Текст книги "Возвращение чародея"
Автор книги: Владимир Келлер
Жанры:
Детская образовательная литература
,сообщить о нарушении
Текущая страница: 15 (всего у книги 16 страниц)
Человек, теория относительности и космос
В главке «Масштабные эффекты» мы видели, меняются размеры тела – меняется соотношение сил, действующих на него: одни силы увеличиваются относительно других, другие уменьшаются. Человек, который вздумал бы выявлять законы природы, изучая механическое поведение различных объемов воды, пожалуй, мог бы прийти к выводу, что законы эти различны, и «на уровне росинки» совсем не те, что «на уровне стакана».
Мы видели, почему это неверно. Материальный мир един, едины и управляющие им физические законы. Но так уж он устроен, что на любом «размерном уровне» выпячиваются одни силы и подавляются другие. Резкое уменьшение размеров тел приводит человека в мир, где усиливаются и даже господствуют эффекты, не наблюдаемые в повседневности, хотя они бесспорно есть и здесь. Чтобы их учесть, физики разработали механику микрочастиц – квантовую механику, законы которой в частном случае (при движении больших тел, когда «эффекты малости» приравнивают к нулю) принимают форму обыкновенных законов классической физики.
Оказалось, что и очень резкое увеличение скоростей движения тел делает явными своеобразные эффекты, не наблюдаемые обычно. Их изучает раздел физики, известный под названием «теория относительности».
Пока человек имел дело со скоростями, не превышающими одного-двух (редко больше) километров в секунду, он мог пренебрегать релятивистскими эффектами: они в этом случае исчезающе малы. Успехи атомной физики, описывающей частицы, летящие со скоростями, близкими к световой, уже не допускают подобного пренебрежения.
Что же представляет собой эта знаменитая, но непонятная еще для очень многих физическая теория?
Среди людей, далеких от физики, название теории порой вызывает смутную мысль, что речь идет о чем-то вроде того, что якобы «все в мире относительно». Нет ничего более далекого от истины, чем это утверждение, хотя ссылка на относительность в теории и имеется.
Теория относительности, как мы видели (стр. 75 и далее), состоит из двух частей: специальной теории относительности и общей теории относительности, или, как ее теперь часто называют, теории тяготения. Обе части разработаны Альбертом Эйнштейном и интересны, помимо всего прочего, тем, что в их основе нет ничего нового: только твердо установленные и давно, до Эйнштейна, известные факты. На эту сторону обратил особое внимание еще С. И. Вавилов.
В любой науке наступает момент, когда существующая теория не может объяснить новые явления. Тогда ищут более общую теорию. Теория относительности вобрала в себя классическую физику, не опровергая и не исключая ее.
Создавая первую часть своей теории, Эйнштейн исходил из следующих двух бесспорных, основанных на опыте положений. Одно из них называется обычно (и очень неудачно) принципом относительности: во всех инерциальных системах отсчетов все физические явления протекают по одинаковым законам. Другое основное положение – принцип постоянства скорости света: скорость света в вакууме одинакова во всех инерциальных системах, она близка к 300 тысячам км/секи не зависит от того, движется ли источник света или покоится.
Можно показать, что оба эти положения противоречат одно другому, если придерживаться обычных представлений о физических свойствах пространства и времени, точнее говоря, представлений, бывших обычными до Эйнштейна.
Более того, тем, прежним представлениям противоречит и одно лишь утверждение о постоянстве скорости света. В самом деле, возьмем пример. Пассажир разгуливает по палубе теплохода, держа в руках электрический фонарик. Сразу получается парадокс. Пассажир движется с различными скоростями по отношению к теплоходу, к берегу, к Солнцу. А по второму положению теории Эйнштейна луч света от его фонарика струится с одной и той же скоростью по отношению и к палубе, и к берегу, и к Солнцу.
Эйнштейн был первым, кто имел мужество сказать, что если оба положения верны, то они не могут быть противоречивыми, что противоречие надо искать в наших представлениях о явлениях природы, о пространстве и времени.
Эйнштейн нашел путь примирения двух принципов. Для этой цели надо было пересмотреть физические понятия пространства и времени, признать за ними свойства, непохожие на те, что признавала классическая физика.
Как результат примирения противоречия родилась, в частности, формула:
Е = mс 2,
гласящая, что полная энергия, содержащаяся в теле, равна его массе, помноженной на невыразимо большую величину – квадрат скорости света.
Теория относительности содержит в себе много совершенно фантастических на первый взгляд утверждений. Например, оказывается, что длина движущегося тела сокращается в направлении движения, причем тем больше, чем больше скорость тела приближается к скорости света. Однако масса тела при этом возрастает. Возрастает и длительность явлений. В будущем космическом корабле, летящем со скоростью, близкой к световой, затормозятся все процессы, если измерять их по часам, оставшимся на Земле. Медленнее будет биться сердце, медленнее будут расти растения, перемещаться часовая стрелка, колебаться электроны в атомах и т. д.
Стал широко известен часто приводимый пример, что если молодой человек, оставив годовалого сына, слетает на околосветовой ракете к звезде Вега и через год вернется, то сын его будет старше своего отца: ведь отец жил в замедленном ритме: его год может оказаться равным пятидесяти и более годам людей, оставшихся на Земле.
Все это кажется настолько невероятным, настолько противоречит здравому смыслу, что вначале даже многие физики не соглашались с Эйнштейном. Известен случай, когда один американский профессор, прослушав лекцию творца теории относительности, сказал ему:
– Мой здравый смысл не принимает вашу теорию. Он отклоняет все, чего нельзя увидеть собственными глазами.
– Ну что ж! – сказал Эйнштейн. – Кладите свой здравый смысл сюда, на стол. Начнем с того, что проверим его наличие.
Общая теория относительности отличается от специальной тем, что наряду с двумя основными положениями специальной теории принимает еще один – третий – принцип: эквивалентность (равноценность) сил тяготения и инерционных сил.
На крутом повороте дороги вас прижало к стенке автомобиля. «Инерция!» – говорите вы лаконично другу, сидящему рядом с вами и о чем-то мечтающему с закрытыми глазами. «Какая же это инерция, – может возразить ваш друг, не открывая глаз, – когда мы неподвижны? Сбоку появилось массивное тело, и оно притягивает нас».
При всей фантастичности ответа, вы не сможете переубедить приятеля, если он не откроет глаз или если окна автомобиля хорошо завешены. Приборы, захваченные для измерения инерции, ничего вам не дадут, потому что и на приборах по измерению силы тяжести будет то же количество килограммов, действующих в ту же сторону. В этом состоит наглядный смысл принципа эквивалентности инерции и тяготения.
Мир общей теории относительности отличается от мира специальной теории относительности тем, что во втором движение систем отсчета друг относительно друга происходит прямолинейно и равномерно, иначе говоря, без ускорения.
Первый же учитывает общий случай: когда системы отсчета движутся и с ускорениями, например вращаются. Космический корабль с установившимся равномерным движением по прямой подчиняется специальной теории относительности. В моменты же набора скорости, полета по кривой и поворота на обратный курс к нему надо применить выводы общей теории Эйнштейна.
Теория относительности гласит, что релятивистские эффекты времени возникают не только за счет создания больших или меньших разниц равномерных скоростей двух тел. Время замедляется и на более массивных телах (например, на Солнце или на белых карликах). Наоборот, на небольших телах длительности явлений сокращаются: часы на искусственных спутниках убыстряют ход по сравнению с часами на Земле.
Эквивалентность тяготения и инерции проявляет себя в том, что совсем не обязательно увеличивать массу тела, чтобы получить на нем релятивистские эффекты: достаточно придать ему большое ускорение. «Искусственные килограммы» – за счет ускорения – удлинят промежутки времени на ракете так же, как удлинили бы естественные килограммы за счет роста массы.
Самым убедительным подтверждением правильности физической теории является, конечно, опыт. Какими же опытами проверялась теория относительности?
Пожалуй, самыми известными из них являются те, что связаны с наблюдением лучей звезд у края солнечного диска во время затмений. Если световые волны обладают, как утверждает теория, массой, то они, по закону всемирного тяготения, должны притягиваться другими массами, допустим Солнца. Так в действительности и происходит. Наблюдения во время солнечных затмений показывают, что лучи звезд отклоняются от прямолинейного пути, проходя мимо нашего светила. Это выражается в кажущемся смещении звезд, расположенных в непосредственной близости к краю Солнца.
Другая важная проверка теории Эйнштейна касалась того утверждения общей теории относительности, которое гласило, что свет, обладая инертной массой, частично теряет энергию, чтобы вырваться из поля тяготения испускающего его тела (например, звезды). Физика утверждает, что при этом должно произойти «покраснение» света, точнее говоря, некоторое удлинение световых волн и сдвиг их в красную сторону спектра. Явление это называется гравитационным красным смещением.
И что же! Такое смещение на самом деле наблюдается в спектральных линиях Солнца и тяжелых звезд.
Интересная проверка эффекта замедления хода часов в поле силы тяжести была проделана совсем недавно (но уже многократно) с помощью точнейшего прибора для измерения частот, основанного на так называемом эффекте Мёссбауэра (по имени молодого физика из ФРГ Рудольфа Мёссбауэра, работающего теперь в США и открывшего этот эффект). Из теории относительности следует, например, что если двое совершенно одинаковых часов поместить друг от друга на расстоянии 1 метр по высоте, то нижние часы должны отставать от верхних на 10 -16секунды, так как они находятся ближе к центру Земли и на них действует большая сила тяготения, чем на верхние часы. Эффект Мёссбауэра позволил найти такую разницу!
Можно было бы назвать и другие примеры успешных проверок теории относительности, но мы ограничимся приведенными. Скажем лишь одно.
Положения теории относительности теперь настолько убедительно подтверждены, что к ним нельзя относиться иначе, как к законам природы. Допустить нарушение какого-нибудь из этих положений можно лишь с попутным допущением нарушения того порядка вещей в природе, который нам представляется незыблемым.
Правда, среди нефизиков встречаются активные противники идей Эйнштейна. Но доводы их – по логике – не отличаются от тех, что приводили в свое время противники шарообразности Земли.
В науке спор о справедливости теории относительности решен давно, и решен на опыте: теория эта верна. Если же она не в ладах со «здравым смыслом», то тем хуже тому «здравому смыслу», который противоречит научным выводам. Важно, что теория в ладах с экспериментом, с практикой, а, как известно, нет критерия истинности более надежного, чем этот чрезвычайно строгий материалистический критерий.
Как законы сохранения подняли престиж неизменного в природе
Постоянное в потоке
Заканчивая чтение книги, многие, возможно, подумают: а не получается ли все же так, что в том древнем споре мудрецов (см. «Почерк природы»), вопреки утверждению автора, будто «все оказались правы», в действительности взяли верх сторонники той точки зрения, что природа – это вечное движение и нет в ней ровно никакого постоянства: уж слишком многочисленны и ярки примеры изменений, происходящих в ней.
Невозможно умалить глубины мышления сторонников этой точки зрения (назовем здесь некоторых из философов): Фалеса, Анаксимандра, Анаксимена, Гераклита Эфесского, Левкиппа, Демокрита. Все же, утверждаем это еще раз, были правы их противники – те, кто говорил о неизменном и стабильном в вечно изменяющемся мире: Анаксагор, Эмпедокл, Эпикур, Лукреций. Живи они в наши дни, они нашли бы особо убедительное подтверждение своей точки зрения в законах сохранения.
Собственно говоря, идея сохранения таится более или менее во многих законах физики. Возьмите первый закон движения Ньютона. Инерция по самому своему существу есть стремление к неизменности, неизменности настоящего положения.
Идея сохранения таится и в третьем законе Ньютона (нужно сказать, что он вообще представляет собой следствие в механике одного из законов сохранения, закона сохранения импульса). Мгновенно создавая противодействующую силу, природа словно печется о вечном равновесии (пусть иногда и динамическом) в своем Великом Царстве. Словно она боится, что неуравновешенная сила что-то вынесет из ее кладовых.
Законы сохранения – очень фундаментальные, очень общие законы физики. Они выражают несотворимость и неуничтожимость материи и ее движения. Но что значит здесь «несотворимость и неуничтожимость»? С естественнонаучной точки зрения это – постоянство некоторых характеризующих материю и ее движение величин при тех или иных взаимодействиях, превращениях, движениях. Постоянство таких атрибутов (неотъемлемых признаков) возводит их в ранг основных величин, а изучение их уточняет физическую картину объективно существующей реальности.
Не сразу удалось узнать известные сегодня неизменные характеристики материи и ее движения. Даже постоянство массы (в пределах справедливых для классической физики) – ныне для любого школьника очевиднейшее свойство – выявилось не «одним прекрасным утром». Долго были разные точки зрения на то, «куда земля девается, когда кол вбивается». Прогресс химии многое прояснил в проблеме сохранения массы. Когда же в нашем веке атомная теория показала, что химические законы всего лишь следствие законов физики, дальнейшее уточнение числа и формулировок законов сохранения стало привилегией физиков.
Исторически первой общей формулировкой принципа сохранения – «сохранения вещества и движения» – была формулировка М. В. Ломоносова.
«Но все встречающиеся в природе изменения, – писал он Леонарду Эйлеру 5 июля 1748 года, – происходят так, что если к чему-либо нечто прибавилось, то это отнимется у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого… Так как это всеобщий закон природы, то он распространяется и на правила движения: тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения, сколько сообщает другому, им двинутому».
Аккуратной, чуждой равно расточительству и наживе изображена здесь вездесущая природа: «Что у меня – тем пользуюсь; своим не поступлюсь, добавок не желаю».
Теперь закон сохранения вещества (точнее, массы), впервые высказанный Ломоносовым, объединен с законом сохранения энергии, в открытии которого в 1841 году основная роль принадлежала немецкому врачу Юлиусу Роберту Майеру. В основе названного объединения – соотношение специальной теории относительности E = mc 2, показывающее, что каждому изменению энергии ( Е) тела соответствует вполне определенное изменение его массы ( m) и обратно.
Так как постоянный коэффициент здесь ( с 2– квадрат скорости света) колоссальная величина, то из этого соотношения вытекает, что уже ничтожное изменение массы сопровождается огромным изменением энергии.
С законом сохранения энергии тесно связан закон сохранения количества движения, или импульса. Импульс – это произведение массы на скорость. Подобно скорости, импульс тоже вектор, то есть величина, определяемая не только абсолютным значением, но и направлением. Обе величины характеризуют движение, но закон сохранения импульса есть, а закона сохранения скорости не существует. Это означает, что скорость рангом ниже импульса, что она не фундаментальная величина, а ей место среди других величин, вроде перемещений и т. д.
В школе изучают закон сохранения импульса под названием третьего закона Ньютона, гласящего, что «действие всегда по величине равно, а по направлению противоположно противодействию». Не менее распространена, однако, и другая формулировка: «в отсутствие внешних сил полный импульс замкнутой системы частиц неизменен». Подчиняясь этому закону, импульс ружья при отдаче сразу после выстрела равен и противоположен по знаку импульсу пули; бегущий человек отталкивает ногами Землю назад (стань наша планета на миг по массе сравнима с ним, он вынудил бы ее крутиться наперекор извечному движению) и т. д.
Среди других важнейших законов сохранения – закон сохранения момента импульса (в простом случае тела, вращающегося по окружности, величина момента импульса равна произведению импульса на радиус окружности, по которой вращается тело).
Закон сохранения момента импульса утверждает, что полный момент импульса замкнутой системы остается неизменным. Если вы захотите испытать действие этого закона на себе, сядьте с двумя гирями в руках на винтовой «пианинный» стул. Раскрутитесь и постарайтесь вращаться, не опираясь ни на что. Горизонтально вытянув руки – с гирей в каждой из них, – вы будете вращаться довольно медленно. А потом согните руки, приблизьте их к груди. Скорость вашего вращения резко возрастет.
Фигуристы, выступающие на коньках, акробаты на трапеции, балерины, делающие пируэт, – все они с успехом применяют закон сохранения момента импульса, хотя, может быть, не догадываются об этом.
Среди широкоизвестных законов сохранения – закон сохранения энергии, о котором мы уже говорили. Физика называет и другие законы сохранения, например закон сохранения электрического заряда. Он гласит, что заряд не может ни появиться, ни уничтожиться; одна незаряженная нейтральная частица не в состоянии, например, превратиться в одну заряженную, хотя бы это превращение не противоречило всем остальным законам сохранения.
Галерея генералиссимусов
Квантовая механика показала, что и в микромире справедливы все законы сохранения, открытые для мира больших тел (хотя голоса сомнений в этом звучали далее в кабинетах корифеев). Вместе с тем в микромире выявились новые законы сохранения, такие, например, как сохранение «барионного заряда» и «лептонного заряда».
Барионами называются самые тяжелые элементарные частицы – протоны, нейтроны, гипероны и их античастицы; все они, за исключением протона и антипротона, распадаются сами собой и превращаются в конце концов в протоны, то есть снова в барионы; это одно из проявлений закона сохранения числа барионов или барионного заряда. В главке «Почерк природы» мы говорили, что благодаря этому закону частицы, из которых состоят все тела, никогда не смогут полностью превратиться в электроны и нейтрино.
Лептонами называются самые легкие элементарные частицы – нейтрино, электроны и их античастицы.
Последние исследования показали, что, кроме точных законов сохранения, существуют еще и приближенные, неточные законы сохранения. Бывает так, что некоторая физическая величина приблизительно сохраняется, если процессы идут очень быстро и заканчиваются в короткое время. Но в процессах медленных эта величина не сохраняется.
Типичным примером является такая квантовомеханическая, встречающаяся только в микромире и широкой публике неизвестная величина, как странность. Установлено совершенно строго, что если процесс протекает приблизительно за 10 -23секунды, то странность сохраняется. А в иных, более медленных процессах, протекающих за время приблизительно 10 -10секунды (в десять триллионов раз медленнее первых), странность не сохраняется.
Такая же картина наблюдается и для другой квантово-механической величины, так называемой четности. И эта величина сохраняется (во всяком случае, приблизительно) в быстрых процессах и не сохраняется в процессах медленных.
У вдумчивого читателя может возникнуть вопрос: «А от чего, собственно, зависит скорость процессов в микромире?»
Скорость процессов в микромире зависит в основном от рода сил, вызывающих этот процесс.
Мы говорили, что и во времена Ньютона и вплоть до самого начала нашего века ученым было известно только два рода фундаментальных сил природы: электромагнитные и тяготения. Все остальные, с которыми люди сталкивались в своей практике, были лишь следствием этих основных сил.
Микромир открыл перед человеческим взором еще два рода сил.
Одни возникают, когда два постепенно сближающиеся нуклона (протон – протон, нейтрон – нейтрон или протон – нейтрон, неважно, в каком парном сочетании) дойдут до расстояния 2,5·10 -13сантиметра, они внезапно «почувствуют» такое сильное взаимное притяжение, что перед ним померкнет всякая другая сила. Этим силам дали название «сильных взаимодействий», и именно им обязаны быстрые процессы своим происхождением.
Другой род сил возникает при самопроизвольном распаде некоторых ядер с выделением электронов (или бета-распаде). Силы, выталкивающие электроны из ядер, много слабее сильных взаимодействий, и их назвали слабыми взаимодействиями.
Таким образом, в микромире действуют (если не считать исчезающе малых гравитационных сил) три рода сил: сильные взаимодействия, электромагнитные силы и слабые взаимодействия.
Силы действуют, притягивают или отталкивают частицы и обусловливают, как мы видели на примерах, действие или бездействие некоторых приближенных законов сохранения.
Соберем все наиболее важные законы сохранения вместе и назовем, дав самую краткую характеристику там, где это требуется:
Суммарный закон сохранения массы и энергии.
Закон сохранения импульса, или количества движения.
Закон сохранения момента импульса.
Закон сохранения электрического заряда.
Закон сохранения тяжелых частиц (барионов).
Закон сохранения легких частиц (лептонов).
Закон сохранения изотопического спина.
«Спином» (от английского слова «spin» – «кружение», «верчение») в физике называется величина, характеризующая, говоря нагляднее, ее собственный механический вращательный момент. Закон сохранения изотопического спина – квантовомеханический закон, справедливый лишь для сильных взаимодействий. Он говорит, что силы, действующие между двумя протонами, совершенно одинаковы с силами, действующими между протоном и нейтроном. Он подчеркивает, что для этих частиц электрический заряд не играет никакой роли (вспомните, что протон заряжен положительно, а нейтрон, как показывает его название, не имеет заряда). Поэтому указанный закон сохранения называют также законом зарядовой независимости. Из-за некоторого влияния электромагнитных сил закон сохранения изотопического спина может нарушаться в пределах до одного процента. То есть он относится к приближенным законам.
Закон сохранения странности.Квантовомеханический закон, справедливый для сильных и электромагнитных взаимодействий, но нарушающийся при слабых взаимодействиях.
Закон симметрии античастиц.Как и предыдущий закон, он нарушается при слабых взаимодействиях.
Закон сохранения четности.Тоже нарушается при слабых взаимодействиях.
Закон общей симметрии частиц – античастиц.Согласно этому закону, если любой физический эксперимент отразить в зеркале и если, кроме того, заменить все частицы соответствующими античастицами, нельзя принципиально сказать: отраженный или реальный опыт виден в зеркале. Полагают, что этот закон сохранения справедлив для всех взаимодействий.