Текст книги "Естествознание. Базовый уровень. 10 класс"
Автор книги: Владислав Сивоглазов
Соавторы: Инна Агафонова,Сергей Титов
Жанры:
Учебники
,сообщить о нарушении
Текущая страница: 5 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
Мир, который мы ощущаем
§ 12 Пространство, время, материя
Время – это всецело последовательность и больше ничего, пространство – всецело положение и больше ничего, материя – всецело причинность и больше ничего.
А. Шопенгауэр
И в пути, и на отдыхе – ибо отдых входит в путешествие – нужно без малейшего нетерпения отдаваться на волю времени, предоставляя ему преодолевать пространство. Когда-нибудь, и в конце концов раньше, чем ждёшь, оно с ним справится.
Т. Манн. Иосиф и его братья
Триединая картина мира.
До открытия сложных природных явлений, таких как электричество, и уж тем более до открытия строения атома, люди знали, что в мире, где они живут, существуют три очевидные и основополагающие вещи: пространство, время и нечто, из чего состоят сами люди и все окружающие их предметы, т. е. вещество. Это вещество может быть твёрдым, мягким или жидким (о существовании газов догадались позднее) и обладает массой.
Очевидно, что каждый предмет где-то находится, т. е. занимает место, причём каждое место может быть занято только одним предметом. Какие-то предметы могут находиться далеко друг от друга, а какие-то близко. Отношения между местами, занятыми предметами, определяются расстоянием между ними. Расстояние между различными частями одного и того же тела определяет его размер.
Но положение тел и расстояние между ними не всегда бывают одинаковыми. Предмет можно поднять, и тогда расстояние между ним и поверхностью земли увеличится. Можно его перенести, и тогда расстояние между ним и другими предметами тоже увеличится или, наоборот, уменьшится. Иногда предметы могут изменять своё положение сами, как, например, люди, животные, падающая вода или упавший с горы камень (рис. 32). Это изменение называют движением.
Предмет, изменивший свое положение, когда-то находился в ином месте. Следовательно, в ходе движения меняется ещё что-то, что мы называем временем. Получается, что «что-то», «где-то» и «когда-то» тесно связаны между собой. Впоследствии эти понятия стали называть соответственно веществом (а позднее в более обобщённом виде – материей), пространством и временем, а характеристики, используемые для их измерения, – массой, расстоянием и длительностью.
Расстояние и длительность.
Эти понятия действительно очень тесно связаны между собой. Настолько тесно, что, по крайней мере, до XX в. физика никак не могла разобраться в этой связи. В обыденной жизни мы часто непроизвольно перемешиваем понятия расстояния и длительности. Ведь как объяснить человеку, что пункт А находится близко от него, а пункт Б – далеко? Точного расстояния в метрах и километрах мы можем и не знать, да и не всякий способен легко оценить эту величину. Проще сделать это с помощью времени, сказав, например, «пятнадцать минут пешком» или «двадцать минут на метро». Здесь для связи пространства и времени мы неявно используем понятие скорости. Предполагается, что скорость пешехода или поезда метро нашему собеседнику известна.
Метод оценки расстояний с помощью длительности люди использовали с древнейших времён. Так, в Персии существовала мера расстояния – фарсанг, которая означала путь, проходимый караваном от одного привала до другого. Фарсанг мог быть различным, в зависимости от того, лежит путь по пересечённой или ровной местности, в гору или с горы. Со временем, конечно, фарсанг приобрёл постоянную длину. Один норвежский путешественник, посетивший в конце IX в. Англию, рассказывал королю о расстояниях в Скандинавии, называя число дней плавания между разными её частями при попутном ветре. Герой рассказа Л. Н. Толстого «Много ли человеку земли нужно?» покупал землю по цене «тысяча рублей за день». Под этим подразумевается участок земли, который можно обойти за день.
Рис. 32. Любые изменения положения живых и неживых объектов во времени и пространстве называют движением
Хорошо понимая, что пространство и время связаны между собой скоростью, жадный Пахом побежал так быстро, что к концу дня упал мёртвым. Измерение расстояния с помощью времени используется и в науке: так, в астрономии большие расстояния измеряют в световых годах. Световой год равен расстоянию, которое свет проходит за год.
Массу, т. е. количество материи, тоже в принципе можно измерить с помощью представлений о расстоянии и длительности, рассчитывая, например, количество земли, которое бригада рабочих перенесёт в течение часа на расстояние 100 м.
Особенно тесно пространство связано со временем. Эта связь обнаруживается не только в повседневной жизни, но и в точных физических исследованиях. На ней построена, как мы узнаем дальше, теория относительности А. Эйнштейна, а немецкий математик Герман Минковский в 1908 г. предложил объединить время и пространство в единую систему координат (такое пространство ещё называют пространством Минковского).
Первичность пространства, материи и времени.
Понятия «пространство», «время» и «материя» являются первичными. Описание и объяснение различных явлений и систем происходит с использованием этих понятий. Как говорилось в § 7, именно для определения длительности, расстояния и массы были придуманы первые единицы измерения. В дальнейшем были созданы точные методы для измерения этих величин и на их основе рассчитаны значения других физических величин, таких как скорость, сила и энергия. Впоследствии, когда были открыты электрические и внутриатомные взаимодействия, в систему измерений были добавлены новые единицы, однако общая триединая картина мира не изменилась, так как и электромагнитное поле, и внутриатомные поля можно тоже рассматривать как виды материи. Наиболее убедительно неразрывное единство пространства, времени и материи было продемонстрировано в теории относительности А. Эйнштейна. Подробнее с тремя основными сущностями, на которых строится естествознание, мы познакомимся в следующих параграфах.
Проверьте свои знания
1. Какие три сущности лежат в основе нашего понимания Мира?
2. Какие величины обязательно изменяются в процессе движения?
3. Чем определяются размеры предмета?
Задания
1. Выполните практическую работу. Один из учеников проходит неторопливым шагом школьный коридор сначала поперёк, а затем вдоль. Один наблюдатель измеряет число сделанных шагов, а второй – затраченное время по секундомеру. Затем всё повторяется, только идущий ученик движется с большей скоростью. Сравните данные, полученные в обоих экспериментах, и сделайте выводы.
2. Прочитайте эпиграф к параграфу (высказывание А. Шопенгауэра). Как вы его понимаете? Согласны ли вы с точкой зрения автора? Сравните свою точку зрения с точкой зрения одноклассников.
3. Оцените расстояния до известных вам объектов, используя понятия длительности и массы.
§ 13 Пространство и расстояние
Однажды древнегреческий царь Птоломей I Сотер, который правил в египетской Александрии, потребовал у объяснявшего ему законы геометрии Евклида сделать это покороче и побыстрее. Тот ответил: «О великий царь, в геометрии нет царских дорог…»
Итак, мы выяснили, что интуитивно каждый человек понимает, что такое пространство. А как обстоит дело с более строгой научной характеристикой этого понятия? То пространство, с которым мы привыкли иметь дело в обыденной жизни, где мы измеряем длины, расстояния и размеры, называется евклидовым пространством по имени греческого математика Евклида, жившего около III в. до н. э. и создавшего аксиомы геометрии – науки об измерениях в пространстве. Геометрия Евклида была единственно признанной до появления работ российского математика Н. И. Лобачевского и немецкого математика Г. Римана.
Системы координат.
Обычно для описания пространства используется наиболее простая система координат, называемая прямоугольной. Её ещё называют декартовой по имени французского учёного Рене Декарта, который впервые предложил её в 1637 г. (рис. 33, 34). В этой системе определяется точка, которая называется началом координат или точкой отсчёта.
Рис. 33. Рене Декарт
Рис. 34. Декартова система координат
В этой точке пересекаются три взаимно перпендикулярные прямые, одна из которых называется осью абсцисс, или осью х, вторая – осью ординат (осью у), а третья – осью аппликат (осью z). Очевидно, что в том пространстве, где мы обитаем, большее число взаимных перпендикуляров построить невозможно. Поэтому наше пространство называют трёхмерным. В физике и математике часто рассматриваются пространства с большим числом измерений: от четырёхмерного пространства-времени Минковского до пространств, имеющих бесконечное число измерений в квантовой физике. Однако наглядно представить себе пространство, где имеется больше трёх измерений, невозможно. Можно, наоборот, уменьшить число координат до двух, ограничившись только осями абсцисс и ординат, и получить систему координат на плоскости. Мы уже имели дело с такой системой в § 8, когда знакомились с построением графиков. Полная же система координат, описывающая положение любой точки в пространстве, является трёхмерной. Для того чтобы определить местонахождение этой точки, надо знать три числа, обозначающие проекции[6]6
Напомним, что проекцией точки на ось называют расстояние от начала координат до пересечения оси с перпендикуляром, опущенным на неё из этой точки.
[Закрыть] этой точки на оси абсцисс, ординат и аппликат (x, у, z). Сумму величин p→=xi→+ yj→+ zk→называют вектором, определяющим положение точки в пространстве. Поскольку оси координат представляют собой бесконечные прямые и каждая из них распространяется в обе стороны от начала координат, то x, y и z могут иметь как положительные, так и отрицательные значения.
Расстояние между двумя точками в евклидовом пространстве определяют с помощью теоремы Пифагора. Глядя на рисунок, можно легко убедиться в том, что на плоскости расстояние между двумя любыми точками равно:
√¯х2+ y2,
а в пространстве:
√¯x2 + у2 + z2.
В некоторых случаях используют не прямоугольные, а другие системы координат, например цилиндрическую и сферическую. Цилиндрическая система строится следующим образом. Допустим, нам нужно определить положение точки М (рис. 35, А). Пусть в пространстве задана декартова прямоугольная система координат Oxyz и R – расстояние от точки М до координатной оси Oz.
Рис. 35. Цилиндрическая (А) и сферическая (Б) системы координат
Тогда одной из координатных поверхностей (R = const), проходящих через точку М, является цилиндрическая поверхность вращения с осью Oz и радиусом R (поэтому координаты точки М называются цилиндрическими). Если при этом 0 – угол, который плоскость, проходящая через точку М и координатную ось Oz, образует с координатной плоскостью Oxz, то цилиндрическими координатами точки М является упорядоченная тройка чисел (R; θ; Z), где Z – проекция М на ось Oz.
Сферическая система координат используется в астрономии и навигации. Для определения положения точки необходимо знать её расстояние от начала координат – центра сферы (т. е. радиус сферы) и два угла (рис. 35, Б). Попробуйте сами построить такую систему, воспользовавшись приведённым рисунком.
Свойства пространства.
Согласно современным представлениям, пространство является однородным, т. е. при всех прочих равных условиях, например при действии одинаковых сил, все физические процессы протекают одинаково в любой точке пространства.
Другим свойством пространства является его изотропность, или изотропия, – отсутствие в пространстве какого-либо выделенного направления. Во Вселенной нет «верха и низа» или «права и лева». Если любую систему повернуть на любой угол, никакие физические процессы в ней не изменятся. Некоторые законы механики основаны именно на том, что пространство обладает свойством изотропности.
Проверьте свои знания
1. Кем была создана первая геометрия?
2. Как называются оси в декартовой системе координат?
3. Каким образом можно определить вектор?
4. Что означают понятия «однородность пространства»; «изотропность пространства»?
5. Какая система координат (двух– или трёхмерная) используется при снятии электроэнцефалограммы и электрокардиограммы?
Задания
1. Попробуйте построить систему координат, воспользовавшись рисунком в этом параграфе. Укажите в каждой системе координат определённую точку. Обменяйтесь чертежами с одноклассниками. По приведённым чертежам определите координаты заданной точки в прямоугольных, цилиндрических и сферических координатах.
2. Обсудите в классе, почему сферическую систему координат в основном используют в астрономии и навигации.
§ 14 Время и длительность
– А-а! Тогда все понятно, – сказал Болванщик. – Убить Время! Разве такое ему может понравиться! Если б ты с ним не ссорилась, всегда могла бы просить у него всё, что хочешь. Допустим, сейчас десять часов утра – пора идти на занятия. А ты шепнула ему словечко и р-раз! – стрелка побежала вперёд! Половина второго – обед!
Л. Кэрролл. Алиса в стране чудес
Сущность времени
Понимание природы времени более сложно, чем понимание пространства. Пространство воспринимается легче потому, что мы можем свободнее в нём ориентироваться, перемещаясь в любом направлении, двигаясь в одну сторону и возвращаясь обратно. Со временем это делать нельзя, временем мы управлять не можем. Во времени что-то появляется, меняется и непременно исчезает. Это последнее обстоятельство всегда вызывало у людей страх и тревогу. В древнегреческой мифологии время олицетворяет божество Кронос, порождающий и пожирающий своих детей. Не будучи способными понять сущность времени, люди часто используют для его описания глаголы, которые на самом деле описывают движение в пространстве неких предметов. Время в нашей речи может «идти», «лететь», «ползти», «проходить» и т. д. Однако время не предмет и в пространстве не передвигается, но за неимением других способов его описания мы уподобляем время движению. Часто приходится слышать, что время – это последовательность событий. Но тогда возникает вопрос: последовательность в чём? Ясно, что не в пространстве. Значит, во времени. Получается, что «время – это последовательность событий во времени». Понятно, что из такого определения многого не извлечёшь.
Из представления о времени как о чём-то схожем с пространством рождаются многочисленные литературные произведения о машине времени (рис. 36), которые пользуются большой популярностью, несмотря на их не только ненаучность, но и просто логическую бессмысленность. Ведь что значит, например, отправиться в будущее? Да ведь мы именно это всю жизнь и делаем. Для того чтобы ехать в будущее, не нужна никакая машина времени. А что будет, если мы поедем в прошлое?.. Допустим, мы попали во вчера. Но ведь мы и были в нём вчера и не знали и не можем знать, что будет завтра, т. е. сегодня. А если отправиться ещё дальше в прошлое, то мы будем делаться всё моложе и моложе, пока не исчезнем в момент своего рождения. А в позапрошлый век мы не попадём, потому что тогда нас не было. Психологической подоплёкой разговоров о машине времени служит бессознательное убеждение в том, что существуют два времени – одно моё собственное, в котором я проживаю свою жизнь, а другое – объективное, или чужое, где существует всё остальное.
Рис. 36. Попытки сконструировать машину времени предпринимались человечеством неоднократно
Если я завтра окажусь в Древнем Египте, то для меня это будет завтра, а для всех остальных три тысячи лет назад. Такое представление ни на чём не основано, ведь весь наш опыт показывает, что время для всех одинаково. Можно было бы, конечно, допустить, что наши знания пока недостаточны и когда– нибудь машина времени будет создана на основе каких-то новых, в настоящее время неизвестных, законов физики. Но тогда возникает вопрос, который задал английский космолог Стивен Хокинг:
«Если путешествия во времени возможны, то где же туристы из будущего?»
Почему к нам не приезжают люди из того будущего, когда машина времени уже изобретена? Приходится признаться, что мы их видели только в кино.
Понимание природы времени представляет, главным образом, психологическую и философскую проблему. Однако как в повседневной жизни, так и в научных исследованиях мы не можем обходиться без времени и, более того, без его измерения. Хотя мы не можем точно сказать, что такое время, мы всегда интуитивно его ощущаем. Лучше всех о понимании проблемы времени сказал философ Аврелий Августин, живший в III–IV вв.:
«Если никто не спрашивает меня, знаю; если же хочу объяснить спрашивающему, не знаю».
Проблема измерения времени.
Независимо от понимания сущности времени необходимость измерения времени в практических целях возникла у человечества очень давно. Древнеегипетские и вавилонские жрецы определяли время с большой точностью, измеряя движение планет и звёзд по небесному своду (рис. 37). Правда, таким образом можно было точно измерять только большие промежутки времени, соизмеримые с годами. Наименьшей единицей времени, которую можно было измерять по движению Солнца, были сутки (день). Для более точного определения времени сутки делили на часы. Однако поскольку длина светового дня неодинакова в различное время года, то и часы имели разную продолжительность. У некоторых народов сутки делились на 12 дневных и 12 ночных часов. Естественно, что летом дневные часы оказывались продолжительнее ночных, а зимой – наоборот.
Во всех случаях измерить время можно только с помощью какого– то движения. В качестве единицы измерения времени может выступать только периодическое движение. Оно должно быть периодическим, т. е. нужно, чтобы определённое состояние повторялось через определённые промежутки времени. Но мы опять ловим себя на противоречии. Что такое «через определённые промежутки времени»? Откуда берётся ощущение времени? Некоторые мыслители Античности и Средневековья считали, что поскольку измерение времени основывается на движении небесных светил, то это движение и есть само время. Однако такое объяснение многим казалось неприемлемым: почему время создаётся только движением Солнца и звёзд, а не чего-либо ещё? Поэтому многие мыслители, такие как Аристотель, Августин и Кант, считали, что время – это природное внутреннее ощущение человека, оно протекает в его душе.
Рис. 37. Ещё в древности люди умели точно определять большие промежутки времени, измеряя движение планет и звёзд по небесному своду
Основатель современной физики Исаак Ньютон утверждал, что существует два вида времени:
«…абсолютное, истинное математическое время… без всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью» и «относительное, кажущееся или обыденное время есть… постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обычной жизни».
Однако абсолютное время у Ньютона являлось только предметом его философских размышлений. В физике же и вообще в естествознании используют именно «меру продолжительности», которая «совершается при посредстве движения» и в соответствии с правилами научного метода должна быть измерена.
Проверьте свои знания
1. Какими способами пользовались в древности для измерения времени?
2. Что говорили о времени Аристотель и Августин?
3. Какой парадокс лежит в основе рассуждений о машине времени?
4. Какие два времени различал Ньютон?
5. Вспомните, когда время в вашей жизни тянулось особенно долго; быстро летело. С чем это было связано? Что в связи с этим можно сказать о субъективности восприятия времени разными людьми в разное время?
Задания
1. Сравните субъективную и объективную протяжённость времени. Для этого постарайтесь мысленно определить, когда пройдёт минута времени после поданного сигнала, и поднять в этот момент руку. Учитель при этом смотрит на секундомер и отмечает время, которое прошло до этого момента. По окончании опыта результаты сравниваются. Таким образом можно определить, кто из учеников является «укоротителем», а кто – «удлинителем» времени.
2. Прочитайте знаменитый научно-фантастический рассказ американского писателя Рэя Брэдбери «И грянул гром». Чем закончилось для главного героя путешествие во времени? Как вы считаете, возможен ли от вмешательства в прошлое такой эффект, как описывает его автор? Выскажите свою точку зрения и обсудите её с одноклассниками.
3. Вспомните, какие вам известны художественные фильмы, герои которых путешествуют во времени. Как вы думаете, почему подобные сюжеты пользуются большой популярностью как у режиссёров, так и у зрителей?
§ 15 Измерение времени. Часы
Порой часы обманывают нас,
Чтоб нам жилось на свете безмятежней.
Они опять покажут тот же час,
И верится, что час вернулся прежний.
Обманчив дней и лет круговорот:
Опять приходит тот же день недели,
И тот же месяц снова настаёт —
Как будто он вернулся в самом деле.
Известно нам, что час невозвратим,
Что нет ни дням, ни месяцам возврата,
Но круг календаря и циферблата
Мешает нам понять, что мы летим.
С. Маршак
Часы: от солнечных до квантовых.
В своих лекциях по физике известный учёный Р. Фейнман так и говорит:
«Дело не в том, как дать определение понятия «время», а в том, как его измерить».
Механизмы и приборы, используемые для измерения времени, называют часами. По мере того как совершенствовались используемые человеком технические средства и ускорялись темпы жизни, требовалось изобретать всё более и более точные часы. Когда-то время определяли исключительно по движению Солнца и Луны (рис. 38). Использование солнечных часов имело существенный недостаток – ими можно было пользоваться только днём, да и то в солнечную погоду. Поэтому ещё в глубокой древности были изобретены механические устройства, позволявшие измерять отрезки времени вне зависимости от астрономических явлений (рис. 39). Одними из первых таких конструкций были клепсидры – водяные часы, измерявшие время по скорости вытекания воды. Клепсидры появились в Древнем Вавилоне и Египте более 3,5 тыс. лет назад.
Рис. 38. Солнечные часы – одно из первых устройств, позволяющих определять время
В Древней Греции изобретателем клепсидр считали Ктезибия из Александрии. В его устройстве вода равномерно поступала в сосуд, на поверхности которого находился поплавок. На поплавке была установлена фигурка с указкой в руке.
Рис. 39. Различные конструкции часов, позволяющие измерять время независимо от времени суток и погоды: А – водяные часы; Б – маятниковые часы; В – песочные часы; Г – песочно-водяные часы; Д – огневые часы;Е – будильник; Ж – башенные часы
Рядом находилась пластинка, на которую были нанесены деления, соответствующие определённому часу. Фигурка постепенно поднималась вместе с водой, и указка показывала, который час.
Одновременно с клепсидрами использовали песочные часы, но они получили меньшее распространение, потому что песок гораздо тяжелей воды и сыплется не так равномерно, как течёт вода. Клепсидры же, постоянно усовершенствуясь, получили популярность в Византии, а затем проникли в Западную Европу, где служили украшением городских площадей вплоть до XVIII в.
Таблица 4
Точность работы часов
В начале второго тысячелетия в Германии были изобретены маятниковые часы, которые впоследствии стали вытеснять клепсидры из-за большей точности. В XIII в. в Англии в Вестминстере были построены первые башенные часы. Долгое время городские часы не имели минутной стрелки, что вполне устраивало средневековых горожан с их неторопливым образом жизни. Но затем производство часов стало стремительно совершенствоваться. Маятниковые часы имели большой недостаток – они были довольно громоздкими и могли работать только в вертикальном положении. И вот в конце XV в. появляются значительно более компактные и мобильные пружинные часы, где пружиной служила свиная щетина. В XVII в. знаменитый физик Х. Гюйгенс запатентовал карманные часы, а почти через двести лет появились и наручные, которые вначале служили исключительно дамским украшением.
Со временем появились часы, отмеряющие время по числу электрических импульсов, а затем – кварцевые часы, использующие кристалл кварца, генерирующий колебания определённой частоты. Последним достижением в этой области стало измерение времени с использованием квантовых процессов (водородный мазер). Соответственно увеличивалась точность часов (табл. 4).
Единицы времени.
Вместе с прогрессом в измерении менялось и значение эталонной секунды, становясь всё более точным. Когда-то секунду отсчитывали от продолжительности года, т. е. периода обращения Земли вокруг Солнца. Получалось, что обычный (не високосный) год состоит из 31 536 000 секунд. А так как бывают и более продолжительные, високосные, годы, то секундой было принято считать приблизительно 1/31 556 926 времени обращения Земли вокруг Солнца. Однако такой эталон для современных измерений оказывается недостаточно точным. Поэтому в 1967 г. был принят новый эталон секунды, основанный на частоте колебания атома цезия. В будущем, возможно, за эталонную единицу примут колебания водородного мазера.
В настоящее время для характеристики отрезков времени больше секунды используют единицы, не входящие в СИ: минуту, час, неделю, сутки, год. Продолжительность суток составляет ровно 84 600 с. Для интервалов времени меньше секунды используют десятичные единицы. Одну тысячную долю секунды называют миллисекундой (мс), миллионную – микросекундой (мкс), а миллиардную – наносекундой (нс). Миллисекунда не такая уж малая величина, как может показаться на первый взгляд. За это время Земля пролетит по своей орбите около 30 м, а свет пройдёт расстояние в десять тысяч раз больше. Продолжительность нервного импульса составляет 1–3 мс. В электронных технических приборах, например в компьютерах, счёт идёт на микросекунды. Квантовая физика, имеющая дело с атомами и излучениями, изучает процессы, продолжительность которых составляет наносекунды и даже меньше.
Проверьте свои знания
1. Опишите устройство клепсидры.
2. Кто и когда изобрёл карманные часы?
3. Чем отличались средневековые башенные часы от современных?
Задания
1. Попробуйте сконструировать водяные часы. Для этого возьмите стакан с нанесёнными на него делениями и поставьте его под кран, пустив тонкую струйку воды. Отмечайте по секундомеру, за какое время вода поднимется на одно деление. Затем вылейте воду, поставьте пустой стакан под ту же струйку и подождите, пока вода не достигнет последнего деления. Определите, сколько времени на это понадобилось. Проверьте точность часов, сравнив результаты первого и второго измерений.
2. Выставьте ваши часы (наручные, настенные или др.) в соответствии с сигналом точного времени, переданным по радио. Спустя сутки оцените точность хода ваших часов.