355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Карцев » Ньютон » Текст книги (страница 7)
Ньютон
  • Текст добавлен: 5 октября 2016, 05:43

Текст книги "Ньютон"


Автор книги: Владимир Карцев



сообщить о нарушении

Текущая страница: 7 (всего у книги 31 страниц)

Это – первая последовательно механическая концепция тяжести, не требующая введения для объяснения «врождённых свойств» или божественного вмешательства.

Вот несколько мазков к пёстрой картине представлений о тяжести и тяготении, с которыми встретился убежавший из Кембриджского университета, от чумы домой, к матери в Вулсторп, студент Ньютон. Теперь ему предстояло из всего этого конгломерата идей и догадок создать свой знаменитый закон всемирного тяготения. Какая-то неясная идея подспудно вызревала в его сознании. Она была расплывчата, не поддавалась ясной формулировке, постоянно встречала неразрешимые, казалось, препятствия.

Сам Ньютон, спрямляя путь к великому достижению, писал о своём открытии так: «В начале 1665 года я нашёл метод приближённого вычисления рядов и правило для преобразования в ряд двучлена любой степени. В тот же год, в мае, я нашёл метод касательных Грегори и Шлюзиуса и уже в ноябре имел прямой метод флюксий, а в январе следующего года – теорию цветов, а в январе следующего года я имел начало обратного метода флюксий. В том же году я начал размышлять о том, что тяготение распространяется до орбиты Луны, и (найдя, как вычислить силу, с которой шар, катящийся внутри сферы, давит на её поверхность) из кеплеровского правила периодов планет, находящихся в полукубической пропорции к расстоянию от центров их орбит, вывел, что силы, которые держат планеты на их орбитах, должны быть обратно пропорциональны квадратам расстояний от центров, вокруг которых они обращаются; и таким образом, сравнив силу, требуемую для удержания Луны на её орбите с силой тяжести на поверхности Земли, я нашёл, что они отвечают друг другу. Всё это было в два чумных года – 1665-м и 1666-м. Ибо в те дни я был в расцвете творческих сил и думал о математике и физике больше, чем когда-либо после…»

О, эти приоритетные споры! То, что приведено выше, написано в самый разгар схватки с Лейбницем – через полвека после описываемых событий. Память – плохой консультант в делах полувековой давности, тем более когда на старые воспоминания наложены суровые реалии последних лет жизни, омрачённых жестоким – не на живот, а на смерть – спором о приоритетах…

Вот откуда берётся легенда об Anni Mirabilles, «годах чудес», _ годах неземного вдохновения и творчества – чумных годах! Легенда подтверждена племянницей Ньютона, подхвачена Вольтером, раструблена по всему миру англичанами – авторами «героических» биографий Ньютона.

Сегодняшние исследователи бесстрастней и справедливей. Устанавливая истину, они не умаляют величия Ньютона. Наоборот! Развенчивая очередные околонаучные мифы – о яблоке и о «годах чудес» – Anni Mirabilles, они лишают гениальность Ньютона мистического ореола внезапного богоданного откровения и в то же время придают его творчеству неспешную, истинно баховскую величавость и родовое достоинство. Этими последними исследованиями фигура Ньютона, столь выпадавшая раньше из контекста его эпохи и его окружения, вновь возвращается к своим предтечам, учителям и коллегам, к собственному таланту и безустанному труду. Недаром наиболее полная из современных биографий Ньютона, написанная Р. Вестфоллом, названа: «Ни дня отдыха».

Основа открытий Ньютона в области всемирного тяготения, сделанных в чумные годы, восходит к кембриджским студенческим годам, к тому времени, когда в тетрадях двадцатидвухлетнего Ньютона появляется «Вопросник» – грандиозная программа исследования по физике, охватывающая не только природу, но и бога.

Воображение кембриджского студента тогда захватила механистическая философия Декарта. Естественно, это получило отражение в его тетради. Там, в «Вопроснике», записана главка «О неистовом движении», ясно выявляющая влияние на него Декарта и его книги «Начала философии», вышедшей в 1644 году и оказавшей громадное воздействие на кембриджских платоников, в частности на Генри Мура. Ньютон позже признавался, что одно время он был ярым картезианцем – это было как раз тогда, в Anni Mirabilles.

Точно известна дата начала увлечения Ньютона декартовской механикой – 20 января 1665 года. Освобождённый неделю назад от «стояния на квадрагезиме» – сдачи бакалаврских экзаменов, он занимался тем, что ему нравилось.

В «Мусорной тетради», унаследованной от отчима Барнабы Смита, под датой 20 января 1665 года значится: «Об отражениях».

Название «Об отражениях» лишь тайными, но, несомненно, существующими и нерасторжимыми узами связано с исследователями по свету. Речь идёт об отражениях типа тех, которые испытывают бильярдные шары – об отражениях при ударе, упругом соударении, столкновении тел. Это основа декартовской физики, решающей все проблемы движения в рамках единой материи – пространства, где движение непрестанно передаётся от тела к телу, прибавляется одному и убавляется от другого при неизменной его вечной сумме. Вот что пишет Ньютон:

«Акс. 100. Всякое тело естественно продолжает оставаться в том состоянии, в котором оно находится, до тех пор, пока оно не будет изменено какой-либо внешней причиной, так… тело, однажды приведённое в движение, всегда будет сохранять скорость, количество и направление своего движения.

Сравним с Декартовым: «…Всякая вещь пребывает в том состоянии, в каком она находится, пока ничто её не изменит…» У Декарта это не принцип механики, но принцип философии и природы – речь идёт о сохранении состояния покоя, движения и даже формы тела.

Второй закон Декарта гласит: «Всякое движущееся тело стремится продолжать своё движение по прямой». Это уже закон механики. Декартом фактически сформулирован принцип инерции. Следующий закон Декарта гласит: «Если движущееся тело встречает другое, сильнейшее, оно ничего не теряет в своём движении; если же оно встречает слабейшее, которое может подвинуть, оно теряет столько, сколько тому сообщает…»

Последний закон Ньютон сразу отверг, как содержащий неточности и ошибки. Было неясно, что имел в виду Декарт под «сильнейшим» и «слабейшим» – понятиями, которыми широко оперировал.

Ведь сила движения в том смысле, в котором, видимо, определял её Декарт, должна была бы зависеть и от скорости тела, и от самого тела (не забудем, что понятие массы тогда ещё не было разработано). Таким образом, декартовская сила – это сила движущегося тела, неотрывная от тела, фактически – сила его удара.

Ньютон не ссылается на Декарта, не опровергает его. Видя его очевидные ошибки, он пытается выработать свои законы движения. Одно время, как можно понять из рукописей, ему удаётся отделить силу от тела, отделить причину от следствия. Обязательно ли причиной изменения состояния тела должен быть удар? Нет ли иных причин?

Здесь и возникает образ яблока, висевшего до поры до времени на ветке, а затем упавшего по строго вертикальной линии на землю и ударившего её. Не удар вызвал изменение состояния движения ранее неподвижного яблока, а некоторая внешняя причина, отличная от удара. Внешняя сила. Может быть, сила тяжести? Тогда сила должна иметь совсем иное определение. Не такое, как у Декарта. Может быть, такое, как Ньютон набрасывает в одном из своих черновиков: «Сила – это давление или напор (натиск) одного тела на другое»? Сила Ньютона отделяется от тела, становится внешней причиной движения.

Декарт писал в «Трактате о свете»: «Если одно тело сталкивается с другим, оно не может сообщить ему никакого другого движения, кроме того, которое потеряет во время этого столкновения, как не может и отнять у него более, чем одновременно приобрести себе».

Ньютон: «Чтобы разрушить любое количество движения в теле, потребуется столько же силы, сколько требуется, чтобы создать такое движение». Так было сначала, под явным влиянием Декарта. Потом формулировка меняется: «Равные силы будут производить равные изменения в равных телах… ибо теряя или приобретая одно и то же количество движения, тела подвергаются тому же изменению своего состояния; в том же теле равные силы будут приводить к равным переменам».

Тело стало объектом приложения внешних сил, являющихся и причинами движения, и причинами перемен его характера. Это новая, революционная концепция силы. Концепция Ньютона. Возможно, она навеяна яблоком. Во всяком случае, в «Вопроснике» сила Ньютона ещё внутреннее присуща телу, как у Декарта. Теперь, в 1665 году, она стала иной. Она практически превратилась в то понятие, которым мы оперируем сегодня.

Всё более углубляя свою концепцию силы, всё более удаляясь от Декарта, всё больше концентрируясь скорее на изменениях в движении, чем на самом движении, Ньютон постепенно приходит к ещё одному важному выводу, который в принципе мог бы быть навеян тем же падением яблока.

…Яблоко и Земля. Земля и Луна. Две системы тел. В одну систему входят два небесных тела, а в другую – небесное и земное или два земных. Как считать – могут ли эти столь различные тела подчиняться одним и тем же законам? А кстати, различны ли эти тела?

Телескоп Галилея и его «Звёздный вестник» проложили первые шаткие мостики через пропасть между земным и небесным, мирским и идеальным – между хрустальными сводами планет и грешной землёй, между небесными и земными движениями.

Галилей увидел многое из того, что недоступно было другим. Направив на небо телескоп, Галилей обнаружил земное, отнюдь не божественное строение Луны, «уши» Сатурна, спутники Юпитера, неизвестные звёзды Млечного Пути. Всё укрепляло его в правильности Коперниковой теории, и он стал её ревностным проповедником.

Кратеры на Луне, подобные кратерам Земли, открытые Галилеем, подрывали мнение схоластической философии о том, что Луна в силу её небесного происхождения должна была бы обладать и идеально гладкой круглой формой, будучи частью идеальной небесной сферы.

Галилей видел и то, что метеориты – небесные тела – очень похожи на земные камни или руды. Ничего особенного, божественного в них не было. Это наводило на мысль и о земном, обычном характере движения небесных тел, о единстве законов, управляющих земными и небесными движениями.

До Галилея господствовало убеждение в коренном различии земных и небесных движений. Если земные тела могли двигаться куда угодно и как угодно, по любым тракториям, то в небесах царил порядок – там были божественные сферы, там властвовало движение по идеальным орбитам – окружностям.

В гелиоцентрической системе Коперника сама Земля превратилась в обычную планету, а Кеплер определил, что движение планет происходит не по совершенным окружностям, а скорее по не столь уж совершенным эллипсам. В «Новой астрономии» Кеплер писал: «Главная моя ошибка заключалась в том, что я считал орбиту планеты совершенной окружностью. Эта ошибка оказалась тем более злостным врагом моего времени, что основана была на авторитете великих философов».

Идеальный небесный мир на глазах терял своё совершенство и вместе с ним своё особое место в механике.

Незадолго до смерти Галилео Галилея фирма Эльзевиров в Лейдене напечатала его последнюю книгу «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению». Как было указано на обложке, труд этот принадлежал перу «синьора Галилео Галилея, рысьеглазого, экстраординарного философа и математика мудрейшего великого герцога Тосканского». Обращение к фауне в титуле учёного означало, что он состоял членом «Академий рысьеглазых», «Академии Линчей» – высшего научного учреждения Италии, и, следовательно, как рысь, которой приписывалось необыкновенно острое зрение, способен был видеть то, чего не видят другие. Галилей первым свершил святотатственное – применил к движению небесных тел те законы механики, которые он обнаружил при исследовании вполне земных машин и механизмов, безмолвных и послушных человеческих слуг. Старый стиль мышления уходил в прошлое. Природа становилась независимой от умозрений её наблюдателей и, порой даже казалось, от воли её создателя. Каноны схоластической философии пали, но замены им не было. Материальное единство мира, продемонстрированное Галилеем, требовало и единства законов, управляющих им.

В поисках величины, характеризующей движение, Галилей ввёл «импето», или «моменто», – количество движения, определяемое массой и скоростью. Подобная же величина использовалась и Декартом, который писал: «Я принимаю, что во всей созданной материи есть известное количество движения… Так, если камень падает с высокого места на землю, то в случае, когда он не отскакивает, а останавливается, я допускаю, что он колеблет землю и передаёт ей своё движение. Но так как часть земли, приведённая в движение, содержит в себе в тысячу, например, раз более материи, чем в камне, то, передав им своё движение, он может сообщить только в тысячу раз меньшую скорость».

Это – Земля и яблоко Декарта.

Земля и яблоко: Земля и камень, соударяющиеся друг с другом, камень, бьющий Землю, но не тяготеющий к ней, как яблоко Ньютона.

А кембриджские платоники отреагировали на открытие Галилея весьма своеобразно, в духе своей концепции «божественной полноты». Сходство Земли с другими планетами, открытое Коперником и Галилеем, привело их к возврату не то что к Платону и Плотину, но к Ямвлиху и Проклу, к иерархии добрых и злых духов (чем выше сфера, тем важнее её обитатели). Не населены ли планеты промежуточными между богами и людьми существами, которые управляют королями и придворными?

Фактически это был возврат к управляемым ангелами небесным сферам, к иерархической Вселенной Аристотеля. Ньютон поражался живучести этой теории, пришедшей от греков через магометанство в христианство. Католическая церковь добавила свои краски: подобно тому, как в обществе были папа, епископы, архиепископы, императоры, короли, дворяне и рыцари, в небе существовала не менее сложная иерархия девяти ангельских хоров, каждый из которых управлял определённой частью Вселенной, своими планетными сферами.

 
На небесах планеты и Земля
Законы подчиненья соблюдают,
Имеют центр, и ранг, и старшинство,
Обычай и порядок постоянный, —
 

как говорил шекспировский герой.

Галилей и Коперник намекнули на единство механических законов Земли и неба, Ньютону предстояло теперь создать на их основе новую систему мира, в которой бы не было места ни ангелам, толкающим небесные сферы или планеты с помощью своих крылышек, ни вихрям Декарта, выполняющим, по существу, те же функции.

Главное в механике Декарта – соударение тел. Именно здесь, при исследовании системы двух тел, Ньютону удалось получить особенно интересные результаты. Он приходит к выводу о том, что тела при столкновении действуют одно на другое, причём «взаимные силы их столкновения» равны и приводят к равным изменениям их движения. Здесь – полпути между декартовским столкновением и ньютоновским третьим законом: «действие равно противодействию».

Ньютону всё время мешала путаница в понятиях внутренних и внешних сил. Рассматривая, например, круговое движение тел – движение камня, вращаемого на верёвке, он вслед за Декартом считал, что сила, стремящаяся удалить тело от центра вращения, есть внутренняя сила тела, та самая, которая стремится сохранять тело в движении. Сравнение с равномерным прямолинейным движением приводило к смешению понятий силы, массы и импульса, определения которых не были тогда известны. Ньютон отверг принцип инерции и тем самым отодвинул свои открытия на несколько лет. И вместе с тем Ньютон был уже близок к введению инерции. В своём мемуаре «О тяжести и равновесии жидкостей», написанном приблизительно в эти же годы, мы встречаем «Определение 15. Тела являются более плотными, если их инерция более сильная, и более разреженными, если их инерция более слабая».

Интересен подход молодого Ньютона к проблеме кругового движения. Здесь нет привычного декартовского соударения тел – и Ньютон, как и в своих математических работах, совершает предельный переход от прерывного к непрерывному, от удара к тяге. Он рассматривает тягу как совокупность бесчисленных непрерывно следующих друг за другом ударов. Сделав так, Ньютон пришёл к важнейшим выводам. Он, в частности, вывел (конечно, неявно и без использования понятия массы) формулу для центробежной силы.

А получив значение центробежной силы, Ньютон тотчас же применил формулу для проверки выводов Галилея. Книга Галилея «Беседы» только что, в 1665 году, появилась в Англии в издании Солсбери. В «Диалогах» Галилей устами своего Alter Ego[15]15
  Двойника, буквально «второе я» (лат.).


[Закрыть]
Сальвиати отвечает критику Коперниковой системы, который ехидно вопрошает:

– Если Земля вращается, почему же с неё не слетают ничем к ней не прикреплённые люди, животные и дома?

Ответ Сальвиати – в том, что против центробежной силы (впрочем, это понятие только ещё будет изобретено Гюйгенсом) действует сила тяготения. Причём, судя по измерениям ускорения свободного падения, проведённым Галилеем, эта сила больше той, что вызывает стремление тела удалиться от центра его вращения. Ньютон решил вычислить, во сколько раз сила тяжести превосходит ту, которую мы теперь называем, по Гюйгенсу, центробежной, и, используя данные Галилея из «Диалогов», нашёл, что это соотношение равно 144 или около того.

Затем он решил проверить Галилея и приведённое им значение для ускорения свободного падения. Он изготовил конический маятник с длиной подвеса в 81 дюйм и углом наклона 45 градусов и вычислил, исходя из характера его колебаний, что свободно падающее тело в первую секунду пролетает 200 дюймов, то есть примерно вдвое больше, чем было указано у Галилея. Соответственно больше получалось и отношение силы тяжести к центробежной силе. В статье, написанной через несколько лет, Ньютон снова вернулся к проблеме и вновь уточнил соотношение. Оно получилось равным 350.

Теперь он был способен сделать следующий шаг, к которому могло бы привести его падающее яблоко, – перебросить мост между «бытовой» тяжестью и силами, действующими между планетами.

И Ньютон сделал этот шаг. Он сравнил «стремление Луны удалиться от центра Земли» и силу тяжести на поверхности Земли. И получил соотношение несколько более 4000.

Затем он подставил в свою формулу для центробежной силы данные из третьего закона Кеплера (кубы радиусов планет относятся как квадраты их периодов вращения по круговым орбитам) и получил следующее: «Стремление к удалению от Солнца будет обратно пропорционально квадратам расстояний от Солнца».

Это важнейшая составная часть будущего закона всемирного тяготения. Но даже и не это главное. К такой формуле, тем более без масс, выводимой из третьего закона Кеплера и круговых орбит, подходили в то время многие. Важнее было то, что закон обратных квадратов, применённый к Земле и Луне, дал отношение силы тяжести на орбите Луны по сравнению с силой тяжести на поверхности Земли 1: 3600, ибо именно 3600 есть квадрат шестидесяти, а шестьдесят – это то количество земных радиусов, которое, как считал Ньютон, составляет расстояние от Земли до Луны.

Здесь важна сама идея сопоставить центробежную силу Луны с её притяжением к Земле. Никак нельзя исключить, что переход из системы Земля – яблоко как системы сугубо земной к системе Земля – Луна как системе сугубо небесной был навеян именно яблоком. Лишь свободный переход из одной системы в другую мог означать всеобщий характер закона всемирного тяготения.

Вот что можно было узнать из манускрипта № 3958, проанализированного Д. Херивелом, А. Р. Холлом, Л. Розенфельдом, Р. Вестфоллом и ранее пролежавшего среди неразобранных бумаг Ньютона не одну сотню лет.

Несомненно, именно об этой неопубликованной своей работе вспоминал в старости Ньютон. То, что она написана после чумы и содержит намёки и идеи более позднего периода, не имеет, конечно, существенного значения.

Фактом остаётся то, что первая проверка выводов Галилея проводилась Ньютоном в спешном порядке и почти наверняка в чумные годы в Вулсторпе. Об этом свидетельствует хотя бы то, что соответствующие расчёты беспорядочно записаны на обратной стороне материнского договора на сдачу внаём земли – в таком виде они стали известны через сотни лет. Не имея под рукой точных данных, Ньютон взял размеры Земли и величину ускорения свободного падения из книги Галилея.

В годы вулсторпского уединения правильные выводы Ньютона как бы пробиваются через его во многом неверные представления, заимствованные у Декарта. То, что Ньютон той поры – это ещё далеко не Ньютон «Начал», подтверждает его рукопись «Законы движения», относящаяся к первым послеучебным и послечумным годам. В ней царствует соударение тел. Но оно, конечно, уже не то соударение, которое встречается в «Мусорной тетради». Здесь делается попытка найти общее решение вопроса столкновения тел при любых видах движений – прямолинейном и вращательном. Силы Ньютона пока – это силы внутренние, создающие абсолютное движение в абсолютном пространстве. Он как бы не знаком ещё с инерцией тел, с понятием массы. Его взгляды пока ещё не совместимы с его же будущим законом всемирного тяготения, предполагающим взаимодействие на расстоянии, без всякого соударения и непосредственного контакта.

Тому есть доказательства.

На форзаце принадлежавшей Ньютону книги Винцепта Винга «Британская астрономия», вышедшей в 1669 году, то есть через три года после чумы, найдены заметки, из которых напрашивается странный вывод: и после 1669 года Ньютон не вполне точно осознавал значение закона обратных квадратов. Несовпадение силы тяготения и центробежной силы для Луны он объяснял тем, что, кроме тяготения, на Луну действует ещё некий декартовский вихрь. Для сопоставления – ещё один рассказ об открытии закона тяготения. Теперь он принадлежит Джону Кондуитту:

«В 1666 году он вновь оставил Кембридж… чтобы поехать к своей матери к Линкольншир, и в то время как он размышлял в саду, ему в голову пришло, что сила тяжести (которая заставляет яблоко падать на землю) не ограничена определённым расстоянием от Земли, а что сила должна распространяться гораздо дальше, чем обычно думают. Почему бы не до Луны? – сказал он себе, и если так, это должно влиять на её движение и, возможно, удерживать её на орбите, вследствие чего он решил вычислить, каков мог бы быть эффект такого предположения; но поскольку у него не было тогда книг, он использовал общеупотребительное суждение, распространённое среди географов и наших моряков до того, как Норвуд измерил Землю, и заключающееся в том, что в одном градусе широты на поверхности Земли содержится 60 английских миль. Расчёт не совпал с его теорией и заставил его довольствоваться предположением, что наряду с силой тяжести должна быть ещё примесь той силы, которой была бы подвержена Луна, если бы она переносилась в своём движении вихрем…»

Если говорить о законе всемирного тяготения в том виде, как мы его знаем сегодня и заключающемся в том, что каждый объект Вселенной притягивается к любому другому объекту с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними, то до него в чумные годы было, конечно, ещё очень далеко.

Биографы Ньютона, настаивающие на том, что открытие этого закона снизошло на него как божественное откровение, внезапное озарение, на самом деле принижают его заслуги. Для того чтобы найти этот закон, нужно было смести завалы старой аристотелевской философии, принять философию «механическую» и затем в чём-то отвергнуть и её, сделать правильные умозаключения из сопоставления земных и небесных движений, а, сопоставив их, разработать теорию, подтвердить её неоднократно на совпадении рассчитанных и реальных небесных явлений. И в то же время ещё и противостоять неизбежной критике картезианцев и других механистических философов-современников, которые неизбежно увидели бы в законе всемирного тяготения возрождение аристотелевской концепции врождённых качеств!

Да, не так-то это было просто – открыть закон всемирного тяготения. Недаром до полного его экспериментального подтверждения, до его торжества – возвращения в 1759 году кометы в соответствии с предсказанием Галлея, сделанном на основе закона всемирного тяготения Ньютона, нужно было ждать почти сто лет.

Открытие обратно-квадратичной зависимости тяготения от расстояния, может быть, как раз и не было самым крупным достижением Ньютона. Эта зависимость вполне могла быть предвосхищена, исходя из широко проводившихся в то время опытов по свету и оптике, в которых освещённость всегда была обратно пропорциональна квадрату расстояния от источника света. Её можно было бы получить из законов Кеплера и механики Гюйгенса. Заслуга Ньютона в том, что он увидел связь между земной тяжестью и небесным тяготением. Возможно, именно в этом сыграло решающую роль знаменитое яблоко.

Почему же Ньютон нигде не заявил о своих открытиях и идеях, не спешил сообщить о них другим? Может быть, он хранил идеи, как старый ремесленник секреты своего мастерства?

А может быть, он, не вынося критики, избегал естественной реакции на очевидные несовершенства своих идей? Никто не даст ответа на эти вопросы, но одно ясно – решиться отдать свои идеи на суд обществу было для него не менее сложно, чем решить задачу.

Он был очень требователен к себе – возможно, более требователен, чем другие, охотно обсуждавшие с коллегами свои ещё не вполне выношенные идеи. И в этом была одна из причин его грядущих бурных конфликтов, горячих, острых споров за приоритет.

Так что же, было яблоко или не было его? Были Anni Mirabiles, «годы чудес», или не было их? Выло и то и другое. Было яблоко, были «годы чудес». Но не было божественного откровения, не было ещё тех открытий, которые случатся через несколько лет благодаря новым, поступившим со стороны идеям, благодаря неустанному труду и концентрации внимания Ньютона на определённых, точно выбранных задачах.

Так уж был он устроен – когда идея западала ему в голову, он думал о ней неотрывно, до тех пор, пока не становилось ясным окончательное решение.

В этом ему помогало всё. В том числе – яблоко. Вот почему яблоко Ньютона не менее реально и вечно, чем яблоко Евы и яблоко Париса. Вот почему оно навсегда останется в истории нашей цивилизации.


    Ваша оценка произведения:

Популярные книги за неделю