355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Келлер » Возвращение чародея » Текст книги (страница 7)
Возвращение чародея
  • Текст добавлен: 16 октября 2016, 20:39

Текст книги "Возвращение чародея"


Автор книги: Владимир Келлер



сообщить о нарушении

Текущая страница: 7 (всего у книги 16 страниц)

Как познавались законы и открывались тайники энергии



Путаница и разъяснение понятий

Окно, у которого я пишу, выходит во двор большого интерната. Мальчишки часто дуются в футбол, а притихшие болельщики-девочки порою вдруг взрываются бурным шквалом голосов, что позволяет мне и не глядя подсчитывать число забитых голов. Когда восторг уж слишком ярок, я выглядываю в окно. Кроме смущенно торжествующих ребят и дико скачущих девчонок, я вижу мелюзгу, копошащуюся у невесть зачем вырытой у футбольных ворот прямоугольной ямы с водой (правда, глубиной воробью по колено). На душе становится легко, и строчки словно бы охотнее ложатся на бумагу.

Однажды мое внимание привлекла совсем другая картина. Футбола и ребят на поле не было (вероятно, шли занятия), а из окна второго интернатского этажа женщина в белом выбрасывала узлы с бельем. Рядом с растущей горкой белья стоял голубой «пикап», видимо из прачечной. Вдруг – я даже обомлел – вслед за последним узлом из окна на горку выпрыгнула и сама женщина. Было очень смешно. Потом я подумал: «Физики, поди, не знает, а ведь сообразила, как сэкономить свою работу. Понимает, что одно дело – пойти по коридору, спуститься вниз по лестнице, открыть наружную дверь и т. д. и совсем другое – подобрать юбки и так вот запросто выпрыгнуть в окошко. Благо, думает, никто не наблюдает».

Сама того не подозревая, кастелянша (вероятно, это была она) наглядно продемонстрировала важнейшую физическую величину: работу. Физика говорит:

Работа равна силе, действующей вдоль перемещения, умноженной на это перемещение.

А здесь как раз и то и другое: сила (вес кастелянши) и перемещение (высота подоконника второго этажа над землей). Могут обратить внимание на то, что работу совершила не сама кастелянша, а земное тяготение. Совершенно верно. Но мы в данном случае говорим лишь об определенииэтой физической величины, и нас не интересует ее источник.

Запомнить краткое и ясное определение работы чрезвычайно важно, потому что в повседневной жизни люди часто под этим словом понимают что-нибудь иное. Футболисты удивляются, когда им говорят, что их игра – тоже настоящая работа (а это так и есть). Зато иной раз школьник задает учителю вопрос: «Почему гирю тяжелее поднять, чем проволочить на то же расстояние по земле? Ведь работа одна и та же: вес гири, помноженный на ее перемещение». И учитель терпеливо разъясняет, что при качении или протяжке по земле работы совершается немного, только та, что нужна, чтобы преодолеть сопротивление трения. А гиревик, как известно, работает против силы тяготения, перемещает гирю от земли.


Работа – это произведение не всякой вообще силы на перемещение, а только той, что действует вдольперемещения.

Поэтому центростремительная сила, например, не производит работы. Она перпендикулярна перемещению (всех точек шкива), а в этом случае работа силы равна нулю.

Разноголосица в употреблении слова «работа» создается в большой степени тем, что мы охотно применяем это слово в областях, иногда далеких от физики. Там же оно звучит порой не похоже на то, что подразумевается в физике.

Кто из школьников, сомневающихся в том, что игра в мяч – работа, в то же время не соглашается охотно, что работа – это не только пилить и колоть, но и заниматься, сидеть спокойно в классе, внимательно слушать преподавателя. (Правда, почему-то это часто понимается односторонне: у взрослых молчаливая деятельность ума не всегда признается за работу.)

Единица измерения работы в новой системе мер (СИ) – ньютон силы на метр пути, или джоуль ( дж). Когда хотят воспользоваться более мелкими единицами, принимают эрг – одну десятимиллионную часть джоуля. Джоуль, таким образом, равен 10 000 000 эргов. А тот, кто хочет представить себе наглядно эрг, может воспользоваться следующими сравнениями. Эрг немногим больше той работы, которую совершает человек, чтобы раз моргнуть. Комару, чтобы перелететь с мочки уха на его верхушку тоже надо совершить примерно эрг работы.

Мы начали эту часть с определения работы. Так же пойдем и дальше. Разберем еще понятия «мощность» и «энергия». Их часто путают одну с другой. Их путают даже со словом «сила». Поэтому, прежде чем говорить об этих величинах, надо внести ясность в их определение.

Что же такое мощность?

Спросите разных людей, чем, по их мнению, будет отличаться наиболее мощный автомобиль от остальных, и вы получите разные ответы. Одни скажут: самый мощный автомобиль – это тот, который тащит больше остальных; другие возразят: нет, самый мощный автомобиль тот, который развивает наибольшую скорость; третьи за мерило мощности почитают крутизну подъема, преодолеваемого автомобилем. А в действительности часто получается так, что 30-сильный трактор тянет больше 100-сильного автомобиля, а маломощный автомобиль берет на большой скорости подъем, который не под силу более мощному автомобилю.

При определении работы пользуются лишь двумя величинами: протяженностью пути и силой. Человек, напиливший кубометр дров за два часа, сделает такую же работу, как и тот, кто напилит свой кубометр с перекурами за восемь часов.

При определении мощности вводится и время: мощностью называется работа, выполненная за избранную единицу времени – за час, минуту, секунду или за какую-нибудь другую. Иначе говоря:

Мощность – это быстрота совершения работы.

Со времени усовершенствования паровой машины шотландским механиком Джемсом Уаттом (1736–1819) и вплоть до наших дней, пожалуй, самая распространенная единица мощности – это лошадиная сила ( л. с.). Выраженная в килограмм-силах на метр ( кГм) в секунду, одна лошадиная сила равна 75 кГм/сек.

На знакомых примерах эта единица мощности означает вот что.

Хороший спортсмен-атлет на короткое время может развить мощность в 1 л. с.Но при длительной работе от нормального здорового мужчины не следует ожидать отдачи большей мощности, чем 1/ 61/ 4 л. с., в среднем одной пятой лошадиной силы.

Мощность двигателя в домашнем холодильнике не превышает 1/ 4 л. с., автомобильный двигатель развивает мощность от 30 до 300 л. с. (у автомобиля «Волга» – 75 л. с.); мощность локомотива от 1000 до 4000 л. с., Красноярской ГЭС – около 7 миллионов л. с.

Космический корабль «Восток», на котором ранним утром 12 апреля 1961 года Юрий Гагарин впервые вышел на орбиту земного спутника, был оторван от Земли с помощью ракетных двигателей мощностью 20 миллионов л. с.

В системе СИ единицей мощности утверждена также известная старая единица – ватт ( вт): 1  вт= 1 дж/сек.

Часто пользуются единицей мощности, в тысячу раз большей, – киловаттом ( квт).

Мощность патефонного моторчика в этих единицах составляет 10 вт, а мощность Красноярской ГЭС – 5 миллионов квт.

Рекомендуется запомнить (с этим часто приходится сталкиваться на практике), что 1 л. с.= 0,735 квт, а 1 квт =1,36 л. с.

Мощность человека в этих единицах в среднем 0,15 квт.

Нам остается дать определение последней из величин, о которой идет речь, – энергии.

Мы знаем, что падающая вода способна совершать работу. Чтобы эта способность проявилась, на пути потока можно поставить мельничное колесо или водяную турбину.

Такой способностью обладает всякое вообще движущееся тело.

Можно привести примеры того, что и неподвижное тело обладает скрытой способностью производить работу: вода, сдерживаемая плотиной, согнутый лук, из которого можно выпустить стрелу, сжатая или растянутая пружина.

Итак, энергией называется мера способности совершать работу.

Часто энергией тела называют не меру его способности совершать работу, а самую такую способность. Это нецелесообразно. Ведь под энергией в физике понимают некоторую физическую величину. А всякая физическая величина– это не свойство, а числовая характеристика, мера свойства. Бывает иногда и так, что одним и тем же словом «энергия» пользуются для обозначения как способности совершать работу, так и меры этой способности. Мы тоже в дальнейшем этого не избежим, будем только стараться, чтобы каждый раз было ясно, в каком именно смысле употребляется слово «энергия».

Примеры, которые мы приводили, относятся к одному виду энергии – механической, причем мера способности движущихся тел производить работу называется кинетической энергией, а мера аналогичной способности неподвижных тел – потенциальной энергией.

Глава физики, посвященная энергии, выросла из классической механики. Однако она была значительно обогащена наукой об электричестве, развившейся в основном лишь за последние полтораста лет, а также термодинамикой – наукой, созданной целиком учеными XIX века.

Единицы измерения энергии те же, что и у работы, – эрги, джоули. Часто применяют еще одну удобную единицу – киловатт-час ( квт-ч). 1 киловатт-час – это работа, произведенная в течение одного часа при мощности в 1 киловатт.

Есть и еще одна – тепловая – единица энергии: калория ( кал) или килокалория ( ккал). Калория – это количество тепла, необходимое для повышения на 1 градус Цельсия 1 грамма воды, килокалория – количество тепла, нужное для повышения на 1 градус 1 литра, то есть 1 килограмма воды.

Все эти единицы связаны между собой, так что:

1 квт-ч= 3,6 млн. дж= 861 ккал.

Механика учит нас пользоваться силами. Но чтобы можно было пользоваться силой, необходима энергия. Знание законов энергии нужно для практического применения механики.

И еще одно. Очень важно уметь открывать или создавать искусственно склады энергии. Джоули не висят на ветках подобно грушам или гроздьям винограда – подойди и срывай.

Впрочем, даже фрукты, которые можно есть, сперва нужно вырастить. В определенном смысле нужно уметь «вырастить» из окружающей природы и джоули.

Это не всегда легко, потому что природа не любит ничего отдавать по доброй воле.

Превращение энергии

Не приходилось ли вам задумываться, какому виду энергии вы обязаны острым удовольствием помчаться вниз, после того как сиденьице ваших качелей достигло кульминационной высоты и замерло там на мгновение? Ясно, что ваша собственная энергия здесь ни при чем: вы можете расслабить все ваши мускулы и все равно начнете свой полет.

Конечно, вниз вас кинет из верхней точки качелей потенциальная энергия, сработает земное тяготение. Ну, а из нижней точки какая энергия вас подбросит вверх? Кинетическая энергия, это ясно. Потенциальная энергия, или энергия положения, внизу равна нулю, точно так же, как равна нулю на максимальной высоте, в момент изменения направления полета, кинетическая энергия, энергия движения.

Потенциальная и кинетическая энергии взаимно превращаются одна в другую.

Постепенно люди выяснили, что не только одна разновидность механической энергии может превращаться в другую разновидность механической, но и вообще все виды энергии: механическая, тепловая, химическая, электрическая, ядерная и т. д. – способны превращаться одна в другую. Мы живем среди этих превращений, постоянно пользуемся ими, хотя часто не замечаем этого удивительного процесса.

Прижал охотника мороз: он начинает пританцовывать, в ладоши хлопать, тереть нос и уши. Механическая энергия мускулов переходит в тепловую и согревает человека.

Он стреляет в зайца. Химическая энергия пороха превращается в механическую – летящей дроби. Вернулся охотник домой. Довольная хозяйка торопливо зажигает на кухне свет – превращает электрическую энергию в световую – и ставит на плитку разогреть холодный борщ, чтобы ту же электрическую энергию сделать тепловой.

Кончается все это тем, что ублаженный всеми видами энергии, имеющими хождение в быту, охотник заваливается спать, чтобы к утру восстановить за счет всего полученного свою энергию.

Замечательной особенностью превращения энергии является то, что оно совершается не произвольно, не как-нибудь, один раз с одним количественным результатом, другой – с другим, а подчиняясь вполне определенному закону.

Манчестерский пивовар Джемс Прескот Джоуль (1818–1889) был первым, кто установил, что при превращении одной энергии в другую соотношение между механической работой и теплотой остается всегда постоянным, и потому, зная что-нибудь одно, можно совершенно точно сказать, какому количеству другого оно равно.

В результате открытия Джоуля была установлена количественная связь между единицами тепла ( ккал) и единицами работы ( дж), на которую мы сослались в предыдущей главе.

Кому потребуется быстро перевести джоули в килокалории или килокалории в джоули (вы, конечно, догадались о происхождении этого слова), может воспользоваться следующими постоянными соотношениями («эквивалентами»):

1 кал= 4,19 дж(механический эквивалент теплоты);

1 дж= 0,24 кал(тепловой эквивалент работы).

На практике мы совершаем превращения энергии обычно в тех или иных машинах. При помощи машин удается совсем, казалось бы, уснувшую энергию, например ту, что таится в разных топливах, заставлять совершать вполне реальную, полезную для людей работу: двигать поезда, поднимать тяжелые грузы, приводить в действие станки. Образно говоря, канистра с 15 килограммами бензина могла бы поднять полуторатонный грузовик с полным грузом и пробежать с ним 100 километров.

Воспользовавшись соотношениями Джоуля, нетрудно подсчитать, какое количество энергии вводится в машину, а какое соответствует проделанной работе. Сразу бросится в глаза, что на выходе энергии всегда бывает меньше, чем на входе.

Загадки в этом нет никакой, и над причинами явления голову особенно никто не ломал: часть энергии теряется в машине на трение, на теплоизлучение в пространство, на преодоление сопротивления воздуха или другой среды, и т. д.

Потерянная для пользы человека энергия – нечто вроде платы, взимаемой природой с человека за использование ее богатств.

Чтобы получить достаточную ясность об эффективности того или другого превращения, а значит, об экономичности процесса и машины, договорились ввести особую величину – коэффициент полезного действия, сокращенно к. п. д.

Коэффициент полезного действия – это та доля энергии, затраченной на работу машины, которая используется на нужные человеку цели.

Обычно к. п. д. выражают в процентах или в виде десятичной дроби. Понятно, что всего лучше та машина, к. п. д. которой будет ближе к 100 % или 1.

К сожалению, почти во всех действующих ныне установках значение к. п. д. еще очень и очень далеко от идеала.

Даже если не вспоминать почти совсем исчезнувшие у нас паровозы (их к. п. д. редко превышал 5 %), то все равно положение не из блестящих. Бензиновые двигатели внутреннего сгорания, например, имеют к. п. д. от 10 до 25 %. У дизелей (в частности, на тепловозах) он может достигать 40 %.

Правда, многих эти числа не смущают. Они говорят:

– А вы взгляните на высшее творение природы – человека. Разве он в энергетическом смысле совершеннее? Его к. п. д. тоже не ахти какой.

Что верно, то верно: к. п. д. человека действительно не потрясает величиной. Если пищу рассматривать как своего рода топливо (энергия того, что мы едим и пьем, используется нашим организмом для поддержания температуры тела, для питания и возобновления тканей, наконец, для физической работы), то в среднем, как показывают опыты, в мышечную энергию превращается только 28 % энергии всей пищи. Такова полная величина к. п. д. человека.

Считая, что нормальный суточный рацион взрослого человека должен содержать 3000 ккал(а также 75 гбелков, 0,69 гкальция, 1,32 гфосфора и 0,015 гжелеза), получаем что в его мышечную энергию перерабатывается только 840 ккал.

Если же человек и впрямь работает как источник механической энергии (а некоторое количество людей на Земле, особенно в экономически отсталых странах, и до сих пор работает наряду с лошадьми и буйволами, обрабатывая землю, крутя жернова мельниц или колеса мелиоративных сооружений и т. д.). то такой человек, как и животное, которое он заменяет, отдает еще меньше энергии: в среднем 17 %. Остальные 11 % он тратит на себя, на труд в «нерабочее» время.

Но уместно ли ставить на одну доску к. п. д. человеческого тела и к. п. д. машин? Человек ведь славен не одной физической отдачей, а в гораздо большей степени отдачей умственной. Его достоинство не в том, что он автоматически берет одно и превращает его в другое (как машина), а в том, что он находит все лучшие и лучшие сочетания вещей. Следующую главу мы посвятим тому, как известный русский естествоиспытатель Климент Аркадьевич Тимирязев однажды очень остроумно пояснил, что значит подлинно человеческий к. п. д., как много может сделать человек, способствуя действительно полному превращению энергии.

Сравнительно низкий к. п. д. всех ныне действующих машин объясняется, в частности, тем, что редко где один вид энергии сразу превращается именно в тот, который нужен людям. Так, например, на всех тепловых электростанциях химическая энергия топлива сперва превращается в тепловую, потом в механическую энергию машин (дизели, газовые турбины и т. д.) и только после этого – в электрическую, которая нужна. На каждом промежуточном звене, естественно, свои потери, и эта дополнительная плата существенно снижает экономичность установки в целом.

Было бы весьма желательно найти такие процессы, в которых нет промежуточных звеньев. Хорошо бы, например, научиться превращать химическую энергию сразу в электрическую или в механическую без тепловой.

К слову говоря, природа может в этом показать пример. Работа наших мышц – прекрасный образец непосредственного превращения химической энергии в механическую.

В последнее время созданы первые опытные приборы с превращением энергии без промежуточных звеньев. У нас в стране недавно построен первый реактор-преобразователь «Ромашка», в котором энергия высокотемпературного реактора, работающего на быстрых нейтронах (один из видов элементарных частиц), преобразуется в электрическую с помощью кремний-германиевых полупроводниковых элементов. Этот реактор-преобразователь может послужить прообразом для энергетических транспортных установок. Теплота здесь превращается в электричество без промежуточной механики.

Успешно разрабатываются методы непосредственного преобразования энергии некоторых химических реакций в электричество. Для этого употребляются так называемые топливные элементы, работающие по принципу обыкновенных электрических батарей, но при условии, что основные исходные материалы в них все время возобновляются. К. п. д. подобных устройств, работающих при вполне умеренных температурах, может достигать 60–70 %.

Убедившись, что при превращении энергии никакие ее количества не пропадают совершенно бесследно – все идет в работу плюс потери, – ученые пришли к открытию одного из важнейших законов природы – закона сохранения энергии. Формулируется он в общем случае так:

Энергия не исчезает и не возникает вновь. При превращении энергии одни ее виды переходят в другие в строго согласованных количествах.

Первооткрывателем этого великого закона считается немецкий врач Юлиус Роберт Майер (1814–1878), работавший на голландском корабле на Яве. Пуская кровь заболевшему матросу во время стоянки корабля в городе Сурабая, Майер обратил внимание на необычайно алый цвет крови. Сперва он испугался – не вскрыл ли он вместо вены артерию. Потом его словно осенило. «Некоторые мысли, – писал он, – пронизавшие меня подобно молнии – это было на рейде в Сурабае, – тотчас с силой овладели мною и навели на новые предметы». Раз кровь ярка, значит, в ней много кислорода. В умеренных широтах венозная кровь куда темнее. Выходит, там это объясняется тем, что кислород расходуется на выработку дополнительной тепловой энергии…

Вернувшись в Европу, Майер стал напряженно работать над возникшей идеей. Так появилась в скором времени его формулировка закона сохранения энергии.

Заметим, между прочим, что почти одновременно с Майером, тот же самый закон был открыт, независимо друг от друга, известным уже нам Джоулем, датским технологом Кольдингом и гениальным французским военным инженером Сади Карно. Это неудивительно, потому что обычно всякая идея века, то есть та, что соответствует своей эпохе, приходит вовремя; она как бы носится в воздухе подобно цветочной пыльце, готовая оплодотворить любой мозг, способный стать хорошей почвой для этого. Но так уж бывает, что кто-то оказывается впереди…



Красный цвет

Благотворным превращениям энергии человек обязан своим существованием. Прогресс науки и техники убедительно показывает, что, взяв в собственные руки управление такими превращениями, люди быстро изменяют облик природы, делают ее покорнее и щедрее.

Людям помогает Солнце. Не только своим теплом, своей энергией, воплощенной в топливах и речных течениях. Солнце играет роль в формировании самого сознания человека: ведь свыше 90 процентов всей информации о внешнем мире приходит в мозг через глаза – чудесный чувствующий инструмент, развившийся под влиянием солнечного излучения.

Наш ум имеет не только трудовое, но и звездное происхождение, мы подлинные дети труда и света.

Космические корни человечества всегда волновали многих и порождали разные гипотезы. Интересна одна из них – гипотеза замечательного естествоиспытателя Климента Аркадьевича Тимирязева. Приведем ее как иллюстрацию, как пример.

Тимирязев верил, что цвета – и у истоков жизни, и в современном обществе – играют большую роль в развитии живущего. Цвет – это паспорт определенной световой волны, иначе говоря, волны энергии. Воздействуя на глазной нерв и через него на соответствующий участок мозга, «хороший» цвет дает и хороший стимул.

Еще до победы пролетарской революции, в июне 1917 года, Климент Аркадьевич Тимирязев написал статью под вызывающим для того времени названием «Красное знамя» (опубликована ока была годом позже в издательстве «Парус»). В ней мужественный ученый открыто объявлял себя сторонником рабочих, крестьян и трудовой интеллигенции и бросал вызов их врагам. В красном знамени Тимирязев видел символ борьбы революционных масс с темными силами реакции, видел вместе с тем символ победы труда и знания над такими силами.

Человек большого кругозора всегда стремится к обобщениям, многообразие бытия для него – поле поисков немногочисленных единых и простых законов. Естественно, искал подобных обобщений и Тимирязев. Ученый и борец, натуралист и материалист-мыслитель, К. А. Тимирязев старался выявить космическое значение красного цвета.

«Когда в навеки памятный день 1 Мая 1917 г., – писал он в своей статье, – я не мог оторвать глаз от картины общего праздника пробуждения весны и возрождения целого народа, в моей голове невольно рождался ряд других привычных мыслей из области совершенно иного порядка явлений, мыслей о значении этого красного цвета в мироздании, в том мировом процессе, который связывает сияние солнца с присутствием жизни на Земле».

Что же можно сказать непосредственно о красном цвете? Как все больше выясняется, красный цвет играет стимулирующую роль и в прямом смысле: в мироздании, в эволюции важнейших его форм – форм жизни.

Что может быть величественнее зрелища ночного неба, не задернутого покровом облаков? Люди издавна всматривались в него, но даже не догадывались, что оно богато красками. Мерцая на фоне иссиня-черного неба, звезды представлялись людям одинаково – либо белыми, либо бледно-желтыми.

И вдруг буквально в самое последнее время выяснилось, что такая цветовая монотонность звезд – всего лишь следствие слабости их излучения, доходящего до нас. Человеческий же глаз слабо освещенные тела видит однотонными. В действительности звезды и туманности сияют всеми цветами радуги и среди этих цветов преобладает… красный.

Недавно Калифорнийский технологический институт и обсерватории Маунт-Вилсон и Маунт-Паломар (США) опубликовали первые цветные снимки звездных туманностей. Снимки были получены в результате длительной выдержки чувствительных фотопленок, улавливающих свет и цвета, недоступные человеческому глазу.

Поистине волшебное зрелище представляют собой красочные изображения отдельных участков звездного неба.

Сквозь тонкую пелену космической пыли светится неравномерно красным цветом туманность «Северная Америка», получившая свое название потому, что ее причудливые очертания напоминают карту североамериканского материка – от Ньюфаундленда до Панамского перешейка. Только пояс молодых раскаленных звезд, обрамляющих схожую по массам и размерам с нашей Галактикой туманность Андромеды, излучает синий свет; более древние и холодные звезды, находящиеся в центре туманности Андромеды, отсвечивают красным. Красны щупальца Крабовидной туманности – по-видимому, это газы, атомы которых подвергаются бомбардировке атомными частицами. Созвездие Лебедь напоминает паутину, усеянную драгоценными камнями преимущественно красного и отчасти белого и голубого цветов. Преобладает красный цвет и на других снимках.

Даже ближняя к нам звезда – наше Солнце – если разобрать ее по элементам оптического спектра, дает явное предпочтение одному цвету: ширина красной полосы спектра больше ширины любого из других шести цветных участков.

Природа, по-видимому, отдает предпочтение красному цвету и в условиях нашей планеты.

Известно, что все растения, способные к фотосинтезу, иначе говоря, к созданию из стойких неорганических веществ при помощи света основных органических веществ – белков, углеводов и жиров, – содержат хлорофилл. Из всех растительных пигментов только хлорофилл поглощает красные лучи. Таким образом, фотосинтез может протекать вполне удовлетворительно при одном лишь красном свете; он оказывается важнейшей частью спектра. Животные получают свою долю преобразованной солнечной энергии, поедая растения или тела других животных. Значит, и жизнь животных в определенном смысле зависит от красного света.


Красная Вселенная! Или, выражаясь физическим языком, Вселенная, в видимом диапазоне которой преобладают электромагнитные волны с частотой около 5·10 14 гц.

Случайности эволюции сделали наш глаз именно таким, а не иным, воспринимающим лишь небольшую оптическую гамму, тянущуюся от красного цвета до фиолетового. Благотворной ли была подобная случайность для возникновения и развития человеческого рода? Способен ли разум развиться у существ, воспринимающих иную электромагнитную гамму, невидимую для нас?

Какое значение имеет красный цвет Вселенной (если предварительный вывод о «красноте» ее подтвердится и дальнейшими исследованиями) для жизни вообще?

Прав ли был Тимирязев, придававший своему любимому цвету столь большое значение?

Пока вопросы остаются без ответа. Но они поставлены, а это очень важно. Это возбуждает мысль и манит ее искать там, где раньше не искали.

Вполне может подтвердиться гипотеза Тимирязева о том, что красный цвет (не желтый – самый яркий, не фиолетовый – самый энергичный, а именно красный) – самый животворный для всего живого. Тогда пророчески прозвучат слова великого естествоиспытателя из статьи, о которой мы упоминали:

«Теперь мы можем смело сказать, что из всех волн лучистой энергии солнца, возмущающих безбрежный океан мирового эфира и проникающих на дно нашей атмосферы, обладают наибольшей… работоспособностьюименно красные волны, они-то и производят ту химическую работув растении, благодаря которой возникает возможность жизни на Земле».


    Ваша оценка произведения:

Популярные книги за неделю