355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Карцев » Ньютон » Текст книги (страница 11)
Ньютон
  • Текст добавлен: 5 октября 2016, 05:43

Текст книги "Ньютон"


Автор книги: Владимир Карцев



сообщить о нарушении

Текущая страница: 11 (всего у книги 31 страниц)

Казалось бы, фиаско с постройкой телескопа должно было бы принести Ньютону глубокое разочарование. Но нет: телескоп и на самом деле стал увертюрой его научной жизни, в которой прозвучали многие основные темы его будущих больших работ. Телескоп привёл его и в Королевское общество – туда, куда он всей душой стремился, где были его единомышленники, где его понимали и ценили, где был его настоящий дом.

«ВИРТУОЗЫ»

Возрождение вызвало к жизни новые, неведомые ранее сообщества учёных людей – научные академии. Началось с Италии. Флорентийская «Академия Платона», неаполитанская «Академия тайн природы», римская «Академия Витрувия», римская же «Академия деи Линчей» – «Академия рысьеглазых», членом которой был Галилей, тосканская «Академия деи Чименто» – «Академия опыта», украшением которой стал ученик Галилея Торричелли. Затем последовали Англия, Франция, Россия…

С середины 1640-х годов в Лондоне, а с начала 1650-х – в Оксфорде возникли кружки учёных-любителей, «виртуозов»,[17]17
  Слово «виртуоз» итальянского происхождения. В дальнейшем его значение несколько сузилось до понятия «выдающийся артист». В XVII же веке оно понималось примерно так: «мастер, отлично знающий своё дело».


[Закрыть]
как они себя называли, регулярно собиравшихся для обсуждения всевозможных научных проблем. Лишь две темы были запрещены: религия и политика. Любители уговорились еженедельно, в определённый день и час, встречаться и обсуждать научные новинки. Как вспоминал один из участников этих встреч, «…мы беседовали о циркуляции крови, о венозных клапанах, о гипотезе Коперника, о природе комет и новых звёзд, о спутниках Юпитера, об овальной форме Сатурна, о пятнах на Солнце…об усовершенствовании телескопа, о взвешивании воздуха…». Этот «невидимый колледж» окончательно оформился 28 ноября 1660 года после лекции Кристофера Рена, профессора астрономии в лондонском Грешем-колледже. Собравшиеся после лекции джентльмены решили создать «Колледж для содействия физико-математическому экспериментальному учению».

В 1662 году король Карл II взял «невидимый» колледж «под своё милостивое покровительство». Возникло лондонское Королевское общество.

Вместе с покровительством короля и новым названием общество получило хартию, герб, жезл и книгу для записи новых членов. В хартии от имени короля было записано: «Мы давно и окончательно решили между собой расширять границы не только империи, но также науки и ремёсел. Поэтому мы одобрительно относимся к любой форме познания, в особенности же к философским исследованиям и, в частности, к таким, которые с помощью экспериментов пытаются сформулировать новую философию или же усовершенствовать старую. И посему, чтобы те исследования, которые до сих пор не могли заблистать ни в одной части мира, смогли бы ярко воссиять у нас и чтобы в будущем образованный мир видел в нас не только защитников веры, но и поклонников и покровителей всякого рода истины…знайте, что мы… постановили… учредить общество, состоящее из президента, совета и членов, которое будет именоваться Королевским обществом». Основные принципы общества, видимо, выработаны Робертом Гуком. Вот что осталось с тех времён в его рукописных заметках:

«Целью и назначением Королевского общества являются:

– дальнейшее познание экспериментальным путём явлений природы, полезных ремёсел, производства, практической механики, двигателей и изобретений (всего того, что не имеет отношения к богословию, метафизике, морали, политике, грамматике, риторике или логике);

– попытка воскресить полезные ремёсла и изобретения, преданные ныне забвению;

– исследование всех естественных, математических и механических систем, теорий, принципов, гипотез, оснований, явлений и экспериментов, упомянутых или введённых в практику любым значительным автором древности или современности, с целью создания законченной и обоснованной философской системы, объясняющей все явления природы и искусства, и составления обоснованного представления о причинах вещей…»

Извещая о создании Королевского общества, известный мемуарист. Дж. Ивлин так описал его задачи: «Улучшать практическое и экспериментальное знание для роста науки и всеобщего блага человечества». Речь, таким образом, шла ни более ни менее как о всеобщем благоденствии!

На гербе общества был начертан девиз, поистине достойный Фомы неверующего: «Nullius in verba» – «Ничто на слово». Этот девиз отражал твёрдое намерение членов общества пестовать критику и скептицизм в обсуждениях, опираться лишь на эксперимент и прочно установленные факты, забыть про догмы и авторитеты. В первое время Роберт Гук – куратор экспериментов – делал более сотни опытов ежегодно. Затем эта цифра вследствие Большой чумы, Большого пожара и других причин стала снижаться и уже к 1670 году упала впятеро. Но не явилось ли одной из причин и то, что покровитель общества хохотал до упаду над участниками заседаний, которые под руководством славного Роберта Бойля пытались взвесить воздух?

В число членов общества вошли первоначально 94 члена-основателя и 21 член совета, все – люди с положением или научными заслугами. Были среди них и наслаждающиеся сочетанием обоих достоинств: математик Уильям виконт Браункер, химик Роберт Бойль, сын одного из богатейших англичан – графа Корка, химик сэр[18]18
  Здесь, вероятно, уместно напомнить, что титул «сэр» в Англии носят люди знатные – либо имеющие рыцарское звание, либо баронеты – представители титулованного дворянства, занимающие среднее положение между высшим его слоем – «лордами» или «пэрами», наследственными членами верхней палаты парламента, – и низшей категорией дворянства – «эсквайрами».


[Закрыть]
Кенелл Дигби, астроном сэр Пол Нейл; политэконом сэр Уильям Петти, Джон Уилкинс и доктор медицины, личный врач короля Тимоти Кларк.

Среди основателей общества были практически все крупные учёные Лондона, Оксфорда и Кембриджа – Исаак Барроу, Роберт Гук, Джон Валлис, Сет Уорд, Фрэнсис Уиллоуби, Кристофер Рен, а также образованные джентльмены,[19]19
  В XVII веке, да и позже, слово «джентльмен» и «дворянин» можно считать синонимами. Лишь позже это понятие стало характеризовать образованного и воспитанного человека вне зависимости от его сословной принадлежности.


[Закрыть]
служащие, врачи, церковнослужители, два мемуариста – Джон Ивлин и Сэмюэль Пепис и даже поэт – Джон Драйден. Был и издатель – Генри Ольденбург, который в 1665 году предложил за свои деньги и под свой интерес выпускать журнал «Philosophical Transactions» – «Философские труды».

Основатели Королевского общества провозгласили приверженность свою экспериментальному методу Фрэнсиса Бэкона. В идеальном университете Бэкона, описанном в «Новой Атлантиде», изучали не Аристотеля и Галена, но Природу во всех её проявлениях. Ничто не миновало внимания «виртуозов» – ни математика, ни натуральная философия, ни химия, ни медицина, ни, наконец, техника и сельское хозяйство. Но не забудем и ненасытный интерес общества к всевозможным курьёзам и чудесам, уродцам и привидениям, демонам и волшебникам, к неоплатонизму и герметизму, к Парацельсу и алхимикам.

Натуральная философия – здесь – ещё вовсе не физика, лучше сказать – это зародыш будущей физики. Но уже обсуждаются по существу и кинематика, и динамика, и звук, и оптика, и теплота, и магнетизм с электричеством.

Тон в обществе задавал, конечно, его единственный неродовитый сочлен (сын провинциального пастора) и единственный оплачиваемый сотрудник Роберт Гук. И, поскольку он был по существу и по преимуществу физиком, добрая треть заседаний была посвящена именно натуральной философии.

Хотя к 1670 году число членов общества возросло до двухсот пятидесяти, регулярно посещали его собрания лишь человек пятьдесят. Исследователь Роберт Франк-младший из Лос-Анджелесского университета в Калифорнии, изучив, кто состоял членом общества, подсчитал, что их средний возраст, составлявший в 1664 году приблизительно сорок пять лет, повысился в 1680 году до пятидесяти. Эти цифры не лишены интереса и смысла. Они означают, что большинство членов общества родились между 1615 и 1630 годами и были молоды в то время, когда на небосклоне науки засверкали имена Гарвея, Галилея и Декарта, когда изобрели хинин и впервые разрезали труп чумного больного, когда природа доверчиво раскрылась вширь и вглубь благодаря телескопу и микроскопу. Они были восприимчивы к новым идеям – и к Декартовым вихрям, и к бойлевскому атомизму. Они взрослели в период социальных, политических и религиозных катаклизмов. Они читали «Новую Атлантиду» Фрэнсиса Бэкона не через скептические старческие очки, а широко раскрытыми глазами питаемых надеждами юношей.

Да, широко распахнутые на мир глаза, неуёмное любопытство и смелость – вот черты членов Королевского общества его первых лет. Чтобы представить себе, из кого тогда состояло общество, можно привести в пример его президента времён ньютоновских «Начал» Сэмюэля Пеписа, известного мемуариста, заполнившего своей автоматической ручкой – одной из первых в мире – тысячи страниц, до сего времени служащих одним из главных источников по интеллектуальной истории Англии.

Он писал книги по садоводству, пытался обогатить английскую флору новыми растениями, привезёнными из Америки и Азии, боролся с лондонским смогом, безнадёжно пытаясь очистить воздух английской столицы. Он не упускал случая побывать на ампутации в парижском госпитале, увидеть собственными глазами пытки в тюрьме Шатле и купить секреты у бродячих фокусников. Он представил обществу описание дромадера, который, по его мнению, был «чудовищным зверем, подобным верблюду, но гораздо больше», и притащил на очередное заседание собственноручно отколотые им от гигантских мегалитических столбов в Стоунхендже куски гранита. И, чтобы уж дать полное представление о научном лице Пеписа, отметим, вскользь, что, хотя он и был магистром искусств Кембриджа, знаний ему определённо не хватало: он для собственного удовольствия разучивал по вечерам таблицу умножения.

Другому знатному «виртуозу», Джону Ивлину, ничего не стоило засунуть руку в пасть льву, чтобы потрогать его язык и убедиться, что он такой же шершавый, как язык кота. Ивлин описал первые эксперименты с напитком из орешка «кола» – будущим «кока-кола» – и помогал создавать плавильную печь новой конструкции. Внимания Ивлина не избежал и милометр – измеритель расстояния, который устанавливался на экипажах, его он усовершенствовал. Он исследовал погремушки виргинских гремучих змей и останки несчастного шестидесятифутового кита, выбросившегося на берег близ Гринвича. Он ввёл в английский обиход коньки – ещё до чумы их испытывали перед восхищённой публикой на замёрзшем озере в Сент-Джеймском парке.

И даже самоё смерть, не боясь её, некоторые члены Королевского общества считали «великим экспериментом». Так её назвал Джон Уилкинс, великий популяризатор науки, любимый автор юноши Ньютона, лёжа на своём смертном ложе и испробуя для лечения по совету Гука и собравшихся у его постели членов Королевского общества «кварту сидра, нагретого раскалёнными докрасна ракушками» и «шпанскую мушку на вены». Интерес к науке в то время бы всеобщим – он отражал большую потребность в ней нового буржуазного общества.

Маколей писал. «Для изящного джентльмена было почти необходимостью уметь поговорить о воздушных насосах и телескопах, даже знатные дамы по временам считали приличным высказывать любовь к знанию. Они приезжали в каретах шестернёю смотреть диковины Грешем-колледжа и испускали крики восторга, видя, что магнит действительно притягивает иголку и что микроскоп показывает муху размером с воробья».

Типичные для общества фигуры Пеписа и Ивлина олицетворяют жадность нового поколения к экспериментальной науке, к знанию, к исследованию мира и природы. Эти счастливцы уже сбросили цепи схоластики, но не познали ещё уз настоящей науки. А уже наступало время – и о нём возвестили и новое буржуазное общество, и новая протестантская религия, и новые страны, и новые корабли, и новые машины в мануфактурах – когда одного лишь отрицания Аристотеля, энтузиазма и любопытства было недостаточно, чтобы познать истинное строение природы. Чтобы на обломках науки средневековья построить науку нового времени, нужны были не только новые факты, не только новые гипотезы и даже не только новый метод. Всё это уже было, теперь стал необходимым их синтез. Кто-то позже назовёт это ньютоновской революцией.

…И вот – явился Ньютон…

ОПУС ПЕРВЫЙ

Другая цепь следствий, которая зацепилась за маленькие радужные каёмочки, привела к гораздо более серьёзному результату. Недаром Ньютон в одном из писем в Королевское общество о телескопе делает замечательную приписку:

Ньютон – Ольденбургу, Кембридж

18 января 1672 года

«…Я хотел бы, чтобы в Вашем следующем письме Вы известили меня о том, сколько времени будут ещё продолжаться еженедельные заседания общества, поскольку… я хотел бы, чтобы было заслушано и обсуждено моё сообщение о некотором философском открытии, которое навеяло мне мысль сделать указанный телескоп; я не сомневаюсь, что оно будет воспринято с гораздо большим удовлетворением, чем сообщение об инструменте, поскольку, по моему суждению, это необычайнейшее, если не самое значительное открытие, которое до сих пор было сделано в отношении действий природы.»

Беспокойство, которым пронизано письмо Ньютона, понятно – уже давно прошли слухи, что Королевское общество, прежде собиравшееся всенепременно каждую неделю, стало теперь отходить от этого славного обычая; по многу недель – и зимой, и весной, и ранним летом, как гласят протоколы, «заседаний не было ввиду недостатка собравшихся». О лете и говорить не приходится – с конца июня до середины октября на заседания вообще никто не ходил. Интерес Ньютона к дням следующих встреч легко объясним – он, видимо, спешил.

Как ясно из письма, Ньютон чужд ложной скромности. Он прекрасно понимает существенность своего открытия – этих маленьких радужных каёмочек, которые многие видели, но которым никто не придал значения.

Когда он понял это? Видимо, в разгар чумы, в 1666 году. В тот год он изготовил длинную полоску чёрной бумаги, закрасил одну половину её ярко-красным цветом, другую – ярко-синим, а затем обмотал её несколько раз тонкой нитью очень чёрного шёлка так, что нити на фоне цветных полос казались пересекающими их резкими чёрными линиями.

Затем, ярко осветив бумагу свечой, он с помощью собирательной линзы получил в её фокусе на очень белой бумаге резкое изображение чёрных нитей, пересекающих красную полосу. В это время чёрные линии синей полосы были совершенно не в фокусе, размыты. Если, наоборот, он наводил фокус на чёрные линии синей полосы, ему приходилось для этого пододвигать белую бумагу примерно на дюйм с половиной ближе к линзе. Вывод напрашивался сам собой. Фокусные расстояния линзы для разных цветов различны, а это, по-видимому, делает в принципе невозможным постройку мощного телескопа обычной конструкции с резким изображением. Другой вывод тоже был ясным, тоже напрашивался. Лучи от синей полоски больше преломляются, чем лучи от красной полоски, – это установлено.

Но откуда берутся синий и красный цвета в цветовом пятне, образующемся после преломления солнечного белого цвета призмой? Не состоит ли солнечный свет из смеси различных цветов?

Размышляя об этом, Ньютон перешёл к своим знаменитым опытам с призмой, купленной по случаю на Стурбриджской ярмарке ещё в 1664 году.

Впоследствии, в своём сообщении в Королевском обществе ив «Оптике», вышедшей через тридцать с лишним лет, Ньютон подробнейшим образом рассказывал о своих знаменитых экспериментах. Учитывая уникальность этого описания, знаменующего новый образ и новое понимание науки, приведём его полностью:

«В начале 1666 года, то есть тогда, когда я был занят шлифовкой оптических стёкол несферической формы, я достал треугольную стеклянную призму и решил испытать с её помощью прославленное явление цветов. С этой целью я затемнил свою комнату и проделал в ставнях небольшое отверстие с тем, чтобы через него мог проходить тонкий луч солнечного света. Я поместил призму у места входа света так, чтобы он мог преломляться к противоположной стене. Сначала вид ярких и живых красок, получавшихся при этом, приятно развлёк меня. Но через некоторое время, заставив себя присмотреться к ним более внимательно, я был удивлён их продолговатой формой; в соответствии с известными законами преломления я ожидал бы увидеть их круглыми. По бокам цвета ограничивались прямыми линиями, а на концах затухание света было настолько постепенным, что было трудно точно определить, какова же их форма; она казалась даже полукруглой.

Сравнивая длину этого цветного спектра с его шириной, я выявил, что она примерно в пять раз больше. Диспропорция была столь необычна, что возбудила во мне более чем обычное любопытство, стремление выяснить, что же может быть её причиной. Вряд ли различная толщина стекла или граница света с темнотою могли вызывать подобный световой эффект. И я решил вначале всё же изучить именно эти обстоятельства и попробовал, что произойдёт, если пропускать свет через стёкла различной толщины, или через отверстия различных размеров, или при установлении призмы вне помещения, так, чтобы свет мог преломляться перед тем, как он сужается отверстием. Но я выяснил, что ни одно из этих обстоятельств не является существенным. Картина цветов во всех случаях была той же самой.

Тогда я подумал: не могут ли быть причиной расширения цветов какие-либо несовершенства стекла или другие непредвиденные случайности? Чтобы проверить это, я взял другую призму, подобную первой, и разместил её так, что свет, следуя через обе призмы, мог преломляться противоположными путями, причём вторая призма возвращала свет к тому направлению, от которого первая отклоняла его. И таким образом, думал я, обычные эффекты первой призмы будут разрушены другой, а необычные усилятся за счёт многократности преломлений. Оказалось, однако, что луч, рассеиваемый первой призмой в продолговатую форму, второй призмой приводился в круглую настолько чётко, как если бы он вообще ни через что не проходил. Таким образом, какова бы ни была причина удлинения, оно не является следствием случайных неправильностей.

Далее я перешёл к более практическому рассмотрению того, что может произвести различие угла падения лучей, идущих от различных частей Солнца. И из опыта и расчётов стало мне очевидно, что различие углов падения лучей, идущих от различных частей Солнца, не может вызвать после их пересечения расхождения на угол заметно больший, чем тот, под которым они ранее сходились, величина же этого угла не больше 31–32 минут; поэтому нужно найти иную причину, которая могла бы объяснить появление угла в два градуса сорок девять минут.[20]20
  Чтобы окончательно исключить возможность использования будущими критиками аргумента о конечных размерах Солнца, Ньютон в одном из экспериментов использовал луч, идущий от планеты Венера (!), угловые размеры диска которой пренебрежимо малы в сравнении с диском Солнца. (Эксперимент описан в ньютоновских «Лекциях по оптике».)


[Закрыть]

Тогда я стал подозревать, не идут ли лучи после прохождения их через призму криволинейно, и не стремятся ли они в соответствии с их большей или меньшей криволинейностью к различным частям стены. Моё подозрение усилилось, когда я припомнил, что часто видел теннисный мяч, который при косом ударе ракеткой описывает подобную кривую линию. Ибо мячу сообщается при этом как круговое, так и поступательное движения. Та сторона мяча, где оба движения согласуются, должна с большей силой давить и толкать прилежащий воздух, чем другая сторона, и, следовательно, будет возбуждать пропорционально большее сопротивление и реакцию воздуха. И по этой самой причине, если бы лучи света были шарообразными телами (гипотеза Декарта) и при их наклонном продвижении из одной среды в другую они приобрели бы круговое движение, они должны были бы испытывать большее сопротивление от омывающего их со всех сторон эфира с той стороны, где движения согласуются, и постепенно отгибались бы в другую сторону. Однако, несмотря на всю правдоподобность этого предположения, я при проверке его не наблюдал никакой кривизны лучей. И кроме того (что было достаточно для моей цели), я наблюдал, что различие между длиной изображения и диаметром отверстия, через которое проходил свет, было пропорционально расстоянию между ними.

Постепенно устраняя эти подозрения, я пришёл наконец к experimentum crucis, который был таков: я взял две доски и поместил одну из них непосредственно за призмой окна, так что свет мог следовать через небольшое отверстие, проделанное в ней для этой цели, и падать на другую доску, которую я разместил на расстоянии примерно 12 футов, причём в ней также было проделано отверстие с тем, чтобы часть свата могла пройти через неё. Затем я разместил за этой второй доской другую призму таким образом, что свет, пройдя через обе эти доски, мог следовать сквозь призму, снова преломляясь в ней, прежде чем он упадёт на стену. Сделав так, я взял первую призму в руку и медленно повёртывал её туда и сюда, примерно вокруг оси, так что разные части изображения, падавшего на вторую доску, могли последовательно проходить через отверстие в ней, и я мог наблюдать, на какое место стены отбрасывает лучи вторая призма. И я увидел посредством изменения этих мест, что свет, стремящийся к тому концу изображения, к которому происходило наибольшее преломление первой призмой, испытывал во второй призме значительно большее преломление, чем свет, направленный к другому концу. И таким образом была открыта истинная причина длины этого изображения, которая не может быть иной, чем то, что свет состоит из лучей различной преломляемости, которые независимо от различия их возникновения падают на различные части стены в соответствии с их степенями преломления…»

Это полнокровное описание, направленное поначалу Ньютоном в Королевское общество и вскоре напечатанное в «Философских трудах» под названием «Письмо г-на Исаака Ньютона, профессора математики Кембриджского университета, содержащее новую теорию света и цветов», является маленьким шедевром нового типа научного исследования, ставшим образцом для многих поколений учёных. Ньютон не придерживается никаких гипотез; мысль чётко регистрирует результаты эксперимента, эксперимент устраняет малейшие сомнения мысли.

На страницах этого краткого мемуара воскресают забытые традиции древних геометров, простота и доказательность Евклида. Каждое предположение тут же сопровождается его экспериментальным изучением. Эксперименты приводят к теоремам, теоремы проверяются опытом, они дают возможность предсказывать будущие явления. Ньютон ничему не верит на слово, строго следуя и девизу Королевского общества «Ничто на слово», и Бэкону, и Декарту, начавшему свою книгу «Начала философии» с призыва всё подвергнуть сомнению.

Гигантское многообразие экспериментального материала, накопленного в оптике до Ньютона, уложилось теперь в скупые и чёткие формулировки. Ньютон сделал действительно крупнейшее открытие. Его выводы весьма многозначительны:

«1. Точно так же, как лучи света различаются по степени их преломления, точно так же они различаются и по их склонности проявлять тот или иной частный цвет. Цвета не являются качествами света, происходящими из-за преломлений или отражений в естественных телах (как обычно считают), но суть естественные и прирождённые качества, различные в различных лучах…

2. Одной и той же степени преломляемости всегда соответствует один и тот же цвет, а одному и тому же цвету всегда соответствует одна и та же степень преломляемости. А связь между цветами и преломляемостью очень точна и чётка: лучи либо точно согласуются в обоих отношениях, либо пропорционально в них же не согласуются.

3. Образцы цвета и степень отклонения, свойственные каждому отдельному сорту лучей, не изменяются ни преломлением, ни отражением от естественных тел, ни любой иной причиной, которую я смог наблюдать».

Ньютон полностью отказался от физиологического критерия восприятия и оценки цветов. Он связал конкретные цвета с конкретным углом преломления и тем самым превратил их оценку из субъективной в научную. Первичный цвет для Ньютона – это тот, который уже не может быть разложен призмой на другие цвета. Ньютон проводил чёткое различие между физиологическим восприятием цвета и его объективными характеристиками. Вспомним его эксперименты с придавливанием глазного яблока, когда перед глазом возникали цветные радужные картины, движущиеся пятна, целые миры, образованные лишь физиологическими ощущениями, не существующие реально. Или взять, например, последействие ретины, когда изображение остаётся на сетчатке ещё некоторое время после того, как глаза закрыты. Или цветовую слепоту – ту, которая не даёт людям возможности правильно оценить цвет того или другого тела. Произвольность этих ощущений привела Ньютона к мысли проводить оценку цветов на твёрдой научной основе, так, чтобы эта оценка могла быть подтверждена и повторена. Здесь-то и лежит основной водораздел между мировоззрением Гука и Ньютона.

Гипотезы Гука и теории Ньютона, несмотря на уверения Ньютона, на самом деле не имели между собой ничего общего. Первые были плодом раскованного ума, иногда чрезвычайно остроумным, чаще – фантазией художника, вторые были строгой реальностью, соком самой жизни. Теории Ньютона делали возможным развитие физики как точной науки. Она стала всё больше приближаться к математике и всё больше отдаляться от философии.

Письмо с описанием экспериментов и выводов, посланное Ньютоном издателю «Философских трудов», должно было перед опубликованием пройти апробацию в Королевском обществе, быть там заслушано и обсуждено. Это и произошло 8 февраля 1672 года.

Решение Королевского общества

«Решено торжественно поблагодарить автора от имени общества за очень талантливое исследование и известить его о том, что общество полагает, что оно весьма подходит, в случае согласия автора, для опубликования, – как с целью более удобного рассмотрения её философами, так и для устранения незначительных недочётов, содержащихся там, так и для защиты автора против возможных неосновательных претензий других лиц. Решено также, чтобы исследование было занесено в регистрационную книгу. Желательно также, чтобы епископ Солсберийский, господин Бойль и господин Гук внимательно ознакомились бы с ним, оценили бы его и дали бы отзыв о нём обществу».

Это была первая научная статья Ньютона. Тот необычный резонанс, который получила столь небольшая по объёму работа, её громадное влияние на судьбу Ньютона и судьбу науки в целом вынуждают наших современников более внимательно отнестись к тому новому, что привнесла она в мир научного исследования.

Эта статья знаменует наступление новой науки – науки нового времени, науки, свободной от беспочвенных гипотез, опирающейся лишь на твёрдо установленные экспериментальные факты и на тесно связанные с ними логические рассуждения. Пристальное наблюдение, чёткая классификация многих разрозненных ранее явлений, нахождение в них общих черт, сути и первопричины, извлечение из них некоторых закономерностей, которые могут дать представление о поведении вещей и явлений в ещё не изученных ситуациях. Наука получает дар предвидения.

Сейчас, в конце XX века, трудно оценить сенсационность и необычность этой маленькой статьи Ньютона. Но самые глубокие умы семнадцатого столетия быстро разглядели в небольшом письме «сумасшедшие идеи», приводящие в конце концов к взрыву устоявшихся и привычных представлений, которые, в свою очередь, лишь недавно одержали верх над аристотелевской метафизикой.

И вызов, содержащийся в этой небольшой статье, был принят. Нужно было поставить на место этого тридцатилетнего, ничем ещё себя не зарекомендовавшего кембриджского профессора. Для противников новой доктрины страшным было лишь одно – она была неуязвима для метафизической критики – критики с общих философских позиций. Ответом на неё могли быть только конкретные факты или конкретные выводы из фактов. Для того чтобы опровергнуть Ньютона, нужно самому придумать эксперименты, самому проделать их, провести критическое сопоставление. А это гораздо труднее, чем измышлять гипотезы.

Но невозможно свести различие лишь к ньютоновским экспериментам, даже столь изощрённым. Наука семнадцатого столетия полна экспериментальных работ – о необходимости их толковали и Гильберт, и Бэкон, и Галилей, а позже и Бургаве, и Нолле. Бесчисленны экспериментальные научные трактаты XVII–XVIII веков по механике, химии, магнетизму и электричеству, авторы которых также избегали гипотез, и накапливали факты, полагая, что наука равна эксперименту. А эксперимент Ньютона органически сочетался с теоретическим объяснением, нахождением универсальных причин, выводом физических закономерностей с предсказанием нового. Это не просто эксперимент, а эксперимент, составляющий неотъемлемую часть ньютоновского метода исследования.

Ньютон стал знаменитостью. Однако известность несла ему не только венец славы, но и терновый венец, о котором он размышлял в детстве. Его радужное настроение сменилось глубокой депрессией. Он старался замкнуться в своей скорлупе, не желая ввязываться в многочисленные споры, на которые его открыто вызывали. Он не был приспособлен для этих ожесточённых баталий, для бесконечных словопрений и фехтования цитатами из классиков. Но его упорно выволакивали каждый раз на свет божий, заставляя снова и снова отражать очередные критические удары.


    Ваша оценка произведения:

Популярные книги за неделю