ нихъ дѣйствительно являлась надобность, т.-е. когда дѣйствіе безъ опредѣленія представлялось неяснымъ и смѣшивалось съ другимъ. Но, въ противоположность этому, средневѣковая школьная ученость (такъ назыв. схоластика) начала придавать словеснымъ опредѣленіямъ слишкомъ большое значеніе, начала требовать опредѣленій даже и въ тѣхъ случаяхъ, когда и безъ нихъ понятія ясны, просты и не смѣшиваются. Къ этому еще присоединилось увлеченіе мнимо-научнымъ языкомъ, когда стремились нарочно выражатьея туманно, тяжеловѣсно, нагромождая фразу на фразу, и все это съ цѣлымъ рядомъ придаточныхъ предложеній, въ грудѣ которыхъ нерѣдко было трудно дойти до истиннаго смысла. Излишнія и тяжело выраженныя опредѣлевія не мало мучили учащихся; средневѣковая варварская латынь и хитроумная риторика ложились тяжелымъ бременемъ на умственныя силы учениковъ и мало содѣйствовали уясненію основныхъ математическихъ понятій. И въ наши дни замѣтно еще нѣкоторое вліяніе средневѣковой схоластики, особенно въ нѣмецкой школѣ. Недаромъ знаменитый русскій педагогъ Ушинскій говоритъ:
«Для нѣмца недостаточно понимать вещь: но ему непремѣнно нужно опредѣлить ее и дать ей мѣсто въ системахъ своихъ знаній. Опредѣленіями пустѣйшихъ и ничтожнѣйшихъ предметовъ набиты кипы нѣмецкихъ учебниковъ. Безъ опредѣленія для нѣмца и вещь не вещь».
Приведемъ нѣсколько примѣровъ, которые доказываютъ, какъ иногда трудны и безполезны бываютъ опредѣленія. Въ русской ариѳметикѣ Румовскаго (1760 г.) относительно дѣленія сказано такъ:
«Дѣленіе есть способъ изъ данныхъ двухъ чиселъ D и M находить третіе E, въ которомъ бы столько разъ содержалась единица, сколько разъ одно изъ данныхъ двухъ чиселъ D въ другомъ данномъ M содержится».
Какъ это мудрено и непонятно, хотя съ научной точки зрѣнія и правильно! Можно думать, что авторъ нарочно, съ цѣлью такъ затемнилъ смыслъ яснаго дѣйствія дѣленія; вѣдь пятилѣтніе ребята, если имъ дать яблоко и велѣть раздѣлить поровну, напр., пополамъ, поймутъ, чего отъ нихъ хотятъ, и съ удовольствіемъ рѣшатъ задачу, но авторъ этой ариѳметики, должно-быть, думаетъ, что трудный слогъ содѣйствуетъ научности; напрасно: научность состоитъ въ глубокихъ мысляхъ, а не въ туманныхъ фразахъ. Вотъ еще опредѣленія Грамматеуса (XVI в.):
«Сложеніе, или суммированіе, показываетъ сумму нѣсколькихъ чиселъ. Умноженіе, или увеличеніе, описываетъ, какъ умножать одно число на другос или увеличивать. Вычитаніе, или отниманіе, открываетъ, какъ число вычитать, или какъ одно число отнимать отъ другого, чтобы видѣть остатокъ».
Здѣсь только одна замѣна словъ и нѣтъ никакой помощи для смысла.
Сложеніе цѣлыхъ отвлеченныхъ чиселъ
Это дѣйствіе безспорно и безъ всякаго сомнѣнія занимаетъ первенствующее мѣсто въ ряду четырехъ дѣйствій, потому что безъ сложенія не обойтись нигдѣ. «Что есть аддиціо или сложеніе?» спрашиваетъ славянскій учебникъ ариѳметики и отвѣчаетъ: «Аддиціо, или сложеніе, есть дву или многихъ числъ во едино собраніе, или во единъ перечень совокупленіе». И продолжаетъ сейчасъ же за этимъ: «Удобнѣйшаго же ради, и скораго сложенія, подобаетъ прежде предложенную таблицу имѣти въ разумѣ твердо, да всякихъ числъ сложеніе творити имаши скоро и извѣстно, безъ всякаго забвеніа и лжи». Табличку надо было выучить непремѣнно наизусть и помнить ее твердо, твердо, иначе все ариѳметическое зданіе могло бы рушиться, потому что въ старинныя времена оно гораздо больше основывалось на чистомъ запоминаніи, чѣмъ на сужденіи и выводѣ. Учителя крѣпко убѣждаютъ помнить табличку, и вотъ даже стихи въ одной изъ ариѳметикъ:
«Къ двумъ единъ то есть три,
Два же къ тремъ пять смотри,
Такъ и все назирай Таблицу разбирай.
Хотяй же не лгати
Похвально слагати,
Да тщится познати,
Изустно сказати».
Въ нашихъ нынѣшнихъ учебникахъ ариѳметики таблица сложенія начинается съ 1+1 и кончается 9+9. Но прежде было иначе. Напр., въ ариѳметикѣ Леонардо Фибонначи (1200 г.), первомъ европейскомъ учебникѣ, составленномъ по арабскому образцу, рекомендуется заучить не только таблицу единицъ, но и цѣлую таблицу десятковъ отъ 10+10 до 90+90. Здѣсь, конечно, видна непослѣдовательность: если учить десятки, то отчего же не учить сотни, тысячи и всѣ остальные разряды. Въ противоположность такой большой таблицѣ, русскіе учебники XVII в. даютъ таблицу маленькую, которая кончается всего на всего суммой 11, а до 18-ти не доходитъ Заглавіе этой таблицы такое: «Граница изустная счетная къ разуму хотящему разумѣти благая и полезная». Подобныхъ высокопарныхъ выраженій цѣлая тьма въ старинныхъ ариѳметическихъ пособіяхъ.
Сложеніе большихъ чиселъ, особенно же многозначныхъ чиселъ издавна производилось гораздо чаще на счетныхъ приборахъ, чѣмъ письменно. Разныя наглядныя пособія для счета и придумывались, главнымъ образомъ, для того, чтобы помочь сложенію. У китайцевъ– сванъ-панъ, у грековъ и римлянъ—абакъ, у насъ, русскихъ, торговые счеты, да, кромѣ того, еще нѣсколько видоизмѣненій этихъ приборовъ—все это служило цѣлямъ отысканія суммы. И надо сказать, что привычка складывать на приборахъ очень укоренилась въ простомъ народѣ во всѣхъ почти странахъ и при томъ настолько сильно, что, напримѣръ, римскій абакъ употреблялся для сложенія въ Западной Европѣ столѣтія 3–4 спустя послѣ введенія индусской системы.
Способомъ, переходнымъ отъ абака къ нашему настоящему, является такой. Положимъ, даны намъ два числа: 666 и 144; подписавши 144 подъ 666 и опредѣливъ сумму единицъ 10, мы стираемъ 6 у верхняго слагаемаго и пишемъ вмѣсто него 0, а такъ какъ сумма единицъ дала десятокъ, то и цифру десятковъ 6 стираемъ и пишемъ 7, теперь слагаемыя измѣнились: 670 и 144; десятковъ въ суммѣ получитея 11, слѣдовательно стираемъ 7 и замѣняемъ черезъ 1 и также вмѣсто 6-ти сотенъ пишемъ 7; теперь намъ остается тодь-ко сложить 7 сотенъ съ 1, будетъ 8; эта цифра пишется вмѣсто 7 сотенъ, и весь отвѣтъ получается на мѣстѣ перваго слагаемаго въ видѣ 810. Пять разъ намъ приходилось стирать, прежде чѣмъ добраться до вѣрнаго отвѣта. Несомнѣнно, такимъ путемъ трудно дѣйствовать на бумагѣ, но онъ былъ умѣстенъ на абакѣ, покрытомъ пескомъ; еще можно попытаться на грифельной доскѣ, но эти по-стояннныя стиранія надоѣдаютъ; почему же они примѣнялись и на бумагѣ? вѣдь отъ нихъ нѣтъ никакой выгоды и одно только неудобство? А потому, что прежняя метода обученія стремилась обратить человѣка въ машину, не полагалась на его личную сообразительность и предписывала все отмѣчать на абакѣ, но никакъ не удерживать въ умѣ. Мы теперь запоминаемъ десятки или сотни, получившіяся отъ единицъ или десятковъ, а тогда всѣ мелочи необходимо было писать, чтобы не утерять.
Механическій характеръ цифрового сложенія, безъ всякаго пособія устнаго счета, ясно проглядываетъ у большинства средневѣковыхъ писателей. Магометъ Бега-эддинъ (XVI в.) подписываетъ слагае-мыя правильно одно подъ другимъ и складываетъ единицы опять же правильно, но когда изъ нихъ образуется десятокъ, то онъ не знаетъ, что съ нимъ дѣлать, и пока до поры до времени записываетъ его надъ десятками; далѣе ведетъ сложеніе десятковъ и, только получивъ ихъ сумму, онъ вспоминаетъ про десятокъ, образовавшійся изъ единицъ и тутъ его прикладываетъ. Сложеніе другихъ разрядовъ идетъ подобнымъ образомъ. Примѣръ:
1 1 1 1
5 3 7 3 9
2 8 2 6 5
–
7 1 9 9 4
8 2 0 0
Вотъ каково недовѣріе къ соображенію учениковъ и какая подробная механичность.
Въ этомъ родѣ, иногда съ небольшими улучшеніями, составленъ рядъ учебниковъ по ариѳметикѣ въ XVI–XVIII вв. Въ нихъ даются пространныя правила, какъ надо располагать слагаемыя и какъ замѣчать цифры. Эти правила нисколько не объясняются, и вычисляющій долженъ работать съ ними, какъ машина. Напр., Грамматеусъ, составитель нѣмецкаго учебника XVI в., даетъ три такихъ правила: 1-е: Смотри тщательно, чтобы цифры стояли какъ разъ одна надъ другой, такъ, чтобы 1-ая стояла надъ 1-ой, 2-ая надъ 2-ой и т. д.; проведи подъ этимъ линію, подъ которой и надо писать сумму. 2-е правило: Начинай съ правой руки, сложи всѣ числа, которыя стоятъ на первомъ мѣстѣ; если получится отъ сложенія двѣ цифры, то первую напиши, а вторую удержи въ умѣ, съ тѣмъ, чтобы прибавить ее къ слѣдующей; такъ же поступай и со всѣми остальными. 3-е правило: Въ концѣ ничего не надо держать въ умѣ, но все надо писать. Все время употребляй слово «и» или «да», напримѣръ, три да четыре—семь.
Въ настоящее время способъ сложенія тотъ же, что и въ старину. Правда, мы всегда начинаемъ дѣйствіе съ правой руки, когда вычисляемъ письменно, въ старину же дѣлали и съ лѣвой. Кромѣ того, наши ученики нерѣдко относятоя совершенно сознательно къ дѣйствію и понимаютъ, что и для чего дѣлается. Но въ общемъ характеръ сложенія не измѣнился сь самыхъ тѣхъ поръ, какъ установилась индусская система съ ея нулемъ и значеніемъ цифръ по мѣсту, ими занимаемому.
Нѣкоторыя особенности можно отмѣтить только въ слѣдующихъ трехъ пріемахъ, которые принадлежатъ индусамъ, арабамъ и грекамъ.
Арабскій ученый Алькальцади (XV в.), совѣтуетъ писать сумму надъ слагаемыии, а внизу помѣщать тѣ цифры, которыя мы обыкновенно держимъ въ умѣ. Напримѣръ, дано сложить 48 съ 97-ю. Получится такое вычисленіе:
145
–
97
48
1
Такое записываніе довольно неудобно, потому что при немъ необходимо впередъ приготовить мѣсто для суммы.
Греческій монахъ Максимъ Планудесъ (XIV в.), единственный представитель математическихъ знаній во весь византійскій періодъ греческой исторіи и къ тому же ученый не самостоятельный, а черпавшій свои пріемы изъ арабскихъ источниковъ, предлагаетъ записывать сумму надъ слагаемыми, а не подъ ними, въ остальномъ же его cпособъ сходенъ съ нашимъ.
Индусы, какъ болѣе всего расположенные къ устному счету, вводили въ сложеніе, сравнительно съ другими народами, менѣе механичности и cтарались развивать въ ученикахъ сообразительнооть, быстроту вычисленій и умѣнье упрощать дѣйствія. При многозначныхъ числахъ они писали слагаемыя въ строку и складывали ихъ по разрядамъ. 365+867+992 индусы вычисляли такъ: 5+7+2=14, 6+6+9=21, 3+8+9=20; всего 2224. Такъ идетъ дѣло у индусскаго писателя Баскары (XII в. по Р. X.).
Заканчивая эту главу, упомянемъ еще о терминахъ сложенія, т.-е. о названіи дѣйствія и объ именахъ данныхъ и искомыхъ при немъ чиселъ. Средневѣковая ариѳметика вводила массу терминовъ. Такъ, вмѣсто «сумма», говорилось еще: аггрегатъ, коллектъ, продуктъ. Вмѣсто «сложить», итальянскій ученый Тарталья приводитъ цѣлыхъ 12 терминовъ. Въ старинныхъ русcкихъ ариѳметикахъ слагаемыя назывались перечнями, а сумма – исподнимъ большимъ перечнемъ, очевидно, потому, что принято было писать ее внизу, подъ малыми перечнями.
Вычитаніе цѣлыхъ отвлеченныхъ чиселъ
До настаящаго времени извѣстно всего на всего 5 способовъ письменнаго вычитанія многозначныхъ чиселъ, считая въ томъ числѣ и тотъ, который у насъ общепринятъ теперь. Начнемъ съ него. Мы производимъ письменное отниманіе отъ правой руки къ лѣвой, чтобы удобнѣе было занимать, а это приходится дѣлать всякій разъ, когда какой-нибудь разрядъ вычитаемаго не отнимается отъ разряда уменьшаемаго. Въ противоположноеть этому порядку, арабскій математикъ Бенъ-Муза, жившій при дворѣ халифа Аль-Мамума въ IX в. по Р. X., настаиваетъ на вычитаніи съ высшихъ разрядовъ, т.-е. отъ лѣвой руки къ правой; причины онъ не объясняетъ, а просто говоритъ «такъ полезнѣе и легче». Вовсе не легче, прибавимъ мы отъ себя, потому что, если случается занимать, то нужно бываетъ перетирать цифры. Впрочемъ, весьма возможно, что Бенъ – Муза вычислялъ на пескѣ, на абакѣ, и ему ничего не стоило перемѣнить лишній разъ цифру; но очень неразсчетливо поступаютъ тѣ авторы, которые ведутъ вычисленія на бумагѣ, а правила даютъ такія, какія пригодны толькодля абака: вѣдь на абакѣ все можно стереть и все замѣнить новымъ, а на бумагѣ постоянныя перечеркиванья приводятъ къ путаницѣ, сбивчивости и къ лишнимъ усложненіямъ. Вотъ примѣръ, взятый изъ одного нѣмецкаго сборника XIII вѣка. Дается вычесть 144 изъ 810; отнимаемъ 4 отъ 810, получится 806; при этомъ цифры 1 и 0 мы замѣняемъ цифрами 0 и 6. Далѣе, вычитаемъ 4 десятка изъ 0, надо занять сотню, остатокъ будетъ всего 766; при этомъ цифры 8 и 0 замѣнились другими: 7 и 6. Когда, наконецъ, вычтемъ 100 изъ 766, то получимъ искомый отвѣтъ 666. Такимъ путемъ послѣ трехъ измѣненій цифръ приходимъ мы къ отвѣту 666.
Максимъ Планудесъ, византійскій математикъ XIV вѣка, вычитаетъ точно такъ, какъ мы, но пишетъ всѣ вычисленія гораздо подробнѣе, такъ какъ не надѣется на устный счетъ и приводитъ все дѣло къ механическому записыванію. Если бы потребовалось вычесть 26158 изъ 35142, то по Планудесу мы, во-первыхъ, должны были бы остатокъ записать вверху, надь чертой, точно такъ, какъ и сумму онъ же рекомендуетъ писать вверху надъ слагаемыми:
08984
–
24031
35142
26158;
во-вторыхъ, надъ уменьшаемымъ появляется какой-то странный рядъ цифръ 24031. Объясняется онъ такъ. Когда мы начинаемъ дѣйствіе справа и хотимъ вычесть 8 изъ 2, то, конечно, намъ вычесть нельзя, и мы должны къ 2 единицамъ еще занять 1 десятокъ изъ 4-хъ; вотъ этотъ – то одинъ занятой десятокъ и пишется надъ цифрой единицъ и образуетъ вмѣстѣ съ ней 12; 8 изъ 12=4, слѣдовательно, простыхъ единицъ въ отвѣтѣ 4. Вычитая далѣе десятки, мы должны считать ихъ въ уменьшаемомъ не 4, а 3, такъ какъ одинъ десятокъ раздробленъ въ простыя единицы; и вотъ, чтобы не сбиться, Планудесъ ставитъ надъ цифрой десятковъ 4 новую цифру 3 и продолжаетъ находить отвѣтъ также для сотенъ, тысячъ и десятковъ тысячъ. Изъ этого видно, что рядъ цифръ 24031 представляетъ собою исправленные разряды числа, когда въ нихъ произошло заниманіе.
Во всѣхъ разобранныхъ примѣрахъ, начиная съ Бенъ-Музы, проявляется, несмотря на видимое разнообразіе подробностей, одинъ и тотъ же основной пріемъ, и очевидно тотъ самый, который примѣняется и въ нашемъ настоящемъ способѣ вычитанія. Это не важно, съ какой руки начинать дѣйствіе, и гдѣ записывать цифры, которыя мы привыкли держать въ умѣ, но важно то, какъ производить заниманіе, потому что оно составляетъ самое трудное и сбивчивое мѣсто во всемъ вычитаніи. Во всѣхъ примѣрахъ, взятыхъ выше, заниманіе производилось нормальнымъ путемъ: если, напр., единицъ внизу больше, чѣмъ вверху, то берется десятокъ, прикладывается къ единицамъ, и такимъ образомъ дѣйствіе становится возможнымъ. Въ виду одинаковости заниманія, мы относимъ всѣ предыдущіе примѣры къ одному виду, или способу, который мы и называемъ первымъ способомъ вычитанія.
Чтобы объяснить второй способъ, беремъ примѣръ: 5975—497. Такъ какъ 7 изъ 5 не отнимается, то отнимаемъ 7 изъ 15, будетъ 8. Но, вычитая 7 изъ 15-ти вмѣсто 5-ти, мы этимъ къ уменьшаемому прибавляемъ лишній десятокъ. такъ какъ въ немъ простыхъ единицъ всего только 5, а мы говоримъ 15. Но не будемъ занимать этого десятка отдѣльно въ десяткахъ уменьшаемаго, потому что такимъ путемъ мы опять придемъ къ 1-му способу; вмѣсто того, мы отнимаемъ этотъ занятой десятокъ отъ 7 десятковъ уменьшаемаго тогда, когда будемъ отнимать десятки вычитаемаго, и намъ вмѣсто 9 придется отнять 10 десятковъ; такъ какъ 10 изъ 7-ми не вычитается, то надо занять сотню; ее мы опять-таки не будемъ занимать отдѣльно и не будемъ отнимать прямо отъ 9 сотъ уменьшаемаго, а вычтемъ вмѣстѣ съ 4-мя стами. Тогда, отнявши отъ 9 сотъ 5, получимъ 400. Теперь легко понять, чѣмъ отличается второй способъ вычитанія отъ перваго. По второму способу тотъ десятокъ или та сотня, которые мы занимаемъ, не отнимаются сейчасъ же отъ десятковъ или сотенъ умевьшаемаго, а придаются къ десяткамъ или сотнямъ вычитаемаго, и тогда уже вычитаются вмѣстѣ съ ними; слѣдовательно, не цифры уменьшаемаго понижаются на единицу, а наоборотъ цифры вычитаемаго повышаются на единицу, если только, конечно, изъ соотвѣтетвующаго разряда занимаютъ. Вотъ еще примѣръ: 1236—879. Рѣшеніе: 9 изъ 16-ти—7, 8 изъ 13-ти—5, 9 изъ 12-ти—3, всего 357. Чтобы отмѣтить, какія цифры вычитаемаго повышаются, надъ ними ставятъ точки. Этотъ второй способъ получилъ начало уже давно, еще со времени М. Планудеса и ранѣе, примѣняется же онъ теперь иногда во французскихъ школахъ. Въ немъ видятъ даже нѣкоторое удобство, сравнительно съ нашимъ пріемомъ, потому что въ немъ занятая единица всегда прикладывается, а у насъ отнимается, прикладывать же вообще проще и естественнѣе, чѣмъ отнимать, такъ какъ и сама ариѳметика начинается съ элементарнаго прикладыванія, т.-е. счета по единицѣ. Но, разумѣется, это выгода довольно призрачная, и все дѣло зависитъ отъ привычки: насъ пріучали съ малыхъ лѣтъ ставить точку надъ уменьшаемымъ, а не надъ вычитаемымъ, и это насъ не затрудняетъ, а даже кажется болѣе легкимъ.
Третій способъ, предложенный Адамомъ Ризе, нѣмецкимъ педагогомъ XVI вѣка, примыкаетъ къ первому. Объяснимъ его на примѣрѣ: 85322—67876. Ведемъ вычитаніе съ простыхъ единицъ. По обыкновенному пріему надо бы 6 вычесть изъ 12-ти, а мы по этому третьему способу вычтемъ 6 не изъ 12-ти, а изъ 10-ти, и этотъ 1 десятокъ занимаемъ у 2 десятковъ уменьшаемаго. 6 изъ 10 составитъ 4, да 2 единицы въ уменьшаемомъ, всего будетъ 6. Далѣе вычитаемъ десятки. Такъ какъ 7 не вычитается изъ двухъ, или вѣрнѣе изъ одного, потому что одинъ десятокъ мы уже заняли, то надо намъ занять сотню и раздробить ее въ десятки; сотня даетъ 10 десятковъ, вычтемъ изъ нихъ 7, тогда получимъ въ разности 3; да еще въ уменынаемомъ 1 десятокъ, итого накопится въ остаткѣ 4. Такъ же поступаемъ и съ остальными разрядами: 10—8=2, да 2, всего 4 сотни; 10—7=3, да 4 тысячи, всего 7 тысячъ; 10—6=4, да 8, всего 12 десятковъ тысячъ; но изъ этихъ 12 десятковъ тысячъ надо исключить 1 сотню тысячъ, потому что мы ее какъ бы заняли, а между тѣмъ занять-то было не у чего, то мы ее теперь и счеркиваемъ у остатка. Выводъ относительно третьяго способа получается слѣдующій. Онъ основанъ на отниманіи каждаго разряда вычитаемаго отъ 10-ти и прибавленіи разрядовъ уменьшаемаго, а такъ какъ разность между какимъ-нибудь однозначнымъ числомъ и десятью называется дополненіемъ этого числа до 10-ти, то способъ Адама Ризе можно еще выразить такъ: къ разрядамъ уменьшаемаго надо прикладывать дополненія разрядовъ вычитаемаго до 10-ти. Еще примѣръ:
1 9 0 3 3 0 9 1
2 7 8 5 3 0 6
–
1 6 2 4 7 7 8 5;
Рѣшается онъ такъ: 4, дополненіе 6-ти до 10-ти, да 1, будетъ 5; 10, дополненіе нуля до 10-ти, да 8, потому что 1 занята, составитъ 18, изъ нихъ 8 пишемъ, а 1 сотню отбрасываемъ, потому что, когда мы брали дополненіе, то для этого намъ необходимо было имѣть сотню, а такъ какъ мы ея не занимали въ уменьшаемомъ, то и счеркиваемъ ее въ остаткѣ. Такъ же поступать надо и въ другихъ подобныхъ случаяхъ, именно когда дополненіе вычитаемаго вмѣстѣ съ разрядомъ уменьшаемаго дастъ болѣе 10-ти, то десятокъ счерки-вается. Способъ Адама Ризе былъ знакомъ его современникамъ, но особаго развитія и распространеиія онъ не получилъ. Онъ очень на-поминаетъ новый, пятый способъ, который помѣщаемъ ниже.
Четвертое правило вычитанія принадлежитъ арабскому ученому Алькальцади изъ Андалузіи (XV в.). Чтобы, напримѣръ, вычесть 287 изъ 573, надо сперва 7 простыхъ единицъ вычесть изъ 3-хъ. Конечно, 7 изъ 3-хъ не вычитается, но прежде чѣмъ занимать десятокъ, Алькальцади задается вопросомъ: много ли недостаетъ къ тремъ для того, чтобы изъ нихъ можно было вычесть семь? Оказывается, недостаетъ четырехъ. И вотъ мы занимаемъ теперь десятокъ изъ 7 десятковъ, раздробляемъ его въ единицы и вычитаемъ столько, сколько не хватало, т.-е. 4, въ остаткѣ будетъ 6. Такимъ же образомъ идетъ вычисленіе и съ десятками, и съ сотнями: 8 изъ 6, недостаетъ двухъ, вычитаемъ 2 изъ 10-ти, будетъ 8 десятковъ; на-конецъ, 2 сотни изъ 4 сотенъ дадутъ 2 сотни, веего 286.
Связь между способами первымъ, третьимъ и четвертымъ мы представимъ для ясности еще разъ на двузначныхъ числахъ. Возьмемъ 41–27. По первому способу необходимо 7 вычитать изъ 11-ти, по третьему 7 вычитается изъ десяти, и къ полученному прибавляется 1, а по четвертому изъ 10-ти вычитается недостатокъ единицы противъ 7-ми. Что касается второго способа, то въ немъ, какъ и въ первомъ, 7 вычитается изъ 11-ти, но за то потомъ, когда идетъ отниманіе десятковъ, не 2 десятка отнимается изъ 3-хъ, а 3 изъ 4-хъ.
Пятый и послѣдній способъ сходенъ по своей основной мысли со способомъ Адама Ризе. Въ немъ прибавляется къ разрядамъ уменьшаемаго дополненіе разрядовъ вычитаемаго, при чемъ дополненіе берется то до 10-ти, то до 9-ти: до десяти тогда, когда надъ цифрой уменьшаемаго не стоитъ точки, которая бы показывала, что здѣсь единица занята, а до 9-ти тогда, когда стоитъ точка. Примѣръ: 731–264. Чтобы произвести это вычитаніе по пятому способу, прибавляемъ къ одной простой единицѣ уменьшаемаго 6, т.-е. дополненіе 4-хъ единицъ вычитаемаго до 10-ти; получится 7. Далѣе беремъ десятки: 3 да 3 составитъ 6, при чемъ вторая тройка представляетъ собой дополненіе 6 десятковъ вычитаемаго до 9-ти, а до 9-ти потому, что надъ десятками уменьшаемаго стоитъ точка, какъ знакъ заниманія. Наконецъ, опредѣляемъ сотни: 7 да 7-мь 14, 4 беремъ, а 1 скидываемъ. Окончательный отвѣтъ будетъ 467. Теперь надо объяснить, почему мы такъ дѣлаемъ, и на чемъ основанъ этотъ способъ. Намъ требовалось отнять 264, а мы не только не стали отнимать, но даже начали прикладывать и приложили всего 7 сотенъ 3 десятка 6 единицъ. На сколько же мы ошиблись, благодаря тому, что вмѣсто отниманія 264-хъ прибавили 736? Очевидно, на 736+264, т. е. ровно на тысячу.
Эту свою ошибку мы и исправляемъ въ самомъ концѣ, отчеркивая у отвѣта тысячу. Если бы намъ данъ былъ примѣръ 34985322– 12467876, то вычисленіе получилось бы такое: 2+4=6, 2+2=4, 3+1=4, 5+2=7, 8+3=11, изъ этого лѣвая единица скидывается, 9+6=15, 4+8=12, 9+3=12, всѣ лѣвыя единины окидываются. Если нужно дѣйствіе производить поскорѣе, то лучше точки ставить не надъ уменьшаемымъ, а надъ вычитаемымъ. И вообще этотъ пятый способъ напоминаетъ собою второй епособъ тѣмъ, что занимаемую единицу можно считать приложенной къ вычитаемому, а не отнятой отъ уменьшаемаго.