Текст книги "Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры"
Автор книги: Владимир Онищенко
Жанры:
Хобби и ремесла
,сообщить о нарушении
Текущая страница: 12 (всего у книги 32 страниц) [доступный отрывок для чтения: 12 страниц]
Быстротвердеющий портландцемент (БТЦ) – портландцемент марок М400 и 500 с минеральными добавками, отличающийся повышенной прочностью через 3 суток твердения. БТЦ обладает более интенсивным, чем обычный, нарастанием прочности в начальный период твердения. Это достигается путем более тонкого помола цемента (до удельной поверхности 3500–4000 см 2/г), а также повышенным содержанием трехкальциевого силиката и трехкальциевого алюмината (60–65 %). В остальном свойства этого семейства не отличаются от свойств портландцемента. БТЦ применяют в производстве железобетонных конструкций, а также при зимних бетонных работах. Ввиду повышенного тепловыделения его не следует использовать в массивных конструкциях.
Сульфатостойкий портландцемент применяют для получения бетонов, работающих в минерализованных и пресных водах. Его получают из клинкера нормированного минералогического состава. Введение инертных и активных минеральных добавок не допускается. Этот цемент, являясь по существу белитовым, обладает несколько замедленным твердением в начальные сроки и низким тепловыделением. Сульфатостойкий портландцемент выпускают марки М400. Остальные требования к нему предъявляются такие же, как и к портландцементу.
Сульфатостойкий портландцемент с минеральными добавками выпускают марок М400 и 500. В качестве минеральной добавки вводят гранулированный доменный шлак (10–20 % от массы) или электротермофосфорный шлак или 5—10 % активных минеральных добавок осадочного происхождения (кроме глиежа).
Пуццолановый портландцемент производят марок М300 и 400. Его получают путем совместного помола клинкера и 25–40 % от массы цемента активных минеральных добавок и гипсового камня. Клинкер для пуццоланового цемента не должен содержать более 5 % MgO. В остальном свойства его не отличаются от свойств портландцемента.
Белый портландцемент получают из сырьевых материалов, имеющих минимальное содержание окрашивающих оксидов (железа, марганца, хрома). В качестве сырьевых материалов используют «чистые» известняки или мраморы и белые каолиновые глины, а в качестве топлива – газ или мазут, не загрязняющие клинкер золой. При этом помол такого цемента более тонкий, чем обычного портландцемента. Тонкость помола должна быть такой, чтобы при просеивании сквозь сито с сеткой № 008 проходило не менее 88 % массы просеиваемой пробы. Основным свойством белого цемента, определяющим его качество как декоративного материала, является степень белизны. По этому показателю его подразделяют на три сорта: I, II и III. По прочности белый цемент выпускают марок М400 и 500.
Начало схватывания белого цемента должно наступать не ранее 45 мин, конец – не позднее 12 ч. Транспортируют и хранят белый цемент только в закрытой таре.
Цветные портландцементы получают путем совместного помола клинкера белого цемента с устойчивыми к действию света и щелочей минеральными красителями: охрой, железным суриком, ультрамарином, оксидом хрома, сажей. Эффективное окрашивание дают оксиды хрома (желто-зеленый цвет), марганца (голубой или бархатно-черный), кобальта (коричневый). При этом получают цементы редких цветов, трудно достигаемых при смешивании с пигментами. Цветные цементы производят трех марок: М300, 400 и 500.
Белые и цветные цементы применяют для изготовления цветных бетонов, растворов отделочных смесей и цементных красок.
Тампонажные цементы на основе портландцементного клинкера по составу, в зависимости от содержания и вида добавок подразделяются на бездобавочный, портландцемент с минеральными добавками и цемент со специальными добавками, регулирующими свойства цемента. Тампонажные цементы применяют для цементирования нефтяных газовых и специальных скважин. Тампонажный портландцемент бездобавочный применяют в условиях нормальных и умеренных температур (15—100 °C) и нормальной плотности цементного теста (1650–1950 кг/м 3). Требования по устойчивости к воздействию агрессивных пластовых вод и объемным деформациям при твердении не предъявляются. К портландцементам с минеральными добавками или со специальными добавками, или в совокупности с минеральными и специальными добавками предъявляются требования по температуре применения, по средней плотности цементного теста и устойчивости тампонажного камня к агрессивности пластовых вод (сульфатная, кислая, углекислая, сероводородная, магнезиальная и полиминеральная).
Добавки для цементовДобавки для цементов классифицируют по отношению к свойствам цемента и назначению. По этим показателям добавки делят на следующие группы:
1) компоненты вещественного состава (активные минеральные добавки), изменяющие наименование цементов и обладающие гидравлическими свойствами;
2) наполнители, улучшающие зерновой состав цемента и структуру цементного камня, не обладающие или частично обладающие гидравлическими свойствами;
3) технологические – интенсификаторы помола, регулирующие основные свойства цемента: сроки схватывания, твердение, прочность цемента, пористость цементного камня (воздухововлекающие), пластичность цементно-песчаного раствора и бетона (пластифицирующие добавки), водоудерживающую способность, уменьшающие смачивание водой поверхности частиц цемента (гидрофобизующие добавки);
4) регулирующие специальные свойства цемента: тепловыделение, объемные деформации, коррозионную стойкость, декоративные свойства и др.
В современной технологии производства бетона широко используют поверхностно-активные добавки в количестве 0,05—0,3 % от массы цемента.
К гидрофильным добавкамотносится сульфитно-дрожжевая бражка (СДБ), которая улучшает смачивание частиц цемента водой, при этом ослабляются силы взаимного сцепления между частицами вяжущего, повышаются пластичность цементного теста и подвижность бетонной смеси.
К гидрофобизующимдобавкам относятся мылонафт, асидол, синтетические жирные кислоты и их соли и кремнийорганические жидкости (ГКЖ-10, ГКЖ-11, ГКЖ-94).
Мылонафт – натриевое мыло нафтеновых кислот. Синтетические жирные кислоты изготовляют путем окисления парафина. Жидкости ГКЖ-10 и ГКЖ-11 представляют собой водно-спиртовые растворы метил– и этилсиликоната натрия, способные смешиваться с водой. Кремнийорганическая жидкость ГКЖ-94 – продукт гидролиза этилдихлорсилана, ее применяют в виде водной эмульсии. К добавкам-микропенообразователям относятся абиетат натрия и омыленный древесный пек. Первый препарат получают омылением канифоли едким натром, а омыленный древесный пек представляет собой нейтрализованные щелочью смоляные кислоты древесного пека хвойных пород. Комплексные добавки обычно состоят из гидрофилизующих и гидрофобизующих поверхностно-активных веществ.
Синтетические химические добавки– суперпластификаторы (С-3, 40–03 и др.) – в последнее время получают все большее применение. Они оказывают повышенное пластифицирующее действие на бетонные смеси, улучшают структуру и повышают прочность и морозостойкость бетона. Пластифицированный портландцемент отличается от обыкновенного содержанием поверхностно-активной пластифицирующей добавки. СДБ в количестве до 0,25 % (в расчете на сухое вещество) повышает подвижность и удобность укладки бетонной смеси и придает затвердевшим бетонам высокую морозостойкость. В качестве пластифицирующих добавок применяют СДБ, которую можно вводить как при помоле цемента, так и непосредственно в бетонную смесь во время ее приготовления.
Гидрофобный портландцемент отличается от обыкновенного наличием различных поверхностно-активных гидрофобизующих добавок: мылонафта, асидола, асидол-мылонафта, олеиновой кислоты или окислительного петролатума, нафтеновой кислоты и ее солей, синтетических жирных кислот и их кубовых остатков, кремнийорганических полимеров и др. Эти вещества вводят в количестве 0,1–0,2 % от массы цемента в расчете на сухое вещество добавки. Гидрофобизующие добавки образуют на зернах цемента тонкие (мономолекулярные) пленки, уменьшающие способность цемента смачиваться водой. Такой цемент, находясь во влажных условиях, сохраняет активность и не комкуется. В то же время в процессе перемешивания бетонной смеси адсорбционные пленки сдираются с поверхности цементных зерен и не препятствуют нормальному твердению цемента.
В процессе приготовления бетонов некоторые гидрофобизующие добавки вовлекают в бетонную смесь большое количество мельчайших пузырьков воздуха – до 30–50 л на 1 м 3бетонной смеси (3–5 % по объему). Вовлеченный воздух или, если нет добавочного воздухововлечения, адсорбционные слои, активные в смазочном отношении, улучшают подвижность и удобство укладки смеси, а наличие в отвердевшем бетоне мельчайших замкнутых пустот способствует повышению морозостойкости бетона. Гидрофобный цемент отличается и более высокими водостойкостью и водонепроницаемостью.
Цементы с минеральными добавкамиК этой группе гидравлических вяжущих веществ принадлежат цементы, получаемые совместным помолом портландцементного клинкера и активной минеральной добавки или тщательным смешиванием указанных компонентов после раздельного измельчения каждого из них. В зависимости от вида исходного вяжущего компонента и добавки цементы с активными минеральными добавками делят на пуццолановые и шлакопортландцементы.
Активными минеральными (гидравлическими) добавками называют природные или искусственные вещества, которые при смешивании в тонкоизмельченном виде с известью-пушонкой и затворении водой придают ей гидравлические свойства, а при смешивании с портландцементом повышают его водостойкость. Гидравлические добавки в порошкообразном состоянии, будучи смешаны с водой, самостоятельно не затвердевают. Активные минеральные добавки подразделяют на природные и искусственные.
Активные минеральные добавки содержат вещество, способное в обычных условиях вступать в химическое взаимодействие с гидратом оксида кальция и давать труднорастворимые продукты реакции. В диатомитах, трепелах и других добавках осадочного происхождения этим веществом является водный кремнезем, а в вулканических и искусственных – преимущественно алюмосиликаты.
Минеральная добавка считается активной, если она обеспечивает схватывание теста, приготовленного на основе добавки и извести-пушонки, не позднее 7 суток после затворения и обеспечивает водостойкость образца не позднее 3 суток после конца его схватывания. Активность минеральных добавок характеризуется также количеством СаО, поглощенного из раствора на 1 г добавки в течение 30 суток. Отдельные виды минеральных добавок имеют активность не менее (мг/л): трепелы и диатомиты – 150, трассы – 60, пемзы, туфы, пеплы – 50, глиежи – 30.
Пуццолановый портландцемент — гидравлическое вяжущее вещество, получаемое путем совместного тонкого измельчения клинкера, необходимого количества гипса (до 3,5 %) и активной минеральной добавки или тщательным смешиванием раздельно измельченных тех же материалов. Добавок вулканического происхождения – обожженной глины, глиежа или топливной золы – вводят 25–40 % от массы цемента, а добавок осадочного происхождения диатомитов, трепелов – 20–30 %. В зависимости от активности гидравлической добавки и минералогического состава клинкера учитывается соотношение между ними. Чем активнее добавка, тем больше она способна связывать гидраты оксида кальция и тем меньше потребуется ее в пуццолановом портландцементе, и наоборот.
Водопотребность пуццолановых портландцементов с плотными и твердыми добавками (трассы, туфы) почти такая же, как и у портландцемента, а при использовании мягких пористых добавок (диатомитов и трепелов) значительно увеличивается. По этой причине необходимая подвижность бетонной смеси обеспечивается более высокой добавкой воды, что вызывает, соответственно, увеличение расхода цемента, чтобы не снизить прочность бетона. Сроки схватывания и тонкость помола пуццоланового цемента такие же, как и для обыкновенного портландцемента, однако пуццолановые портландцементы характеризуются замедленным нарастанием прочности в начальный период твердения по сравнению с портландцементом без добавок, изготовленным из того же клинкера. Пуццолановый портландцемент выпускают марок М200, 300, 400.
При твердении пуццоланового портландцемента происходят два процесса:
1) гидратация минералов портландцементного клинкера;
2) взаимодействие активной минеральной добавки с гидратом оксида кальция, выделяющимся при твердении клинкера. При этом Са(ОН) 2связывается в нерастворимый в воде гидросиликат кальция.
В результате пуццолановый портландцемент оказывается более водостойким, чем обыкновенный портландцемент. При схватывании и твердении пуццоланового цемента выделяется меньше тепла, что позволяет использовать этот цемент для массивных бетонных конструкций. Непригоден пуццолановый портландцемент для изготовления элементов, предназначенных служить в условиях попеременного систематического увлажнения и замораживания или высушивания. Пуццолановые цементы имеют меньшую водопроницаемость, чем портландцемент. Объясняется это набуханием добавки, уплотняющей бетон. Их целесообразно применять для подводных и подземных бетонных и железобетонных конструкций, особенно тогда, когда от бетонов требуется большая водонепроницаемость и высокая водостойкость.
Шлаковые цементыШлаковые цементы являются разновидностью цементов с активными минеральными добавками, в которых последние представлены доменными гранулированными шлаками. Утилизация доменных шлаков для получения цемента – это один из примеров рационального и массового применения отходов производства.
Доменные шлаки представляют собой вторичный продукт (отход), получаемый при выплавке чугуна из руд. По химическому составу доменные шлаки приближаются к портландцементу и состоят в основном из трех оксидов: СаО, Si0 2и 90–95 % А1 20 3.
Быстротвердеющий шлакопортландцемент, в отличие от обычного шлакового цемента, характеризуется более интенсивным нарастанием прочности в начальный период. Для получения быстротвердеющего шлакопортландцемента применяют клинкер быстротвердеющего цемента и доменные шлаки высокой активности.
Твердение шлакопортландцемента может быть разделено на два процесса: первичный – гидратация и твердение клинкерной части цемента и вторичный – химическое воздействие продуктов гидратации клинкерной части с доменными гранулированными шлаками. При гидратации трехкальциевого силиката клинкера происходит выделение гидрата оксида кальция, взаимодействующего с глиноземом и кремнеземом шлака и образуются гидросиликаты и гидроалюминаты кальция. По сравнению с портландцементом шлакопортландцемент характеризуется замедленным нарастанием прочности в начальные сроки твердения, но марочная и последующие его прочности примерно одинаковы. С понижением температуры прирост прочности шлакопортландцемента сильно снижается. Повышенная температура при достаточной влажности среды оказывает на твердение шлакопортландцемента более благоприятное влияние, чем на портландцемент.
По пределу прочности при сжатии и изгибе шлакопортландцемент делят на три марки: М300, 400 и 500. Быстротвердеющий шлакопортландцемент М400 должен иметь в трехсуточном возрасте предел прочности при сжатии не менее 20 МПа и на изгиб не менее 3,5 МПа.
Водостойкость бетонов на шлаковых цементах выше, чем на портландцементе, что объясняется отсутствием свободного гидрата оксида кальция. В шлакопортландцементном бетоне он связан шлаком в труднорастворимые гидроалюминаты и низкоосновные гидросиликаты кальция, тогда как в портландцементном бетоне гидрат оксида кальция в значительном количестве содержится в свободном виде и может вымываться, ослабляя бетон. Шлако-портландцементный бетон обладает удовлетворительной морозо– и воздухостойкостью, однако он все же менее стоек, чем бетон на портландцементе.
Применяют шлакопортландцемент в гидротехнических сооружениях, а также в конструкциях, находящихся в условиях влажной среды. Не следует использовать этот цемент в конструкциях, подвергающихся частому замораживанию и оттаиванию, увлажнению и высыханию. Быстротвердеющий шлакопортландцемент эффективно применяют в производстве железобетонных изделий, подвергающихся тепловлажностной обработке.
Гипсоцементно-пуццолановое вяжущееЭто вяжущее получают тщательным смешиванием 50–70 % полуводного гипса с 15–25 % портландцемента и 10–25 % активной минеральной добавки, содержащей кремнезем в активной форме, диатомит, трепел, опоку, активные вулканические породы, глины, обожженные при 600–700 °C, и т. п.
Гипсоцементно-пуццолановые вяжущие (ГЦПВ) применяют для устройства оснований полов, панелей для внутренних стен, для изготовления санитарно-технических кабин и других изделий.
Прокатные панели основания пола изготовляют из бетона на гцпв с плотностью 1300 кг/м 3и пределом прочности при сжатии не менее 7 МПа. Панели армируют деревянным каркасом. Эти панели обладают хорошими теплоизолирующими свойствами.
Глиноземистый цементГлиноземистым цементом называют быстротвердеющее (но нормально схватывающееся) гидравлическое вяжущее вещество, получаемое при тонком измельчении обожженной до плавления (или спекания) сырьевой смеси бокситов и извести с преобладанием в готовом продукте низкоосновных алюминатов кальция. Для интенсификации процесса помола клинкера допускается введение технологических добавок до 2 %, не ухудшающих качество цемента и снижающих его стоимость. Глиноземистый цемент производят трех марок: М400, 500 и 600.
В состав клинкера этого цемента входят низкоосновные алюминаты, при этом главной составной частью является одно-кальциевый алюминат Са0-А1 20 3. При затворении порошка глиноземистого цемента водой образование пластичного теста, последующее его уплотнение и твердение протекают аналогично обыкновенному портландцементу. Однокальциевый алюминат при взаимодействии с водой гидратируется, образуя в конечном итоге двухкальциевый восьмиводный гидроалюминат и гидрат оксида алюминия. В дальнейшем происходят уплотнение геля двухкальциевого гидроалюмината и кристаллизация продуктов гидратации. Уплотнение и кристаллизация геля глиноземистого цемента протекают очень интенсивно, что обеспечивает быстрое нарастание прочности. Примерно через 5–6 ч прочность глиноземистого цемента может достичь 30 % и более от марочной, через сутки твердения – свыше 90 %, а в 3-суточном возрасте – марочной прочности.
По величине предела прочности при сжатии глиноземистый цемент делят на три марки: М400, 500 и 600. Для определения марки испытывают на сжатие половинки образцов-балочек размером 40x40x160 мм, твердеющие 3 суток в нормальных условиях. Начало схватывания глиноземистого цемента должно наступать не ранее 30 мин, а конец – не позднее 12 часов.
Наиболее благоприятными для твердения глиноземистого цемента являются влажные условия и нормальная температура 20±5 °C. Нарастание прочности цемента в условиях температуры выше 25 °C уменьшается, возможно даже ухудшение достигнутой прочности и разрушение бетона в результате перекристаллизации двухкальциевого гидроалюмината в трехкальциевый. Такое явление называют «болезнью глиноземистого цемента». Поэтому пропаривание изделий на глиноземистом цементе не допускается. При температуре ниже нормальной и близкой к нулю твердение глиноземистого цемента происходит удовлетворительно, что объясняется его высокой экзотермией. В течение 1–3 суток твердения он выделяет в 1,5–2 раза больше тепла, чем портландцемент. Большое тепловыделение ограничивает применение глиноземистого цемента в массивных конструкциях, так как разогрев бетона внутри массива и охлаждение его снаружи вызывают растягивающие напряжения в наружных слоях и образование трещин.
Применение глиноземистого цемента существенно ограничивается его стоимостью (он в 3–4 раза дороже портландцемента), хотя по своим физико-химическим свойствам (скорости твердения, стойкости в различных средах) он превосходит все другие вяжущие вещества, в том числе и портландцемент. Применяют глиноземистый цемент в тех случаях, когда наиболее рационально используются его специфические свойства, например при срочных восстановительных работах (ремонт плотин, дорог, мостов, при срочном возведении фундаментов). Химическая стойкость глиноземистого цемента делает целесообразным его использование для тампонирования нефтяных и газовых скважин, на предприятиях пищевой промышленности, на травильных и красильных предприятиях, для футеровки шахтных колодцев и туннелей. Глиноземистый цемент по сравнению с другими вяжущими обладает стойкостью против действия высоких температур (1200–1400 °C и выше), что позволяет использовать его для изготовления жаростойких бетонов, применяемых в качестве футеровки тепловых аппаратов.