355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владилен Барашенков » Кварки, протоны, Вселенная » Текст книги (страница 7)
Кварки, протоны, Вселенная
  • Текст добавлен: 21 сентября 2016, 17:13

Текст книги "Кварки, протоны, Вселенная"


Автор книги: Владилен Барашенков


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 14 страниц)

Ну а наша Вселенная, может ли она сама быть фридмоном? Ведь если теоретические предсказания верны, они верны, так сказать, в обе стороны —и «внутрь» и «наружу». Почему модель «вложенных миров» должна быть справедливой лишь в одном направлении – только вглубь?

Скажем прямо: ничего здесь пока неизвестно. Из формул Фридмана вытекает, что в замкнутых и очень близких к ним по внутренним свойствам полузамкнутых мирах имеется вполне определенное количественное соотношение между радиусом мира, то есть измеренным в астрономических наблюдениях размером Вселенной, и плотностью распределенного в ней вещества. Согласно последним вычислениям, средняя плотность вещества в нашей Вселенной пока раз в 100 меньше той, которая была бы необходима для ее замыкания. Пока, говорим мы, ибо еще неизвестно, учтены ли все виды вещества в космосе. В частности, нет полной уверенности в том, что равна нулю масса покоя нейтрино; если она нулю не равна и если существуют все-таки космические кварковые «мешки», средняя плотность окажется, безусловно, выше, а следовательно, Вселенная может быть и замкнутой.

Плотность вещества не может более чем в 10 раз превосходить критическую, при которой мир становится замкнутым. Иначе расширение нашей Вселенной давно бы уже прекратилось и она бы перешла в цикл сжатия.

Продолжительность фазы расширения тоже ведь зависит от плотности вещества. Мы же пока, как известно, расширяемся. Пока... Не исключено, что скоро наш мир начнет сжиматься. Скоро – в космическом масштабе, конечно. Реально это могут быть многие миллиарды лет, практически – бесконечность.

Экспериментальное обнаружение предсказанных теорией черных микродыр, их излучения и взрывов явилось бы важным аргументом в пользу гипотезы фридмонов. Микроскопические черные дыры, как мы уже говорили, ведут себя в пространстве подобно ярко искрящимся бенгальским свечам, а их взрывы дают мощные импульсы электромагнитных и корпускулярных излучений. По этим признакам их и пытаются обнаружить. И действительно, и астрономы с Земли и автоматические станции (например, «Венера») не раз фиксировали всплески интенсивного гамма-излучения. Однако утверждать, что это сигналы о взрывах черных дыр, нельзя. Их можно объяснить и другими причинами, например взрывами нейтронных звезд. Никаких экспериментальных данных о существовании в доступном нам космическом пространстве микроскопических черных дыр, к сожалению, пока нет.

Вот с большими черными дырами дело обстоит гораздо лучше. Хотя они и невидимки, их присутствие можно обнаружить по действию их сильного гравитационного поля на окружающие тела – на расположенные вблизи звезды или на облака космической пыли. Астрофизикам известно несколько объектов, которые могут быть черными дырами. Прежде всего это компактный по величине и очень тяжелый источник рентгеновских лучей в созвездии Лебедя. Многое говорит за то, что эти лучи испускает засасываемое дырой плазменное вещество звезды-соседки.

А недавно в центре одной галактики (астрономы называют ее объектом М-87) замечено темное образование с массой, в несколько миллиардов раз большей, чем у Солнца, и с чрезвычайно высокой плотностью – приблизительно в 100 триллионов раз плотнее свинца. Ближайшие окрестности этого необычного тела излучают энергию как 100 миллионов Солнц! Впечатление такое, что там происходит гравитационный коллапс: вещество галактики М-87 втягивается в черную дыру.

Есть еще несколько кандидатов в черные дыры, на-пример рентгеновский источник в Большом Магеллановом облаке, на расстоянии 180 тысяч световых лет от нас. Он, пожалуй, самый яркий из всех известных. Его интенсивность непрерывно изменяется, временами резко возрастает в 10—20 раз. Считается, что такие непостоянные источники являются двойными, спаренными системами, состоящими из нормальной звезды и какого-то невидимого компактного объекта – тяжелой нейтронной звезды или черной дыры. Вполне допустимо, что в Магеллановом облаке таким компактным объектом действительно является черная дыра. Некоторые астрофизики убеждены в том, что даже в центре нашей собственной Галактики – Млечного Пути – должна быть одна или даже несколько массивных черных дыр.

Достоверное обнаружение больших черных дыр существенно повысило бы доверие к гипотезе фридмонов. Ведь если есть большие дыры в космосе, то возможны и маленькие. К сожалению, нет пока ни одного объекта, о котором можно было бы с абсолютной уверенностью сказать: да, это черная дыра. Энтузиасты выдвигают аргументы, скептики же, которых, как всегда, не меньше, чем энтузиастов, – контраргументы. И это, без сомнения, очень хорошо. В науке скептики играют важную роль, предохраняя ее от поспешных выводов, от ошибок. Оценка достоверности наблюдения всегда субъективна. Хорошо, если доводы «за» или «против» резко перевешивают, тогда вероятность ошибки невелика. Но вот когда и «за» и «против» почти уравновешены, ошибиться очень легко: очень многие ученые склонны чуть-чуть преувеличивать весомость тех аргументов, которые подтверждают их позицию. Желаемое выдается за действительное, и мы сталкиваемся с сенсацией, за которой, увы, не кроется ничего, кроме эмоций. Можно ли осуждать за это тех, чей дар убеждать оказывается сильнее? Нет, конечно: каждый человек ищет подтверждения своим идеям, и мало кто старается выискать опровержения. Люди есть люди.

Выдающийся ученый, как правило, обладает способностью, умением правильно оценивать относительный вес каждого из множества разнородных факторов. Но это такой же природный дар, как склонность к живописи или музыке. Можно быть исключительно изобретательным человеком, подлинным генератором идей, но каждый раз спотыкаться на их оценке. Бывают и такие.

Вот тут-то и требуется, настоятельно требуется скептик! Сомнение – один из главных двигателей науки.

Теория обладает замечательным свойством: в ней часто содержится много такого, чего никак не ожидали увидеть даже ее создатели. Так получилось и с черными дырами. Сегодня доводов в пользу существования этих удивительных объектов больше, чем против. То же и с фридмонами или почти то же. Уж очень просто и естественно в рамках современной теории возникают космические объекты с микроскопическими свойствами! И это вселяет надежду на то, что в один прекрасный день фридмоны будут обнаружены в эксперименте. Как подчеркивает академик М.А. Марков, первый исследовавший эти замечательные объекты, исключительная привлекательность гипотезы фридмонов состоит в том, что она позволяет достичь единого подхода к элементарным частицам и к грандиозным космическим объектам, вплоть до строения всей Вселенной. Физика элементарных частиц тесно переплетается с космологией, а привычное для нас разделение окружающего на микромир и макромир теряет абсолютное значение и сохраняет, смысл лишь в определенных границах.

ГЛАВА СЕДЬМАЯ,

в которой читатель знакомится с историей открытия античастиц и узнает о том, как в пекле первичного взрыва «сварилось» вещество нашего мира и куда девался антимир

В своих лабораториях физики уже давно научились создавать частицы антивещества. Но вот в окружающей нас природе мы почему-то не встречаем тел из антивещества. Может быть, они сосредоточены где-то далеко в космосе и нам еще только предстоит их открыть? Или же существуют какие-то физические законы, в силу которых Вселенная обязана быть только из вещества? Или, наоборот, из антивещества, которое нам, естественно, кажется веществом?

История открытия антивещества связана с электроном. С ним люди знакомы уже почти 100 лет. Он был первой элементарной частицей, открытой физиками. Электроны входят в состав всех атомов, потоки электронов работают в радиолампах. Каждый вечер они высвечивают изображения на экранах наших телевизоров. Именно электроны когда-то первыми упорно не желали подчиняться трем знаменитым законам Ньютона. Во многих случаях их движение походило скорее на распространение волн, чем на движение корпускул. Подобно волнам, пучки электронов огибали препятствия, отражались и интерферировали между собой.

Для описания этих явлений пришлось создать совершенно новую науку – квантовую механику.

Молодой английский теоретик Поль Дирак попытался объединить только что созданную квантовую механику с теорией относительности. Ведь электроны могут двигаться очень быстро, почти со скоростью света, когда масса частицы начинает заметно зависеть от ее скорости. В этом случае без теории относительности уже не обойтись. И вот оказалось, что уравнение, описывающее движение электрона, имеет два решения. Одно из них соответствовало обычной частице с положительной энергией, а другое – частице с отрицательной энергией и массой.

Сначала Дирак просто отбросил это решение, подобно тому как мы отбрасываем отрицательное, «нефизическое» решение квадратного уравнения, когда в ответе получается, например, что число землекопов равно ± 2. Однако положительное и отрицательное решения оказались тесно связанными между собой. Получалось так, что при определенных условиях частицы с отрицательной энергией могут возникать из частиц с положительной энергией, и наоборот. Нельзя было отбросить ни одно из решений, не разрушив всей картины.

Можно было, конечно, вообще отказаться от уравнения с такими странными свойствами и искать другой путь построения теории. Вероятно, многие на месте Дирака так бы и поступили. Но Дирак принадлежал к ученым, которые убеждены, что если удалось найти достаточно простое и симметричное по форме обобщение теории («красивое», как говорят физики), то, скорее всего, оно отражает какие-то важные физические закономерности и поэтому должно соответствовать явлениям природы. А если это не так, то и для этого должны быть глубокие основания, нередко опять-таки связанные с какими-то еще нам не известными физическими принципами.

В новом здании Московского университета на Ленинских горах есть комната, где часто собираются физики-теоретики. По традиции наиболее почетные гости пишут на стенах этой комнаты какую-нибудь мысль, которую каждый из них считает наиболее важной. Дирак написал: «Физический закон должен быть математически изящным».

Найденное им электронное уравнение и в самом деле было очень изящным. Из него можно было как частный случай вывести уже известные уравнения квантовой механики, получить законы Ньютона. И Дирак настойчиво старался понять физический смысл частиц с отрицательной энергией.

Наконец, решение было найдено. И очень неожиданное. Оказалось, что частицы с отрицательной энергией – это ... дырки в вакууме! Чтобы уяснить себе, в чем состояла эта идея Дирака, следует познакомиться с еще одним важным свойством электрона, открытым незадолго до этого швейцарским физиком-теоретиком Вольфгангом Паули.

Анализируя движение электронов в атомах, Паули заметил, что никогда не бывает так, чтобы у нескольких электронов одновременно были бы совершенно одинаковые параметры. Всегда чем-нибудь да они отличались друг от друга – энергией, направлением движения или еще какой-либо характеризующей их величиной. Получалось, иначе говоря, что любое физическое состояние, возможное в природе, может быть занято только одним электроном. Это правило часто называют принципом Паули. Его корни лежат глубоко в волновых свойствах микрочастиц и даже глубже – в свойствах окружающего нас пространства. Многое здесь стало понятным совсем недавно – в связи с разработкой «супертеории», объединяющей гравитационные и другие типы взаимодействий. А полвека назад, когда Дирак решал свое уравнение, принцип Паули рассматривался просто как подсказанное экспериментом и не знающее исключений правило.

Так вот, основываясь на принципе Паули, Дирак предположил, что все состояния с отрицательной энергией уже заняты электронами – в каждом из них находится по одной частице. А так как наблюдать мы можем лишь изменения, то сама по себе вся эта система бесконечно большого числа частиц остается для нас незаметной. Дирак назвал ее морем отрицательных энергий. Она воспринимается нами как пустота, как вакуум и играет роль фона, на котором протекают наблюдаемые физические явления. Если, однако, из этого моря выбить электрон, то новое состояние – «море с дыркой» – будет обладать по сравнению первоначальным фоном положительной энергией и положительным электрическим зарядом (вспомним, что вычитание отрицательной величины эквивалентно прибавлению положительной. И дырка будет наблюдаема. Она может перемещаться в море, и это перемещение мы воспримем как движение обычной частицы с положительной энергией и положительным зарядом.

В целом процесс выбивания электрона из моря будет выглядеть для нас как рождение в пространстве пары частиц с разными зарядами. Для этого надо, конечно, затратить энергию, например энергию электромагнитного поля.

Для наглядности можно представить себе график: горизонтальная прямая, выше которой положительная

энергия, ниже – отрицательная. Чтобы поднять электрон снизу вверх, надо, как при подъеме ведра из колодца, потрудиться – затратить энергию.

Возможен и обратный процесс: электрон «проваливается» в дыру. Мы увидим, что произошла аннигиляция двух столкнувшихся частиц с противоположными зарядами, в результате чего выделилась энергия излучения – образовались фотоны.

Таким образом, хотя уравнение Дирака и предсказывает существование частиц с энергиями обоих знаков в эксперименте всегда будут наблюдаться частицы с положительной энергией, а отрицательные энергии, подобно мнимым числам в математике, останутся как бы за кулисами событий – на уровне математического аппарата теории.

В конце 20-х годов, когда Дирак вывел свое знаменитое уравнение и предложил «теорию дырок», была известна всего лишь одна элементарная частица с положительным электрическим зарядом – протон. Однако его нельзя было считать «дыркой» в море отрицательных энергий, так как массы электрона и «дырки» должны быть одинаковы, протон же почти в две тысячи раз тяжелее электрона. Поэтому пришлось допустить, что наряду с электроном в природе должна существовать еще одна такая же частица, только положительно заряженная. А так как при столкновении они аннигилируют и их вещество полностью переходит в энергию излучения, их стали называть частицей и античастицей.

Так в науку вошла идея антивещества.

Электрон часто обозначают значком е-, а антиэлектрон е+. Процесс аннигиляции, рождение двух гамма-квантов, выражается формулой е- + е+—> 2γ. Гамма-квантов обязательно два, один гамма-квант родиться не может. Это легко понять, если рассмотреть аннигиляцию неподвижных частиц. Их импульс – нуль. По третьему закону Ньютона импульс сохраняется, поэтому должно родиться две частицы, разлетающиеся в противоположных направлениях. Их суммарный импульс равен нулю. В принципе может родиться и больше частиц, тогда закон сохранения импульса тоже, конечно, будет выполняться, но такие события происходят очень редко.

Уравнение Дирака сразу же оказалось в центре внимания физиков. Его обсуждали на семинарах и международных физических конгрессах. Это было главное научное событие конца 20-х – начала 30-х годов. Однако идею об античастицах-дырках поначалу серьезно не воспринимали.

Три столетия назад немецкий математик и философ Готфрид Вильгельм Лейбниц писал: «Мнимые числа – это поразительный полет духа божьего; это почти амфибии, находящиеся между бытием и небытием». Сегодня эти числа изучают в школе, с ними имеют дело техники и инженеры. Диракова теория дырок-античастиц сначала тоже показалась странной и непонятной. Многие физики рассматривали ее как некий теоретический фокус.

Когда история крупных научных открытий рассматривается сквозь призму времени, с высоты накопленных знаний и опыта, часто кажется удивительным, как это люди не замечали столь естественного порядка вещей, а тем более отказывались понимать его после того, как его уже обнаружили. Но дело как раз в том-то и состоит, что естественным представлялся совсем другой порядок, а осознание открытия часто требует отказа от того, что всеми считается очевидным. Для тех, кто знает современную физику, античастицы – такая же привычная вещь, как отрицательные или мнимые числа для математиков. Но полвека назад, повторяем, положение было совсем иным.

Однако в 1932 г. антиэлектрон неожиданно был открыт в эксперименте. Неожиданно – потому, что открывший его американский физик Карл Андерсон вообще не был знаком, с теорией дырок. Он изучал космические лучи, пользуясь камерой Вильсона. Это закрытая емкость, заполненная пресыщенными парами воды или спирта; заряженные частицы оставляют в ней следы – ленточки тумана, толщина и плотность которых зависят от массы частицы. Если же камера к тому же находится в магнитном поле, которое изгибает траектории частиц (положительные – в одну сторону, отрицательные – в другую), то можно установить и знак заряда частиц. Такой метод исследования космических лучей был разработан советским физиком, академиком Д. В. Скобельцыным. Им и воспользовался Андерсон. К слову сказать, сходным методом физики пытаются обнаружить следы кварков.

Открытую им частицу с положительным зарядом Андерсон назвал позитроном. С тех пор антиэлектрон e+ так и называют.

После открытия позитрона стало ясно, что у протона и нейтрона также есть «антипартнеры», так как, подобно электрону, они подчиняются принципу Паули и поэтому должны образовать моря отрицательных энергий. А отсюда сразу следовал вывод: наряду с веществом, атомы которого состоят из протонов, нейтронов электронов, в природе должно быть антивещество, состоящее из антипротонов, антинейтронов и позитронов.

Однако обнаружить антинуклоны оказалось дело очень трудным. Если не считать пяти военных лет, когда европейским и американским физикам было не до частиц, то для открытия антипротона и антинейтрона потребовалось около двух десятков лет. Мощных ускорителей частиц не было ни в 30-х, ни в 40-х годах, и существенным источником тяжелых античастиц могли быть только космические лучи. В разных странах один за другим ставились эксперименты – на поверхности земли, на самолетах и высотных шарах-зондах. Были открыты новые элементарные частицы, неизвестные ранее ядерные реакции, но антипротоны и антинейтроны не встречались никому.

Теперь мы знаем, в чем дело. В готовом виде тяжелых античастиц в космических лучах нет (точнее, они попадаются очень редко). Античастицы рождаются в ядерных реакциях при прохождении космических лучей сквозь атмосферу или при взаимодействии этих лучей с веществом физических приборов. Для этого требуете в 5—6 тысяч раз больше энергии, чем для рождения позитрона. Но космических частиц с такой большой энергией чрезвычайно мало. Кроме того, каждая такая частица, подобно камню, брошенному с горы, создает разветвленную лавину вторичных частиц, среди которых очень трудно заметить антипротон, а тем более незаряженную частицу – антинейтрон.

Все это стало известно значительно позже, а 30—40 лет назад неудачи поисков антипротона и антинейтрона не находили никакого объяснения. С течением времени этот вопрос становился все более острым. Не имея на него ответа, нельзя было развивать физику элементарных частиц. Некоторые ученые, рассматривая неудачу экспериментов как выражение какого-то нового за-кона, стали даже разрабатывать теории, которые обосновывали отсутствие тяжелых античастиц в природе.

Открыли антипротон только в 1955 г. после того как в Калифорнии был запущен бэватрон – гигантский по тем временам ускоритель частиц, рассчитанный на энергию в 6 с половиной миллиардов электронвольт. Через полгода был открыт и антинейтрон.

Проходя сквозь вещество, антипротон и антинейтрон аннигилируют – взрывают и себя, и встретившиеся им на пути протон или нейтрон. Только характер этих взрывов оказывается совсем не таким, как при столкновении позитрона с электроном.

Электрон и позитрон – источники электромагнитного поля; это поле остается и после их аннигиляции. Протон, нейтрон и их «антипартнеры» связаны со значительно более сильным мезонным полем. Здесь полного «сгорания» вещества не происходит, часть его превращается в массу осколков. Тем не менее даже с учетом несгоревших «шлаков» энергия антипротонного и антинейтронного взрывов в несколько тысяч раз больше энергии, выделяющейся при аннигиляции легких частиц – электрона и позитрона. Это самое мощное выделение энергии, которое мы можем осуществить в лабораторных условиях.

«Антипартнеров» имеют не только протон, нейтрон и электрон. Они есть у всех элементарных частиц. Некоторые, например не имеющий электрического заряда пи-ноль-мезон π° или квант света фотон, совмещают частицу и античастицу в одном лице. Но таких «двуполых» частиц немного. Как правило, частицы и античастицы сильно различаются по своим свойствам. Получается так, что в природе действует замечательное правило симметрии: природа состоит как бы из двух налагающихся друг на друга половинок—мира и антимира.

Одно обстоятельство, однако, с самого начала вызывало серьезное беспокойство физиков. Введенное Дираком море отрицательных энергий позволяло наглядно трактовать различные процессы с античастицами, но само оставалось принципиально невидимым. Составляющие его частицы с отрицательной энергией, подобно мнимым числам, существовали лишь в теории, на практике же наблюдать их было нельзя, даже косвенно. Закрадывалось подозрение, что это всего лишь приближенный способ описания новых явлений на языке привычных нам физических образов.

В физике такое случается нередко. Вспомним, например, о теплороде, которому посвятили столько работ физики XVIII в. Сегодня каждый школьник знает, что тепло связано с движением молекул и атомов, и никакого теплорода не существует. Но когда о молекулярном строении вещества еще не было известно, теплород был очень удобным физическим образом для того, чтобы наглядно представлять себе механизм передачи тепла. С его помощью французский инженер Сади Карно открыл основные законы термодинамики. Наглядные модели типа теплорода, упругих силовых линий в электродинамике, летучего флогистона в химии и тому подобного – это своего рода леса вокруг строящегося здания теории. Время идет, и сослужившие свою службу модели и идеи становятся лишь достоянием истории.

Исключить из теории ненаблюдаемые отрицательные энергии удалось после того, как физики стали более глубоко понимать свойства вакуума. Сегодня нам известно, что вакуум – это не абсолютная пустота, а скорее, особая среда, состоящая из бесчисленного множества спонтанно рождающихся и тут же исчезающих частиц и античастиц. Под действием внешних сил, получив дополнительную энергию и импульс, они могут оторваться от вакуума и начать жить самостоятельной жизнью. Вот такие оторвавшиеся частицы и описывает уравнение Дирака.

Вакуум в его современном понимании заменил менее точную и устаревшую «морскую» картину Дирака. В отличие от дираковского моря вакуум – наблюдаемый объект. Он взаимодействует с погруженными в него атомами и молекулами, он изменяет их свойства. О его собственных свойствах и особенностях пойдет речь в следующей главе.

А теперь самое время вернуться к исходному вопросу: если все физические законы, управляющие частицами и античастицами, совершенно одинаковы, как об этом свидетельствуют и эксперимент, и теория, то почему же тогда ни на Земле, ни в космосе мы не встречаем антивещества? Почему все атомы в окружающем нас мире устроены так, что их ядро непременно состоит протонов и нейтронов, а оболочка – из электронов?

Ведь если атомы антивещества удается синтезировать в лаборатории, то они должны существовать и просто в природе? Разве невозможны целые планеты из антивещества, звезды, даже галактики? Где же находится этот антимир?

В 50-х годах многие физики и астрономы были убеждены, что вещество и антивещество распределены во Вселенной вперемежку: большие и малые острова и архипелаги, разделенные океаном космической пустоты. Так как по внешнему виду области, заполненные веществом и антивеществом, не отличаются ничем, некоторые ученые предполагали, что антимиры расположены совсем рядом – может быть, даже в соседних созвездиях. В нескольких странах, в том числе и в СССР, были разработаны специальные исследовательские программы по поиску следов аннигиляционного излучения от случайно залетевших в атмосферу нашей планеты «антиметеоритов» – оторвавшихся и блуждающих в пространстве кусочков антивещества. На автоматических шарах-зондах и высотных самолетах в стратосферу поднимались чувствительные детекторы излучений. Специальные телескопы-спектрографы тщательно анализировали яркие вспышки метеоров в ночном небе.

К сожалению, эта теория не подтвердилась. Самые тщательные поиски аннигиляционного излучения, которое должно было бы рождаться в космосе на границе зон вещества и антивещества, где перемешиваются пыль и газы, состоящие из частиц и античастиц, не привели к успеху. Ни разу не удалось обнаружить следов аннигиляции и в спектрах излучения сгоревших метеоритов. Дал отрицательные результаты, наконец, и анализ состава космических лучей. Эти лучи на 96 процентов состоят из протонов, остальное – альфа-частицы и немного ядер тяжелых элементов. Если бы острова вещества и антивещества были распределены в космосе более или менее равномерно, то в космических лучах должна была быть значительная примесь антипротонов и антиядер. Правда, очень небольшое число антипротонов (сотые доли процента) все-таки было там замечено, но расчеты показывают, что они образовались в ядерных реакциях при столкновениях высокоэнергетических протонов и ядер с веществом межзвездной пыли и газа.

Можно, конечно, предположить, что Вселенная лишь в целом сбалансирована по числу частиц и античастиц, а в пространственном отношении она неоднородна, и антимиры существуют и находятся где-то далеко – за пределами видимости наших приборов. А коли так, то открытие антимиров – лишь вопрос времени.

В пользу этой гипотезы, казалось бы, говорят и данные космологии. Когда 15—20 миллиардов лет назад произошел Большой взрыв, разлетевшееся во все стороны правещество было не только сверхплотным, но и чрезвычайно раскаленным. Что происходило в первые мгновения этого взрыва, нам трудно даже себе представить. Однако когда аморфное вещество расширилось и несколько остыло, из него стали выделяться частицы – сначала очень тяжелые, для рождения которых требуется много энергии, а потом все более и более легкие. Вселенная стала своеобразным «кварковым супом», где кварки, антикварки и окружающий их глюонный бульон слипались в адроны и тут же под действием огромных температур снова распадались. А когда плотность вещества снизилась до уровня атомных ядер образовались протоны, нейтроны и соответствующие античастицы. Это случилось всего через одну десятитысячную долю секунды после начала Большого взрыва. Диаметр Вселенной не превышал в то время 30 километров. Большая часть образовавшегося тогда вещества сгорела в пламени аннигиляционных процессов и превратилась в более легкие частицы и электромагнитное излучение, а меньшая, оставшаяся, распалась на ядра и антиядра, сконденсировавшиеся затем в туманности, галактики и прочие космические объекты. Вся сложная цепочка ядерных процессов завершилась за несколько миллионов лет – мгновение по сравнению с 15—20 миллиардами, прошедшими с того времени. И все эти миллиарды лет осколки первичного взрыва разлетались в различных направлениях. Поэтому можно думать, что расстояния, разделяющие миры и антимиры колоссально велики: они сравнимы с размерами Вселенной.

Остается, однако, загадкой, каким образом в бурном океане Биг Бэнга могли образоваться и удерживаться обширные неоднородности с «перекосом» в сторону вещества (или антивещества). Не так давно была выдвинута гипотеза о том, что образование неоднородностей связано с микроскопическими черными дырами. Гравитационная энергия этих дыр интенсивно переходит в энергию испускаемых, «разбрызгиваемых» потоков частиц и античастиц, а это означает, что каждая из них является мощной фабрикой антивещества. Расчет показывает, что если черная дыра вращается, то частицы и античастицы должны разлетаться в противоположных направлениях. Не будем пока объяснять, почему так происходит; поверим теории. Заметим только, что это связано с асимметрией микропроцессов по отношению к правому и левому. Для нас сейчас важен сам факт асимметричного вылета частиц и античастиц. Он-то и создает условия для пространственного разделения вещества и антивещества. На современном этапе эволюции Вселенной микроскопических черных дыр, видимо, недостаточно для того, чтобы вырабатывать значительное количество антивещества. Но на ранних стадиях, когда плотность расширяющегося сгустка материи была очень велика, достаточно было небольшого случайного ее увеличения, чтобы произошло замыкание в черную дыру. Выработка антивещества тогда совершалась в огромных масштабах, причем тут же происходило разделение частиц и античастиц. Тогда-то и могли образоваться разделенные зоны вещества и антивещества.

Могли – если только не было какого-то дополнительного перемешивания. А это опять предположение, которое требует обоснования. И по-прежнему остается загадкой «перекос» Вселенной в сторону вещества. Почему его больше? Как могло случиться, что частицы рождались чаще античастиц, если они всегда появляются парами?

Вспомним теорию «великого объединения», которая предсказывает распад протона. Такой же радиоактивной частицей является и антипротон. Время их жизни фантастически велико – в миллиард триллионов раз больше нынешнего возраста самой Вселенной. Однако так было не всегда. В первые доли секунды после Большого взрыва, чрезвычайно высокая температура вещества способствовала распадам частиц и античастиц. Они быстро распадались и так же быстро восстанавливались. Существовало равновесие. Но температура снижалась, восстановление все больше отставало от распада, и число тяжелых частиц уменьшалось. Правда, одновременно снижалась и скорость распадов, поэтому мало-помалу снова установилось равновесие – на уровне, близком к современному.

И вот теперь мы подходим к самому главному. Оказывается, скорость накопления вещества и антивещества во взорвавшемся сгустке первичной материи были различны. И это приводило к тому, что, охлаждаясь, Вселенная становилась асимметричной по содержанию в ней вещества и антивещества. Частиц в среднем рождалось несколько больше, чем античастиц.

Хотя сами по себе, по своим свойствам частицы и античастицы симметричны, некоторое различие между ними все же есть. Они чуть-чуть различаются по особенностям своих распадов. Лет 20 назад американские физики наблюдали распад странных частиц, К-мезонов, который указывал на несколько различное поведение частиц и античастиц. Правда, распады с нарушенной симметрией происходят крайне редко и только у К-мезонов, во всех других случаях частицы и античастицы ведут себя совершенно одинаково. Идея о том, что симметрия частиц и античастиц должна сильно нарушаться в условиях сверхвысоких температур и давлений, пока чисто теоретическая. Она следует из моделей «великого объединения», которые предсказывают небольшой перевес вещества над антивеществом. Когда спустя много времени после Большого взрыва установилось равновесие, все частицы аннигилировали – превратились в нейтрино и электромагнитное излучение. Осталась лишь небольшая часть некомпенсированного античастицами вещества. Но из этой части и образовались все атомы нашей Вселенной.


    Ваша оценка произведения:

Популярные книги за неделю