![](/files/books/160/no-cover.jpg)
Текст книги "Кварки, протоны, Вселенная"
Автор книги: Владилен Барашенков
сообщить о нарушении
Текущая страница: 3 (всего у книги 14 страниц)
Мы не знаем пока ни массы, ни других свойств этих частиц – все это зависит от варианта пока еще не завершенной и развивающейся теории. Даже число хиггсонов изменяется от одного варианта теории к другому. Что требуется обязательно, так это то, чтобы эти частицы могли взаимодействовать между собой напрямую – без посредничества частиц других типов. Такое «самодействие» и образует основной «уровень мира»—его вакуум. Физикам это напоминает прозрачный эфемерный студень неодинаковой густоты.
Может быть, поля Хиггса являются всего лишь приблизительным, модельным описанием на слишком привычном для нас языке каких-то глубоких и еще не понятых нами свойств природы? Ведь все попытки найти реальные частицы Хиггса пока безрезультатны. Впрочем, здесь нам стоит остановиться, иначе мы рискуем запутаться в дебрях теоретических схем и гипотез тем более что они, прямо скажем, еще весьма неопределенны и неоднозначны.
Теория Салама и Пати была одной из самых первых – разведкой в неведомую еще область. Она дала общее представление о том, что нас там ожидает, обнаружила первые подводные камни, наметила пути. Но сегодня физики отдают предпочтение уже другим, более совершенным версиям. Гёте говаривал: смелые мысли подобны вырвавшимся вперед шашкам в игре. Они гибнут, но обеспечивают победу. Их можно сравнить также, с семенами, из которых вырастает дерево теории. Высказать верную идею часто означает – определить развитие науки на много лет вперед, хотя потом, с высоты развившейся теории, эта идея выглядит иногда чересчур наивной и простой.
В последние годы испробованы «на прочность» многие варианты теорий, объединяющих кварки и лептоны. Одни из них похожи на теорию Салама и Пати, другие, напротив, сильно отличаются от нее как числом частиц, тик и их свойствами. Но их всех объединяет идея о расщепленном взаимодействии. Пока трудно сказать, какой подход наилучший. Физикам предстоит еще очень много работы – горы расчетов, бесчисленная их проверка в опытах. Но, как говорится, лед тронулся, и перед нами псе отчетливее проступают контуры будущей теории.
Сто лет назад английский физик Джеймс Максвелл объединил три казавшиеся тогда совершенно не связанными между собой явления: свет, электричество и магнетизм. Возникла электромагнитная теория, принесшая нам и радио, и телевидение, и вычислительные машины, и прочие чудеса электроники. И вот теперь выясняется, что теория Максвелла – лишь частный случай более общей теории. Какие же фантастические возможности откроет нам новая теория!
Возможно, некоторым скептически настроенным читателям разговоры о новой теории покажутся чем-то вроде гадания на кофейной гуще. Какой смысл спорить о достоинствах того или иного варианта теории для частиц, которые сами еще под вопросом? Ведь ни кварков, ни глюонов никто никогда еще не видел. Физики, да и все ученые всегда говорили, что высший судья для них – опыт, но его-то как раз здесь и нет. Как же узнать, верна или нет новая теория?
Действительно, «великое объединение» взаимодействий – электромагнитного, слабого и сильного – долго не принимали всерьез даже многие из физиков. Масса темных мест, плохо обоснованных предложений и ничтожное количество экспериментальных данных. Все это было... Первый серьезный успех, заставивший поверить в новую теорию, был достигнут в начале 70-х годов, когда удалось найти согласующийся с опытом вариант теории, объединивший силы двух типов – электромагнитные и слабые. Одним из авторов этой теории был уже известный нам Абдус Салам, двое других – американцы Стив Вайнберг и Шелдон Глешоу. За это достижение несколько лет назад им была присуждена Нобелевская премия. В их теории взаимодействия передаются квантами, имеющими четыре различных состояния. В одном из них квант имеет нулевую массу – это всем хорошо известный фотон; три других состояния, наоборот, очень массивные – почти в 100 раз тяжелее протона. Обмен такими квантами, например, между электроном и нейтрино возможен лишь на очень маленьких расстояниях – 1000 раз меньше размеров протона. Там слабые взаимодействия становятся сильными.
Недавно тяжелые кванты (их называют Z– и W-мезонами) были обнаружены в эксперименте, проведенном в Международном центре ядерных исследований в Женеве. Их рождение было замечено в столкновениях разогнанных до очень высоких энергий протонов и антипротонов. В лобовых столкновениях таких частиц происходит почти мгновенное выделение огромной энергии, за счет которой и рождаются тяжелые кванты. Экспериментаторам, которые этим своим открытием доказали, что теоретики идут по правильному пути, тоже была присуждена Нобелевская премия.
Как видите, современные физические теории – это далеко не гадание на кофейной гуще.
Теперь перед физикой стоит задача добавить к объединенному «электрослабому» взаимодействию еще и сильное – объединить три взаимодействия из четырех на которых держится мир. Для этого нужно найти недостающие состояния кванта промежуточного поля – выяснить, сколько их, таких состояний, какие у них массы, заряды и все прочие характеристики. Работы много! Понятно, что, если искать простым перебором вариантов или, как еще говорят, методом проб и ошибок, наугад выбирая значения параметров, задача долго останется нерешенной. Особенно если учесть, что опыты стали очень трудными и дорогими. Нужна руководящая идея.
Роль такой идеи сегодня играют законы симметрий. Об этом стоит рассказать подробнее.
Свою теорию симметрий французский ученый Эварист Галуа написал в ночь накануне дуэли. Ему шел всего лишь двадцать первый год. Неудачи преследовали юношу. Первую его математическую работу напечатали когда ему было семнадцать лет, но в тот же год он провалился на вступительном экзамене по математике в Политехническом институте. Он послал свои работы знаменитым математикам Коши и Фурье, но Коши его статьи потерял, а Фурье неожиданно умер, не успев прочитать. С большим трудом Галуа удалось поступить в Высшую педагогическую школу – учебное заведение значительно низшее по уровню, чем Политехнический институт. Но и оттуда, он был вскоре исключен за недозволенную властями политическую деятельность. Рассказывали, что однажды во время банкета с гвардейскими офицерами он произнес тост за здоровье короля Луи Филиппа, но тут же выхватил кинжал и энергичным жестом показал, что следовало бы сделать с его величеством... Многие были убеждены, что дуэль была спровоцирована сторонниками короля, и страстный республиканец Галуа был убит наемным убийцей.
Произошло это сто пятьдесят лет назад. Сегодня теория симметрий Галуа – один из краеугольных камней математики и теоретической физики. На ее основе по нескольким известным семействам частиц, мультиплетам, можно установить связывающие их правила симметрии и вычислить все другие мультиплеты. В свое время она помогла предсказать существование кварков; теперь она используется для испытания кандидатов на роль многокомпонентного промежуточного кванта в теории «великого объединения».
Установлено, что каждому типу симметрии отвечает определенный квант-мультиплет, и вместо перебора всех возможных случаев следует изучать лишь те, которые соответствуют этим симметриям. Задача, естественно, сильно упрощается, хотя и после этого она остается еще очень трудной – ведь типов симметрии много. Например, симметрии круга и шара, вращения и отражения в многомерных пространствах и так далее. Чем больше параметров требуется для описания частицы, тем более сложной и многоплановой становится симметрия.
Как тесно все переплелось в нашем мире! Абстрактные кварки и хрупкое кружево снежинок (тоже симметрия!). Физика и художника волнуют одни и те же законы...
Пока ни теоретики, ни экспериментаторы точно не знают, из каких частиц складывается мультиплет, ответственный за перенос единого взаимодействия. У каждого свой излюбленный вариант «великого объединения». Однако все согласны в том, что среди этих частиц непременно должен быть безмассовый, похожий на фотон глюон, который связывает цветные заряды кварков. Это как бы «цветной электромагнетизм». Там должны быть также частицы – переносчики взаимодействий между лептонами и кварками. Большинство моделей «великого объединения» предсказывают для этих частиц очень большие массы – приблизительно в 100 триллионов раз больше, чем у протона. Так много весит уже видимая глазом пылинка. Чтобы получить энергию, необходимую для рождения подобных частиц, пришлось бы построить ускоритель длиной в целый световой год! От Солнца до Земли свет пробегает всего за 8 минут, а тут бежал бы целый год. Представляете себе, какой длины был бы этот ускоритель!
Энергии космических лучей тоже не хватит для рождения сверхтяжелых квантов. Даже у самых быстрых из них энергия в 100 раз меньше той, которая была бы нужна.
Но все это не означает, что сверхтяжелые кванты никогда не будут открыты и что «великое объединение» навсегда останется недоказанной гипотезой. Чтобы убедиться в существовании предсказываемых теорией сверхтяжелых частиц, совсем не обязательно строить фантастический ускоритель. Это можно сделать косвенным способом. Сверхтяжелые кванты рождаются где-то глубоко в недрах нуклонов, мезонов и других частиц. На очень короткое время это, как доказывают физики квантовыми законами разрешается. И вот там, взаимодействуя со сверхтяжелым квантом, кварк может превратиться в лептон. Частица, внутри которой произошло такое превращение, сразу же распадается, так как частиц, состоящих из смеси лептонов и кварков, не бывает. Поэтому, если удастся обнаружить радиоактивный распад протона, который вне рамок «великого объединения» абсолютно устойчив, это будет убедительным подтверждением идеи такого объединения и связанных с нею сверхтяжелых квантов.
Вместе с тем это будет означать, что все атомы радиоактивны и с течением времени вся наша Вселенная прекратит свое существование – распадется. Произойдет это, правда, не скоро, так что волноваться по этому поводу нечего. Согласно расчетам, один распад протона в стакане воды происходит не чаще чем за 10 тысяч лет. Вселенная наша существует около 20 миллиардов лет. За это время внутри объема, равного земному шару, успело распасться всего около 100 тонн, или, иными словами, 10-18 процентов всего известного нам вещества Вселенной.
Заметить распад протона все равно, что найти иголку в стоге сена. Распад протона пытаются обнаружить по вспышкам света в прозрачной жидкости. Такая вспышка может быть результатом аннигиляции: позитрон столкнется с атомарным электроном, и образуются два кванта света. Измерения проводят глубоко под землей, чтобы толстый слой почвы поглотил мешающие измерениям космические лучи, и с огромными мишенями – целыми бассейнами прозрачной жидкости. Здесь все гигантское и все на пределе современных технических возможностей. Несколько раз на совещаниях физиков объявлялось, что в такой-то лаборатории наконец зарегистрировали долгожданный сигнал от распада протона. Но доказательства, увы, были не бесспорны, так что с полной уверенностью сказать, что распад протона наблюдался, нельзя. Тем не менее физики надежды не теряют. Они убеждены даже, что «великое объединение» – это не предел. Теоретики размышляют над более грандиозной программой – над «суперобъединением» всех известных сил природы: электромагнитных, слабых, сильных и гравитационных. Вот было бы поистине великое, нет – величайшее объединение!
Одним из первых идею «суперобъединения» выдвинул харьковский теоретик Дмитрий Васильевич Волков и его сотрудники. На окраине Харькова, в лесном массиве, расположены ускоритель электронов и научный городок Пятихатки. Вот там и родилась эта замечательная идея. Правда, как это часто бывает в науке, сходные мысли были высказаны и другими физиками – Ю. Ф. Гольфандом в Физическом институте имени П. Лебедева в Москве, а также И. Вейсом и Б. Зумино в Женеве. В современном мире, где происходит быстрый обмен информацией, новые идеи часто витают в воздухе.
В математическом отношении новая теория чрезвычайно сложна. Гросмановы числа, произведение которых зависит от порядка сомножителей, спиноры и спинтензоры, теория групп, весь аппарат современной дифференциальной геометрии... Но физический смысл теории прозрачен. Все элементарные частицы, в том числе и «суперэлементарные» кварки и глюоны, теория делит на два больших разряда: бозоны и фермионы. Отличительным признаком служит величина спина. Дело в том, что микрочастицы ведут себя подобно быстро вращающимся полчкам, а у каждого волчка есть момент количества движения. Это и есть спин. Частицы, у которых спин – дробная величина, называют фермионами, а у которых целое число – бозонами. Происходят эти термины от фамилий итальянского физика Ферми и индийского теоретика Бозе, которые первыми изучили зависимость свойств частиц от их спинов. К фермионам принадлежат кварки, протон, нейтрон, электрон, нейтрино и все другие лептоны, а также многие странные частицы. В разряд бозонов входит пи-мезон (его спин равен нулю, поэтому можно сказать, что это невращающаяся частица), а так же омега– и ро-мезоны и множество других короткоживущих частиц.
Так вот, идея суперобъединения, или суперсимметрии заключается в предположении, что у каждого бозона обязательно есть партнер-фермион, а у фермиона – бозон. Иначе говоря, при перестановке бозонных и фермионных частиц физические законы остаются неизменными (зеркально симметричными).
Мультиплеты такой теории объединяют частицы с разными спинами: кварки и лептоны, глюоны, фотон, гравитон и не найденные еще на опыте их суперсимметричные партнеры. «Многогранные» частицы-мультиплеты становятся очень сложными, их «компоненты-грани») могут быть частицами вещества и частицами – переносчиками взаимодействий.
Такое всеобъемлющее объединение частиц и полей по-видимому, действительно происходит на ультрамалых расстояниях порядка 10-33 сантиметров. Расстояния эти намного меньше тех, которые можно прощупать с помощью ускорителей. Но можно рассчитывать на то, что отголоски суперобъединения обнаружатся где-то в глубинах Вселенной, развитие и строение которой зависят от того, что творилось в ней в первые мгновения после ее рождения, когда она была меньше любой самой маленькой элементарной частицы. Об этом событии мы еще подробно поговорим в последующих главах.
Среди предсказаний новой теории одно из наиболее интересных – гипотеза о новом виде гравитации, о неизвестном до сих пор варианте всемирного тяготения. Его квантами-переносчиками служат гравитино – фермионные партнеры «обычных», известных нам, бозонных гравитонов. Расчеты показывают, что в отличие от гравитона, являющегося безмассовой частицей, гравитино весит раз в 100 больше протона. Существует ли в природе такая «тяжелая гравитация»? Открытие гравитино будет хорошим доказательством правильности идеи суперсимметрии.
Другое важное следствие анализа различных вариантов суперсимметричной теории элементарных частиц – гипотеза о составной природе кварков. Кванты суперсимметричного поля стали настолько сложными и многокомпонентными объектами, а их физические свойства – настолько разнообразными, что это само по себе наводит на мысль: не состоят ли кварки, глюоны и их компоненты из каких-то более мелких и простых частичек, принадлежащих следующему, «закварковому» уровню материи?
Что это за частицы, можно лишь гадать. Никаких экспериментальных данных об этом пока нет. Тем не менее теоретики уже создают и исследуют различные схемы с составными кварками. В одной из них кварки состоят из двух «пракварков», один из которых напоминает мезон, а второй по своим свойствам похож на электрон и имеет античастицу. Разработана схема, в которой кварки состоят из трех электроноподобных пракварков. Некоторые теоретики считают, что частями кварков могут быть протяженные объекты, похожие на тонкие длинные змейки или вибрирующие струны, с размерами порядка 10-33 сантиметров. Эти «змейки» похожи на хромосомы в клетках организмов. При столкновении кварков их «хромосомы» могут сливаться, скрещиваться и распадаться, образуя новые «хромосомы». В соответствии с идеей суперсимметрии они сочетают в себе свойства бозонов и фермионов. Изучение гипотетических «змеек-струн» – сегодня одно из основных направлений физики элементарных частиц.
Но все это – гипотезы. Что происходит на самом деле в области сверхмалых расстояний, сказать пока трудно. Суперобъединение переживает еще младенческую пору своей жизни. Пока это область теоретической фантазии, где вопросов и загадок намного больше, чем разгадок и ответов. Целый мир абстрактных образов! И благодатное поле для самых смелых предположений.
Теория в современной физике занимает исключительное место. Она строит мосты между островками разрозненных экспериментальных фактов и путем экстраполяции позволяет далеко уходить от них в область неизвестного.
Фиолетовые руки
на эмалевой стене
полусонно чертят звуки
в звонко-звучной тишине...
Эти знаменитые строки Валерия Брюсова невольно приходят в голову, когда глядишь на черные доски с узором затейливых формул, понятных лишь небольшом кругу посвященных... И в то же время, как мы все давно знаем, нет ничего практичнее хорошей теории!
Когда-то, лет 25 назад, на киноэкранах и на страницах книг появился образ физика-теоретика, этакого элегантного острослова, немного чудаковатого, немного резкого, утопающего, вытянув ноги, в современных мягких креслах или разгуливающего по бесконечным коридорам в окружении почтительно внимающих ему коллег экспериментаторов. Как же это все устарело! Да и было ли верно? Остроумный или просто умный – да, разумеется. Чудаковатый? Возможно. Но элегантный – нет. Элегантность нуждается в заботах и уходе, а у теоретика нет и никогда не было времени. Ни на поддержание элегантности, ни на праздное утопание в креслах. У него нет «нерабочего времени»! Физическая задача сродни головоломке – все становится простым, когда найдется «ключик». И мозг теоретика постоянно занят поискам этого «ключика» – за столом в рабочем кабинете, во время обеда, по дороге на работу и домой. Попытка за попыткой... И каждую догадку надо проверить расчетом. Растет стопка густо исписанных формулами и цифрам листов. И все не так, все напрасно... Не зря говорят, что теоретик работает в основном на корзину. Тяжелый неблагодарный труд, где озарения так редки. Но зато какие это бывают озарения!
Особой любовью у теоретиков пользуются «трепы» —шумные споры за стаканом чая или просто у окна в коридоре. Здесь можно услышать о последнем номере японского «Прогресса теоретической физики», о сенсационном фильме, о новом типе диаграмм, которые при думал стажер из четвертого сектора... Нередко долгожданная идея рождается тут же, у окна, в оживленной беседе. Неожиданный поворот мысли собеседника, упоминание о похожем случае, какие-то ассоциации – и вдруг ясно видите решение, над которым бились несколько дней.
Когда в Дубне строился новый корпус для теоретиков, Д. И. Блохинцев – он был в то время директором дубненского института – настоял на том, чтобы там была устроена специальная комната для «теортрепов», с самоваром, удобными креслами и большой черной доской во всю стену.
«Пусть говорят и спорят вволю, это себя окупит,– успокаивал он особенно ретивых администраторов, которым казалось, что теоретики слишком много времени проводят за разговорами. – Теоретик в современном институте – все равно что астролог при королевском дворе: он поднимает уровень дворцовой свиты!»
И слова его полностью оправдались...
Итак, казалось бы, «суперобъединение» четырех фундаментальных сил природы позволит рассчитать и объяснить любое физическое явление. Несколько уравнений, из которых можно вывести весь мир! И физику, и химию, и биологию, даже психологию – ведь в конечном счете в ее основе тоже лежат материальные, вещественные процессы. Тем самым будет достигнута основная цель науки, и ученым останется лишь применять раз и навсегда установленные законы природы к решению конкретных практических задач. Нужно будет только разложить изучаемое явление на более простые – и любая задача решена. Никаких больше тайн и загадок!
В одной из своих статей президент американской Ассоциации содействия науке А. Глэсс так и говорил: великие концепции, фундаментальные механизмы и основные законы природы теперь уже известны, остается, конечно, еще уточнить множество деталей, но бесконечных горизонтов науки больше не существует. Подобные высказывания о неизбежном конце фундаментальной науки, о постепенном сведении всех исследований к чисто прикладным в последнее время замелькали не только на страницах научно-популярных, но и специальных научных изданий.
С этим, однако, никак нельзя согласиться. Природа неисчерпаема, а посему, какой бы совершенной ни была теория, всегда найдутся явления, выходящие за ее рамки. Построить окончательную, всеобъемлющую теорию не удастся никогда.
Конечно, читатель может спросить автора: а откуда мы знаем, конечна в своем качественном разнообразии природа или бесконечна? Где у нас доказательства как того, так и другого? Например, Станислав Лем в примечаниях, написанных им специально для русского издания его книги «Сумма технологии», высказывает опасение, что «просто так», безоговорочно допустить бесконечность окружающего мира – дело весьма рискованное. Слишком уж коротка история человечества, чтобы этот вывод можно было считать твердо установленной истиной. По мнению Лема, может случиться так, что познание очень большого числа фактов и связей между ними приведет к своеобразным «высям познания», после чего число вопросов, не имеющих ответа начнет уменьшаться. Аналогичные мысли высказывает в своей книге «Характер физических законов» известный американский физик-теоретик Ричард Фейнман. Он тоже не исключает того, что может наступить время, когда мы будем иметь ответ сначала на 99 процентов вопросов, которые мы задаем природе, потом на 99,9, потом на 99,99 процента, после чего исследования потеряют смысл, так как мы будем знать уже практически все.
В конце концов – почему бы нет?
И действительно, физикам уже не раз казалось, что они почти достигли полного понимания законов природы, неясности касались лишь деталей. Но каждый раз получалось так, что избавиться от этого «почти» и создать полную, совершенно законченную и абсолютно непротиворечивую теорию не удается. Всегда оставались вопросы, которые упорно не находили ответа. Они превращались в парадоксы, в проблемы, а из них в конечном счете возникала новая теория. В самом конце XIX века физик Филипп, фон Жолли, учитель Макса Планка, говорил своему ученику: «Конечно, в том или ином уголке еще можно заметить или удалить пылинку, но система как целое стоит прочно, и теоретическая физика приближается к той степени совершенства, каким уже столетия обладает геометрия. Так что не советую вам тратить на нее время».
Сходные мысли по поводу основ математики высказывал Анри Пуанкаре, самый в ту пору авторитетный и талантливый математик.
И вот прошло всего несколько лет, и Макс Планк открыл ворота в необозримый мир квантовых явлений, а «царица наук» математика сотрясалась от глубоких противоречий, которые обнаружились в ее основах и которые до конца не устранены и по сей день.
В создаваемой физиками теории суперобъединения тоже немало вопросов, не имеющих ответа. Неясно, например, чем определяется величина скорости света, заряд электрона и другие мировые константы. Почему они именно такие, какие есть, а не иные? Что будет представлять собой грядущая «заквантовая» теория, которая, может быть, сумеет наглядно объяснить нам, что же в конце концов размазывает траектории квантовых частичек, когда они движутся в полной пустоте? И так далее.
Любая теория, какой бы общей она ни была, всегда содержит некоторые исходные положения, аксиомы или просто константы, которые не выводятся внутри данной теории, а задаются извне заранее, на основе анализа и обобщения опытных данных. Абсолютной, замкнутой самой в себе теории быть не может. Свое обоснование она может получить лишь в рамках более общего теоретического построения, которое, в свою очередь, получит определение в еще более общей теории. Этот ряд не имеет конца, и, как показывает опыт, число фундаментальных вопросов, возникающих в процессе развития науки, не только не уменьшается, как это предположил Фейнман, а, наоборот, становится все больше и больше. Можно сказать, что периметр, по которому наука соприкасается с областью неизвестного, все время удлиняется.
Как метко заметил однажды французский ученый Пьер Буаст, пределы наук похожи на горизонт: чем ближе подходят к ним, тем дальше они отодвигаются.
Более того, даже уже созданные, хорошо разработанные теории и те постоянно в движении – они видоизменяются, совершенствуются. Книги, популяризирующие нынешнее состояние знаний, скажем, в области физики, и притом лучшие из них, часто представляют дело так, как будто существуют две четко отделенные друг от друга области: область того, что наукой раз и навсегда установлено, и того, что еще до конца не выяснено. Представьте себе, что вы находитесь в волшебном, великолепном дворце, где то тут, то там лежат на столах таинственные головоломки. Вы покидаете дворец с уверенностью, что эти головоломки рано или поздно будут решены – в этом убеждает вас великолепие и стройность дворца и его покоев. И у вас даже не мелькнет и мысли, что решение этих головоломок может привести к разрушению половины здания. Притчу эту придумал тот же Лем в «Сумме технологии», и она очень точно характеризует процесс становления науки. Неизменной остается лишь задняя, тыловая часть здания, а фасад его всегда в лесах. Иногда это готический храм, поражающий строгостью своих линий, а иногда нечто конструктивистское, в духе домов-шестеренок 30-х годов... Впрочем, на что это похоже, не так важно – важно, что в вечной переделке, в лесах.
Ну а если представить себе противоположное – допустить, что в природе существует нечто абсолютно первичное, какие-то праобъекты и связывающие их первозаконы, то мы сразу же столкнемся с неразрешимым вопросом о том, чем определяются эти исходные элементы, откуда они произошли. Основа мироздания становится книгой за семью печатями. По существу, это не научный, а религиозный подход к пониманию природы.
Лестница структурных форм и связанных с ними физических законов неисчерпаема. С этой стороны нет никаких ограничений бесконечному развитию фундаментальных наук, хотя природа, конечно, не похожа на бесконечный ряд вложенных одна в другую матрешек. Мир устроен гораздо сложнее.
Надежды раз и навсегда построить Единую Всеобъемлющую Теорию природы несбыточны еще и в другом отношении. Верно, что в тех областях, где мы ее уже изучили, окружающий мир построен по принципу уровней-этажей. Фундаментом биологии, связанной со сложными белковыми молекулами, служит химия, законы которой, в свою очередь, основаны на атомной физике. Атомная физика покоится на теории атомного ядра, уходящей своими корнями в физику элементарных частиц. Но вот что важно: хотя рассматриваемый уровень всегда определяется более глубоким, первый ко второму никогда свести нельзя. При переходах с уровня на уровень происходит не только количественное усложнение, но и качественное изменение всех закономерностей. Самый настоящий качественный скачок в философском, диалектическом смысле.
Возьмем еще раз, к примеру, химию – науку о соединениях атомов и молекул. Простые соединения, скажем, двухатомную молекулу водорода, можно точно рассчитать с помощью квантовой механики. Но вот вычислить свойства многоатомных молекул уже не удается, так же как не удается вывести статистические законы газов из уравнений для отдельных газовых частиц. И дело не только в том, что уравнения становятся слишком сложными. В ходе расчетов обязательно приходится переходить от конечного числа элементов – атомов или газовых частиц – к обобщенному понятию «много», а этот переход связан с дополнительными предположениями, которые никак не вытекают из уравнений для конечного числа элементов. В этом-то как раз и состоит качественный скачок!
И уж совсем безнадежны попытки свести мышление к одним физическим законам. Двести лет назад французские ученые-энциклопедисты представляли себе мысль как нечто осязаемо материальное; они даже сравнивали ее с желчью, выделяемой печенью. Современная физиология от таких примитивных представлений ушла очень далеко. Безусловно, мысль возникает на основе физических процессов – в этом нет сомнения, однако соединить ее непрерывной ниточкой с физикой нельзя: на этой ниточке множество узелков и скачков-разрывов. В общем, у каждой науки – свое поле деятельности, и ни одну науку заменить другой невозможно.