355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Келлер » Возвращение чародея » Текст книги (страница 12)
Возвращение чародея
  • Текст добавлен: 16 октября 2016, 20:39

Текст книги "Возвращение чародея"


Автор книги: Владимир Келлер



сообщить о нарушении

Текущая страница: 12 (всего у книги 16 страниц)

Как человеческая мысль преодолела барьер невидимого мира



Масштабные эффекты

Признаться откровенно, я никогда не мог понять, почему все книги, стремящиеся рассказать доступно о том, что такое квантовая теория, теория относительности и другие трудные главы современной физики, не начинаются с объяснения, почему эти главы трудны для человека. Вероятно, хорошим введением в физику был бы рассказ о том, что ее трудности – следствие того, что она изучает вещи и явления, не похожие на человека и на привычный ему мир.

В самом деле, ведь человек – только часть природы, вполне конкретный сгусток материи, имеющий свои размеры, массу, диапазон скоростей и продолжительность существования. В известном смысле человек как бы сам собой измеряет окружающую Вселенную: инструменты, которыми он производит измерения, он создал в масштабах собственного тела. Мерки, применяемые человеком, – сантиметры, метры, километры, метры в секунду, секунды или часы – это всё такие мерки, которые, каждую в отдельности, легко представить (чуть ли не пощупать) и которыми, не пользуясь слишком большими числами и слишком дробными тоже, удобно измерять тела и явления нашей практики.

Но ведь мир, как все больше выясняется, много шире человеческих масштабов. Мир простирается и по ту, и по сю стороны человеческих ощущений: и в сторону титанических (с человеческой точки зрения) вещей, и в сторону предметов и явлений невидимок (назовем их так за невероятно малые размеры, короткие сроки жизни, быстрые скорости перемещения и т. д.).

Очередной балласт, который должен сбросить со своих плеч человек, чтобы правильнее понять природу, – это балласт «антропоморфности»: навязывания Вселенной на всех ее уровнях человеческих масштабов и закономерностей нашего мира.

Не сделав этого, человек немедленно даст волю тормозящим силам умственной инерции.

Увы, во власти такой инерции находятся еще очень многие.

До сих пор, например, не в диковинку встретить человека, любящего пофилософствовать на тему о повторяемости миров на разных уровнях. Мне пришло однажды письмо, в котором автор сочувственно цитировал слова известного английского астронома XVIII–XIX веков Вильяма Гершеля об обитаемости Солнца. «Я полагаю себя достаточно авторитетным в астрономии, – гордо говорил Гершель, – чтобы считать Солнце обитаемым миром. Его подобие остальным планетам Солнечной системы в отношении твердости, атмосферы и пересеченного характера поверхности, вращения вокруг оси, падения тяжелых тел – все это приводит к весьма вероятному предположению о том, что Солнце так же обитаемо, как и остальные планеты, и населено существами, органы которых приспособились к необычным условиям этого гигантского шара».

Ищут аналогию с земной жизнью и на другом конце масштабного спектра – в области микромира. В подобных случаях мне вспоминается знаменитое стихотворение Валерия Брюсова:

 
Быть может, эти электроны —
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков…
 

Гершель был великим астрономом, а Брюсов – образованным человеком своего времени. Но заблуждался и астроном, полагавший, что за необычайно яркой атмосферой Солнца находится непрозрачное, прохладное и очень твердое небесное тело, и поэт, размышлявший о цивилизации на электроне.


«Природа не похожа на матрешек», – сказал однажды известный французский физик-коммунист Поль Ланжевен. Он хотел выразить ту простую мысль, что переход от одного «мира» физики к другому не похож на простую смену масштабов, как это бывает при извлечении одной деревянной матрешки из другой. В физике такой переход обязательно связан с какими-то качественными изменениями. Это происходит потому, что природа многолика, и каждый ее «мир», обусловленный размерами тел или скоростями протекания процессов, имеет свое неповторимое лицо.

Представьте себе, что некая неведомая сила вдруг уменьшила вас в тысячу раз. Вам покажется, что вы попали на другую планету. Песчинки превратятся в каменные глыбы, трава – в непроходимый лес фантастических плоских деревьев с острыми вершинами, убегающими в бесконечность. Страшные, порывистые чудовища – муравьи – бросятся на вас и слопают в момент, если вы не успеете обрести свой обычный вид.

Одна и та же точка Вселенной – в пространстве и во времени – воспринимается по-разному существами, резко различающимися размерами. Одни увидят то, чего не видят другие; зато глаза первых будут закрыты на очевидное для вторых.

Возьмем другой пример. Нальем в стакан воды и перевернем его. Вода, конечно, выльется. Теперь опустим в воду стеклянную палочку и вынем ее. Что мы увидим? Несколько крупных капель одна за другой быстро скатятся и упадут, но последняя капля задержится и повиснет на палочке. Для третьего, столь же простого опыта воспользуемся пульверизатором. Струей воздуха превратим воду в тончайшую водяную пыль. Что же произойдет теперь с молекулами воды, совершенно одинаковыми с теми, что были и в первых двух случаях? Они не упадут на землю: образовавшиеся жидкие пылинки будут свободно парить в воздухе, не поддерживаемые никакими твердыми предметами.

Итак, налицо одни и те же физические тела – молекулы воды. Одни и те же силы действовали на них: силы тяжести, молекулярное сцепление, сопротивление воздушной среды (иначе говоря, сила трения воздуха). А результаты совершенно разные, потому что соотношениясил различались между собой. В одном случае преобладали силы тяжести, в другом – молекулярное сцепление, в третьем – сопротивление воздушной подушки. В конечном счете это привело к разным результатам.

Размер определяет круг явлений, в который попадает испытуемое тело. Хотя основные законы природы, разумеется, остаются неизменными на всех размерных уровнях, но соотношение между влияющими факторами настолько изменяется, что приходится говорить о разных «классах взаимодействий». Мы уже не имеем права сказать, что вода во всех случаях упадет на землю, если ее оставить без сосуда. Приходится оговаривать условие ее падения: когда поперечник занимаемого ею пространства соразмерен с величиной «сантиметр», иначе говоря, когда изучаемое тело принадлежит к миру, воспринимаемому человеком непосредственно при помощи своих органов чувств.

Сейчас для этого мира придумали особое название: «макромир», от греческого слова «макро» – «большой». Сюда относят все тела, начиная с больших молекул. Тысячелетиями люди в своей практике имели дело только с ним и даже не догадывались, что существуют иные круги явлений, обусловливаемые очень сильным изменением размеров. Даже Исаак Ньютон был убежден, что обнаруженные им законы механического движения и всемирного тяготения действуют на все тела совершенно одинаково и что они главенствуют повсюду, независимо от степени малости тел. Увы, он заблуждался. Но люди узнали об этом совсем недавно, какие-нибудь пятьдесят – шестьдесят лет назад. Узнали, лишь расколов атом и убедившись, что существует мир элементарных частиц, или, как его стали называть, «микромир» (от слова «микро», что значит «очень малый»).

Итак, «масштабный эффект» проявляет себя даже в пределах макромира – мира «видимых» вещей. Но, конечно же, он неизмеримо значительнее, когда мы с помощью тонких физических приборов или умозрительно обращаем взор в недра микромира, то есть мира молекул, ионов, атомов, атомных ядер и элементарных частиц. Там властвуют силы, незаметные или слабо заметные в макромире. А такая могучая причина процессов, которую мы уважительно называем всемирным тяготением, там исчезающе ничтожна. Как выяснилось, электростатическое отталкивание между двумя электронами в 4,17·10 42раз превышает гравитационное притяжение между ними! Неудивительно, что физики, изучающие атом, обычно пренебрегают силой тяготения, сбрасывают ее со счетов.

Проникновение человеческого сознания в микромир началось на стыке последних двух веков. Раздвинув створки этого мира, ученые приступили к выяснению действующих там законов. Постепенно была создана основная теория процессов микромира – квантовая механика. Примерно до середины 50-х годов XX столетия физики трижды спускались по ступенькам вглубь: сперва от больших тел к атому, потом от атома с характерным для него размером в 10 -8сантиметра к атомному ядру размером в 10 -12сантиметра, затем от атомного ядра к его составной частице – нуклону (протону и нейтрону) с характерным размером в 10 -13сантиметра.


В 1955 году первая из 30 тогда известных элементарных частиц – протон – перестала считаться неделимой. Работающий в Стэнфордском университете (США) молодой физик Роберт Гофштадтер доказал экспериментально (обстреливая протоны электронами, разогнанными на линейном ускорителе), что внутри протона есть своего рода твердое ядро – «керн» – размером примерно в десять раз меньше размера всей частицы. Этот керн имеет электрическую природу, поэтому его называют иногда также «электрическим облаком», в отличие от внешнего «нуклонного облака», соответствующего размеру 10 -13сантиметра.

Последующие шесть лет принесли Гофштадтеру новые успехи: керн был обнаружен и в нейтронах. А в 1961 году все эти работы отмечены высшей наградой Шведской академии наук – Нобелевской премией.

Так был сделан как бы еще один – четвертый – шаг в глубь материи, в область, ограниченную размером 10 -14сантиметра.

Обозревая пройденные ступени, легко впасть в тот же грех примитивизма, который даже умных людей заставлял подозревать, что на Солнце и на электронах живут разумные существа. «Ага, – могут сказать иные, – дальнейший прогресс физики микрочастиц предельно ясен. За четвертой ступенькой начнется пятая – внутри керна обнаружат какую-то еще меньшую сердцевину; потом шаг шестой – находка сердцевины сердцевины керна; и так далее без конца…»

В действительности все гораздо сложнее.

Существуют определенные свидетельства тому, что дальнейшее дробление вещества на части становится невозможным и практически и теоретически. Более глубокое «упрощение» материи если и возможно, то уже не в результате уменьшения размеров. Гениальная догадка В. И. Ленина о неисчерпаемости материи в наши дни у физиков вызывает совсем не геометрические ассоциации.

Мы не будем подробнее говорить об этом. Скажем лишь, что «масштабный эффект» может проявить себя и не при резких изменениях размеров. Эффекты теории относительности, например, проявляют себя лишь при очень высоких скоростях (приближающихся к скорости света, то есть к 300 тысячам км/сек), а также при очень больших массах. Размеры тел для теории относительности совершенно безразличны: ее законы применимы к электронам в той же степени, как и к звездам-гигантам.

Масштабные эффекты для тел очень маленьких размеров интересуют в первую очередь раздел современной физики, называющийся квантовой механикой.

Но прежде чем говорить о квантовой механике, нам надо поговорить о другом разделе физики: о мерах, точнее, об учении о мерах, или о метрологии(от греческих «метрон» – «мера» и «логос» – «слово», «мысль», «понятие»). Ведь чем тоньше мир, тем, чтобы его познать, человеку трудней его измерить. А измерять его тем более необходимо, что он далек от обычной человеческой жизни. Так легко неверно его представить («по-своему» – антропоморфно). В тонких областях материи измерения играют особенно большую роль.

Три бесконечности учения о мерах

Старинная арабская миля равна 4000 локтей, локоть – 8 кулакам, кулак – 4 пальцам, палец – 6 ячменным зернам, толщина ячменного зерна – ушестеренной толщине волоса с ослиной морды. Измерения показывают, что толщина волоса с ослиной морды равна примерно 0,4 мм.

Какими приблизительными мерками пользовались люди в прошлые времена! И видно, особых неудобств от этого не испытывали.

Технический прогресс и проникновение науки в прежде недоступные области природы потребовали увеличить точность измерений. Так как к тому же возникла необходимость устранить путаницу при переводе мер, принятых в одной части света, в меры, принятые в другой части света (и тем, в частности, положить конец хаосу в международной торговле, вызываемому использованием различных систем мер), то поступили так: в 1875 году созвали международную конференцию по введению единых мер и весов. На конференции присутствовали представители тридцати различных стран, в том числе – представители России.

Эталоном массы приняли, как мы уже говорили, килограмм, а за эталон длины договорились принять метр – одну сорокамиллионную часть парижского меридиана. Изготовили высоконадежный платиново-иридиевый сплав, понаделали из него брусков и на каждом штрихами отложили метр. Потом по жребию разыграли эти ценные бруски, кому какой достанется. Россия получила копию метра № 28.

Шло время, двигались вперед наука, техника и экономика, и вот ученые пришли к выводу, что принятый ими эталон длины недостаточно точен. В 1960 году на 11 генеральной конференции по мерам и весам было принято решение определять меры длины по оранжевой линии изотопа (разновидности) криптона.

В СССР и других странах появился новый эталон длины – «световой метр», – куда более точный, чем метр из драгоценного металла. Точность измерений длины повысилась в десять раз.

Уже из этого примера видна «первая бесконечность», к которой стремится метрология – наука о мерах: бесконечное увеличение точности измерений.

«Вторая бесконечность» метрологии – это возрастание значения точных измерений для людей.

Сотрудники научно-исследовательского института метрологии имени Д. И. Менделеева в Ленинграде убеждены, что их наука – самая необходимая людям, что без нее человечество станет беспомощным, как малое дитя. Понять ленинградцев можно. Из-за отсутствия точных измерений в машины, сооружения, механизмы закладываются лишние материалы, не оправданные соображениями прочности, бесполезно тратятся многие тонны дорогих материалов.

Ленинградцы подсчитали, что внедрение новейших методов измерения длины, разработанных в их институте, даст только на предприятиях страны, создающих точные станки, 26 миллионов рублей годовой экономии.

«Третья бесконечность», к которой будет, возможно, вечно тянуться метрология, – это безграничное увеличение перечня измеряемых величин.

В 1970 году на Земле насчитывалось примерно 250 эталонов. Это значит, что столько к этому времени имелось единиц меры, сравнивая с которой неизвестную величину, эту, последнюю, можно измерять, превращать в известную.

А разве количество таких единиц меры может когда-нибудь установиться окончательно?

Только сравнительно недавно люди научились объективно оценивать цвет. Не за горами время, когда нам придется (и мы этому научимся) измерять вкусы, запахи и многое, многое другое.

В мире квантов

26 февраля 1888 года в лаборатории Московского университета произошло событие большой важности: профессор Александр Григорьевич Столетов направил луч света на металлическую пластинку, которой оканчивалась незамкнутая электрическая цепь, и вдруг с изумлением увидел, что цепь замкнулась: прибор показал наличие тока. Свет породил электричество!

Это было загадочно и непонятно. Какая существует связь между двумя столь разнородными, с точки зрения науки того времени, областями явлений, как оптика и электричество? Почему возникает ток?

Тогда на этот вопрос ни один человек в мире не мог бы дать удовлетворительного ответа: никто не знал, что электрический ток есть эффект движения электронов (сами электроны были открыты только после смерти Столетова), а если бы это и знали, то как объяснили бы, что свет может выбивать электроны?

Выбить нечто из недр вещества можно лишь, если обстрелять его какими-то частицами-«пульками», достаточно мелкими, чтобы проникнуть в плотную среду, и достаточно энергичными, чтобы произвести там изменения. Правда, если электроны находятся в избытке на поверхности металлической пластинки, то выбить их может и падающая на эту поверхность волна. Но это представление совершенно несовместимо с количественнымизаконами открытого Столетовым явления, и, значит, волной нельзя объяснить столетовского эффекта.

Когда-то свет считали волнами в чистом виде. Полагали, что свет есть волнообразное явление, протекающее в некой среде – эфире. Физический же объект, обладающий свойствами волны, как думали прежде, не может одновременно обладать и корпускулярными, иначе говоря – вещественными, свойствами, свойствами частиц вещества. Такие свойства, как говорят ученые, комплементарны, то есть дополнительны друг к другу и взаимно исключают одно другое. В мире привычных масштабов летящий снаряд – только тело, корпускула, и не может быть волной; производимый им в воздухе процесс – только волна, которая, наоборот, не может быть корпускулой. Поэтому по аналогии считали, что и свет, бесспорно обладая волновыми свойствами, не мог одновременно состоять из частиц.

Но почему же все-таки в опыте Столетова появлялся ток?

17 мая 1899 года другой профессор Московского университета, Петр Николаевич Лебедев, сделал сообщение в Лозанне (Швейцария) о результатах своих первых исследований давления света. Тонкими и изящными опытами он доказал существование светового давления, теоретически предсказанного англичанином Джемсом Максвеллом, и даже вычислил его величину, несмотря на ее ничтожно малое значение: 0,00038 грамма на квадратный метр черной поверхности. Этим он наглядно доказал материальность света.


Быть может, открытие Лебедева объясняло загадку Столетова? Нет, давление могут производить и волны; поэтому наличие его еще не давало убедительного доказательства существования у света корпускулярных свойств.

Ответ на загадку пришел чуть позднее – в 1900 году – в связи с работами немецкого физика Макса Планка. Он принял, что энергия, подобно веществу, не является непрерывной, а состоит как бы из «атомов». Но энергия не существует независимо от материи, она лишь свойство материи (точнее, мера свойства материи). Следовательно, если есть «атомы энергии», то в каком-то смысле есть и атомы особой, невещественной – «полевой» – материи, образцом которой является свет.

Конечно, все это было в высшей степени удивительно.

«Атомы энергии» и сейчас звучит для многих необычно. Понятно – атом вещества. Понятно даже – атом электричества. Ведь и в этом случае атом означает что-то «осязаемое», заполняющее пространство. Но как представить себе «атом энергии»?

Занимаясь изучением законов теплового излучения черного тела, Планк получил формулу для объемной плотности электромагнитной энергии. Эта формула давала результаты, прекрасно совпадающие с опытом, однако она не только не вытекала из законов классической физики, но и находилась с ними в резком противоречии. Дело в том, что она получалась только в случае, если допустить, что световая энергия излучается или поглощается кратно некоторому наименьшему ее количеству, то есть состоит из порций, «атомов», которые Планк назвал квантами («квант» означает «порция»).

Величина этой энергии Еизменяется в зависимости от частоты колебаний ω(«ни») и связана с ней простым отношением:

Е = hω,

где коэффициент пропорциональности h =6,62 10 -27 эрг/сек.

Коэффициент пропорциональности hполучил название «постоянной Планка».

Эта простая формула – одна из самых фундаментальных формул современной физики.

Другая фундаментальная формула современной физики – это формула Альберта Эйнштейна, полученная им в 1905 году. С ее помощью можно рассчитать полное содержание энергии Ев теле, и выглядит она так:

Е = mс 2,

где с– скорость света, равная примерно 300 тысячам километров в секунду, или 3·10 10 см/сек,а т– масса движущегося тела. Если масса выражается в граммах, а скорость света в см/сек, то полная энергия тела получится в эргах.

Формулы Планка и Эйнштейна – это символы всего современного естествознания. Они настолько тесно связаны с духом и философией новой физики, так часто встречаются в ее расчетах и в то же время так просты, что их теперь знает (по крайней мере, по написанию) любой интеллигентный человек, даже далеко стоящий от физики и математики.

Открытие «атомов энергии» расширило понятие материи. Возникло представление о двух формах материи: вещественной и лучистой, как говорили раньше, или материи поля, как говорят теперь.

А какие бывают по величине кванты энергии? Интересно сравнить их значение с теми количествами энергии, с которыми имеет дело обычная человеческая практика (см. «Путаница и разъяснение понятий» в начале третьей главы).

Обратимся для примера к волнам видимого света. Это электромагнитные колебания с диапазоном частоты от 4,3·10 14колебаний в секунду (для красного света) до 7·10 14колебаний в секунду (для фиолетового света). Если помножить указанные значения на постоянную Планка, то получатся значения «атомов энергии» – квантов, выраженные в эргах для обеих границ видимого спектра: 28,46·10 -13и 46,34·10 -13эрг.

Десятитриллионные доли эрга! Из таких «атомов» складывается энергия, которую несут в себе лучи красного и фиолетового света. При этом фиолетовый свет состоит из квантов с энергией почти вдвое большей, чем кванты красного света. Чем выше частота колебаний, тем больше энергия квантов, тем большую работу они способны произвести.

В формуле Планка не отражена природа рассматриваемого физического движения. Это значит, что формулу можно считать применимой для любого движения, так как атомарное строение присуще всякой форме колебательной энергии, например и звуковой. Так, есть, например, и «кванты» звука, которые приобретают в наши дни особое практическое значение в связи с распространением ультразвуковой техники.

Вернемся к свету. Энергия света имеет атомарное строение. Но несколько позже Эйнштейн пришел к выводу, что атомарное строение присуще и другой важнейшей характеристике света – его импульсу. Это дало новый повод говорить, что и сам светимеет атомарное строение, состоит из частиц, которые были названы фотонами. (По аналогии с фотонами «частицы» звука стали называть фононами.)

Пользуясь формулой Эйнштейна, можно вычислить, что выбранные нами выше фотоны света обладают массами 3,16·10 -33грамма и 5,15·10 -33грамма. Как видим, числовые значения, получающиеся при этом, более чем ничтожны, если подходить к ним с точки зрения обычных для нас масштабов.

Теперь в опыте Столетова все становится понятным. Световые «пульки» выбивают из вещества отрицательно заряженной пластинки электроны, последние тотчас же начинают притягиваться положительно заряженной пластинкой, в результате чего в схеме возникает электрический ток. Это явление было названо фотоэффектом.

В современной жизни фотоэффект находит себе большое практическое применение. Многие, быть может не подозревая об этом, встречаются с ним, опуская монетку в контрольный турникет метро; им пользуются в автоматических установках, предупреждающих о пожарах; экспонометры фотолюбителей, телевизионные камеры, сторожевая сигнализация – вот несколько типичных применений фотоэффекта, обусловленного квантовой структурой света.

Итак, свет состоит из мельчайших частиц – фотонов. Все же по отношению к фотону термин «частица» применим лишь с весьма существенными оговорками. Можно сказать приблизительно так: распространяясь, свет действует как волна, излучаясь или поглощаясь, – как частица. Частица ограничена в пространстве, ее поперечник можно измерить, скажем, в миллиметрах. А фотон никакого поперечника не имеет. Обладая некоторыми свойствами частицы, свет в то же время является и волнами, простирающимися в бесконечность.

Есть и другие отличия фотона от «обычной» частицы. Фотон существует лишь в движении, причем всегда с одной и той же скоростью, а именно: со скоростью света. Частица же вещества бывает и в покое и в движении с различными скоростями, но никогда не достигает скорости света. В связи с этим фотон, скорость которого неизменна, обладает и неизменной массой; масса же частицы вещества возрастает от некоторой минимальной «массы покоя» (которой не обладает фотон) до неограниченно большой величины при приближении скорости частицы к скорости света.

Если масса электрона в состоянии покоя и при относительно небольших скоростях составляет 9,1·10 -28грамма, то с достижением 0,998 скорости света она увеличивается примерно в 16 раз, при дальнейшем же приближении к скорости света масса возрастает неограниченно.

«Почему, – задал себе в начале 20-х годов вопрос французский физик Луи де Бройль, – если „световой материи“ присущи свойства корпускулярности, мы не вправе ожидать и обратного: что „вещественной материи“ присущи волновые свойства? Почему бы не мог существовать закон, единый для всякого вообще материального образования, неважно вещественного или светового?»

Если это так, то всякой частице вещества должно соответствовать определенное периодическое, волновое явление, зависящее от массы частицы и от скорости ее движения.

Гипотеза де Бройля была подтверждена опытами американских физиков К. Дж. Дэвиссона и Л. Джермера, открывших в 1927 году явление дифракции электронов. Дифракция, то есть загибание лучей после прохождения ими узких щелей или мимо малых препятствий, – типично волновое явление. Оно свойственно только волнам. И вот оказалось, что и пучок электронов, двигающихся с достаточно большими скоростями, если пропускать его через очень тонкие (порядка одной миллионной сантиметра) металлические пластинки, также обнаруживает дифракцию – аналогично рентгеновым лучам. Впоследствии дифракция была обнаружена и у более тяжелых частиц – нейтронов, атомов и молекул.

Именно с 1927 года, то есть с года открытия явления дифракции электронов, начала быстро развиваться совершенно новая физическая теория – теория движений очень маленьких частиц вещества, получившая название «квантовая механика». С этого времени два теоретических представления – о квантовых чертах оптических явлений (корпускулярная теория «световой материи») и о волновых чертах поведения частиц вещества (волновая теория «вещественной материи») слились в одно представление о корпускулярно-волновой «двойственности», или, как говорят еще, дуализме как света, так и вещества.

Когда мы бросаем мяч, то видим, как он описывает вполне определенную кривую – параболу, прежде чем упадет на землю. Подобная кривая – след летящего мяча – называется траекторией его движения. Всякий движущийся предмет, наблюдаемый нами, обязательно имеет свою траекторию.

Не то получается, если речь идет о движении объекта микромира, подчиненного законам квантовой механики. Оказывается, к явлениям микромира понятие траектории неприменимо: элементарные частицы – электроны, протоны и другие – в своем движении не имеют траектории в обычном смысле слова.

Но как себе представить, скажем, электрон, движущийся без траектории? Представить это действительно очень трудно, но зато можно понять, почему трудно.

Ведь траектория – это свойство только корпускулы, тела. Волна, простираясь в бесконечность и не являясь телом, не обладает этим свойством. Электрон же (как и любая другая элементарная частица) обладает одновременно свойствами и корпускулярными и волновыми. В микромире такие дополнительные свойства, как корпускулярные и волновые, прекрасно сосуществуют.

Обратимся снова к дифракционному опыту, но будем пропускать через тонкую пластинку не поток электронов, а отдельные электроны один за другим. И мы получим нечто в высшей степени интересное. Электроны будут попадать на экран, установленный за пластинкой, как частицы (о чем будут свидетельствовать отдельные вспышки в различных местах экрана), а располагаться на экране они будут по закономерностям распространения волны: гуще там, где интенсивнее волна, реже там, где эта интенсивность меньше.

Физический смысл корпускулярно-волнового дуализма заключается в том, что интенсивность волны в любой точке оказывается пропорциональной вероятностинайти частицу в этой точке.

Отсюда еще один парадокс, разрушающий наше извечное представление, что дважды два всегда четыре. Квантовая механика говорит, что дважды два может оказаться нулем, а может и восьмеркой.

Направим пучок электронов сквозь две узкие щели и отрегулируем его так, чтобы, когда одна щель закрыта, через другую попадало бы в некоторое место стоящего сзади экрана по 2 электрона каждую секунду. А теперь откроем обе щели. Что получится? 4 электрона в секунду? Не тут-то было. Число электронов будет зависеть от того, как было выбрано место на экране. В одном случае вы получите, скажем, 6 электронов, в другом – 8, а в третьем – ничего, нуль!

Сейчас физики работают над созданием новой – квантовой – теории поля. Элементарные частицы здесь осмысливаются как кванты поля. В этом названии всего удачнее раскрываются двойственные качества микрочастицы. «Поле» говорит о сплошности, о среде; «квантованность», или «порционность», – об индивидуальности частицы.

Связанные же между собой органическим единством, оба неотъемлемых качества микрочастицы по-новому, еще глубже раскрывают физический смысл целостности материального мира.

Слов нет, что все это не сразу укладывается в сознании. Кажется, что нарушается «здравый смысл». Но тут уместно вспомнить слова А. Эйнштейна по поводу последнего:

«„Здравый смысл“ – это те предрассудки, которые складываются в возрасте до восемнадцати лет».

Из анализа природы «волночастицы» вытекает одно чрезвычайно важное и интересное следствие.

Когда мы имеем дело с объектом классической механики – «обычной» частицей, мы можем, по меньшей мере теоретически, с абсолютной точностью задать вместе и величины, характеризующие местоположение частицы, то есть ее координаты, и величины, характеризующие быстроту изменения местоположения частицы, – составляющие ее импульса.

Совсем иное в квантовой механике, где объектом является не крупное тело, изображаемое схематически как частица, а очень маленькая «волночастица». В этом случае, оказывается, нельзя с абсолютной точностью задать вместе и координаты частицы и ее импульсы. Иначе говоря, не существует состояний частицы, в которых сразу имели бы определенные значения и координаты и импульсы. Всегда для частицы есть неопределенности: и в координатах (эта неопределенность обозначается символом Δx, читается «дельта икс») и в импульсах (а эта неопределенность обозначается Δр– «дельта пэ»).

Между обеими неопределенностями есть связь. Оказывается, произведение этих двух неопределенностей равно, грубо говоря, постоянной Планка: Δx·Δp = h.

Можно с абсолютной точностью задать что-нибудь одно: или координаты частицы, или ее импульс. Но тогда неопределенность другого, как видно из соотношения, станет бесконечно большой.

Это и есть вызвавшее много шуму, а еще больше неправильных философских толкований соотношение, установленное немецким физиком Вернером Гейзенбергом в 1927 году и получившее название «соотношение неопределенностей».


    Ваша оценка произведения:

Популярные книги за неделю