355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владилен Барашенков » Вселенная в электроне » Текст книги (страница 4)
Вселенная в электроне
  • Текст добавлен: 13 октября 2017, 22:30

Текст книги "Вселенная в электроне"


Автор книги: Владилен Барашенков


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 4 (всего у книги 18 страниц)

Энергетическая ванна

Противоречие, можно сказать, налицо. Особенно, когда мезон распадается на нуклон и антинуклон. Конечные частицы в этом случае весят в четырнадцать раз больше начальной. Чтобы понять, как это может быть, нам придется отправиться в далекое путешествие – снова в Древнюю Грецию, а точнее, в окруженный высокими стенами греческий город на юге Апеннинского полуострова, где жил знаменитый греческий ученый Архимед. Его интересовали не только глубокие теоретические проблемы, много времени он отдавал решению практических задач – конструировал подъемные механизмы, создавал военные машины для обороны города, а иногда занимался и более мелкими, но не менее трудными вопросами. Один из таких вопросов задал ему правитель города царь Гиерон. В благодарность за победу, одержанную его войском, царь решил пожертвовать богам золотой венец. Он отвесил мастеру необходимое количество золота, но когда тот принес изготовленную драгоценность, Гиерон – по преданию, очень скупой и жестокий человек – усомнился в его честности и повелел Архимеду придумать, как изобличить плута, не портя, однако, драгоценного венца. Архимед долго не мог сообразить, как справиться с таким необычным поручением. Но вот однажды, садясь в ванну, он заметил, что погруженное в воду тело заметно легчает. Искомое решение задачи четко предстало перед его умственным взором. Говорят, что с криком: «Эврика!» («Нашел!») – обрадованный Архимед среди бела дня голым бежал по городу к дворцу царя.

Эффект Архимеда – жидкость снизу давит на тело и компенсирует часть его веса. Об этом идет речь на уроках физики в седьмом классе. И вот оказывается, что этот «банный эффект» играет важную роль внутри элементарной частицы. Только место воды там занимает энергия. Образно выражаясь, «куски» частицы погружены в силовое поле взаимодействия – в своеобразную энергетическую ванну, и их масса уменьшается. Энергия взаимодействия внутри частицы имеет отрицательный знак – ведь для того, чтобы растащить притягивающиеся друг к другу части, надо затратить энергию. Она-то и компенсирует излишек энергии частей элементарной частицы.

Энергетическая «ванна» есть и в атоме. В нее «налита» энергия электромагнитного взаимодействия электронов с ядром. Оно в тысячи раз слабее сил, действующих внутри элементарных частиц, поэтому плотность энергии во внутриатомной «ванне» очень мала и погруженные в нее электроны почти не теряют в своем весе, так же, как мы, люди, в бассейне земной атмосферы.

Плотность энергии, которой наполнено ядро атома, значительно больше. Потеря веса здесь составляет уже проценты. А внутри элементарных частиц взаимодействие их частей настолько велико, что они как бы «растворяются» в энергии взаимодействия. Получается что-то вроде сильно разваренных ягод в густом варенье. На связь частей уходит значительное количество общей энергии и массы. В этом главное отличие элементарной частицы от атомного ядра и всех других микрочастичек, которые мы называем составными, хотя все они имеют сложное внутреннее строение.

Современную физику нельзя просто выучить, к ней надо еще и привыкнуть!

Но с лестницей, которая ведет в недра материи, происходит что-то странное. Атомы расположены глубже молекул, ядра глубже атомов, а вот в протоне уже все смешалось. Ступеньки налезают друг на друга, громоздятся… Уже и не скажешь сразу, спускаемся мы или топчемся на месте…

Когда какой-то вопрос или задача становятся слишком сложными и запутанными, полезно взглянуть на дело с несколько иной точки зрения. Это часто наводит на неожиданную мысль, и все упрощается. Именно так поступил Христофор Колумб с задачей о яйце. Говорят, однажды, привлеченный громкими голосами, он вошел в кубрик, где красные от возбуждения матросы на спор (ставка – увесистый столбик золотых монет) старались поставить яйцо на попа. Они поливали стол вином и маслом, мазали его салом, но яйцо падало. Колумб некоторое время наблюдал, потом легким ударом о стол смял скорлупу на конце яйца, и оно осталось стоять.

Попытаемся и мы подойти к поиску следующих ступеней структурной лестницы с новой стороны – с позиций эксперимента. Забудем, что протон элементарный, и попробуем просветить его какими-либо лучами, чтобы увидеть, «из каких элементов состоит элементарное». Возможно, это поможет нам разобраться в запутанной картине «одежек без застежек» внутри элементарных частиц.

Как заглянуть внутрь протона?

Величина самых мелких пылинок, которые мы еще можем разглядеть невооруженным взглядом, составляет около пятидесяти микрон (напомним, микрон – тысячная часть миллиметра). Это примерно половина толщины человеческого волоса. Те, у кого особо острое зрение, способны рассмотреть предметы и в полтора-два раза более мелкие.

Но это уже предел. Далее нужно использовать увеличительные стекла и микроскоп. С их помощью можно разглядеть детали размером вплоть до сотых долей микрона. Наглядно представить себе, что означают такие размеры, лучше путем сравнений. Микробы имеют величину от нескольких десятых микрона до одного микрона. Приблизительно таков же диаметр капелек жира в коровьем молоке. Частички табачного дыма в десять раз меньше, самые мелкие из них около сотой части микрона.

Объекты, меньшие сотых долей микрона, в оптический микроскоп увидеть нельзя, даже если снабдить его очень большими и сильными линзами. Дело в том, что такую величину имеет длина волны видимого света. Более мелкие предметы световые волны огибают, и мы их не видим, подобно тому как радиолокатор с большой длиной радиоволны не замечает перископ подводной лодки. Наше видение предметов основано на том, что они поглощают или рассеивают падающую на них световую волну – вообще как-то ее изменяют. Это изменение и фиксирует наш глаз. Если же волна огибает препятствие, как вода в ручье мелкий камешек, мы его просто не замечаем.

Чтобы заглянуть внутрь объектов, меньших нескольких сотых микрона, нужно использовать электронный микроскоп, в котором световой луч заменен пучком быстрых, или, как говорят физики, «жестких», электронов, а наш глаз – светочувствительным экраном или фотопластинкой. У электронного микроскопа увеличение приблизительно в тысячу раз больше, чем у оптического, и с его помощью можно увидеть (а точнее, сфотографировать) детали с размерами вплоть до десяти тысячных долей микрона (10-8 сантиметров). Таким путем удается рассмотреть даже отдельные крупные атомы. На фотографиях они похожи на густо намотанные окружности толстой паутины или на кружевную салфеточку, если рассматривать ее издали. Подобно световым частицам-фотонам, электроны обладают волновыми свойствами. Они тоже огибают мелкие предметы, и это как бы размазывает картину, делает ее расплывчатой и нечеткой. Образно говоря, электронный пучок при своем движении как бы немного дрожит, траектории частиц несколько размазываются, и, чтобы сфокусировать изображение, приходится использовать очень быстрые электроны, инерция движения которых способна превозмочь волновое дрожание пучка. (Поэтому такие электроны и называют жесткими.)

Почему электрон обладает волновыми свойствами – это сложный вопрос. Ответ на него дает квантовая механика. Позже нам еще предстоит большой разговор об этом, не будем забегать вперед. С точки зрения обычной школьной физики, волновые свойства электрона объяснить и понять довольно трудно, но в науке всегда приходится что-то принимать на веру, прячась за спасительной формулой: это следует из опыта. Иначе мы рискуем утонуть в деталях.

Рассказывают, что однажды французский математик Жан Д'Аламбер, устав от долгих попыток объяснить доказательство теоремы одному из своих учеников, воскликнул в отчаянии:

– Честное слово, эта теорема верна!

Реакция ученика была мгновенной:

– Месье, этого вполне достаточно! Вы – человек чести, я – тоже. Ваши уверения – самое лучшее доказательство!

Вот и мы давайте последуем примеру этих благородных людей и поверим пока на слово квантовой механике, тем более что опыт хорошо подтверждает ее выводы.

Итак, электронный микроскоп позволяет добраться до границы атомов. Если увеличить энергию электронов, сделать их еще жестче, тогда можно «просветить» и более мелкие объекты – атомные ядра и их «детали» – протоны и нейтроны. Для этого нужны ускорители частиц.

Это громоздкие и чрезвычайно сложные инженерные сооружения, создание которых сегодня под силу только крупным странам. Тем не менее, несмотря на их сложность, основной принцип действия ускорителей понять не трудно. По своему устройству они похожи на кольцевое метро, только вместо поездов по кругу бегут сгустки частиц. Удерживает их на круге магнитное поле, а в промежутках, на каждой станции, на них действует «подстегивающее» электрическое напряжение. Поезда метро на станциях останавливаются, а сгустки частиц, наоборот, получают здесь дополнительный толчок электрическим «хлыстом». Чем дольше крутится частица, тем больше ее энергия.

Ускоритель можно уподобить праще, которую воины когда-то применяли для метания камней: заложенный в нее камень (в данном случае сгусток частиц) раскручивается и с силой выбрасывается наружу.

Если убрать магнитное поле, ускоряемые частицы будут двигаться по прямой, это так называемый линейный ускоритель. Его размеры очень велики, так как частица проходит такой ускоритель только один раз, без возврата. И чтобы разогнаться до большой энергии, она должна пробежать большое расстояние с многими промежуточными станциями «подстегивания».

Академик В. И. Векслер, один из лучших советских специалистов по ускорителям, сравнивал циклический ускоритель с круглым манежем для лошадей, а линейный – с прямым треком ипподрома, вдоль которого лошадь, подгоняемая ударами шпор всадника, летит как стрела.

Понятно, что ускорять можно не только электроны, но и все другие заряженные частицы – например протоны, – и даже тяжелые ядра атомов. Однако легкие и очень маленькие электроны особенно удобны для «просвечивания» других, более крупных частиц.

Ускоритель частиц изобрели незадолго до второй мировой войны. Самый крупный в Европе создавался тогда в Ленинграде, в Радиевом институте. Уже в то время физикам было ясно, что эти машины – ключи к нижним этажам микромира. Строительство ускорителя потребовало создания мощных вакуумных насосов – ведь пучок частиц должен разгоняться в условиях почти полного вакуума, так как иначе столкновения с молекулами газа рассеят его задолго до конца ускорения. Потребовались особо сильные электромагниты, дистанционное управление, специальная защита, поскольку работающий ускоритель – источник смертельно опасных излучений. Целый комплекс проблем! Война помешала завершить строительство, но накопленный опыт помог в создании значительно большего ускорителя в Дубне. Здесь, на болотистом островке, отгороженном руслами трех рек – Дубны, Сестры и Волги, – в конце сороковых годов был получен пучок протонов с рекордной по тем временам энергией. Ранее такие высокоэнергетические частицы можно было встретить лишь в космических лучах. В газетах так и сообщалось: группе ученых (некоторые из них принимали участие еще в строительстве ленинградской машины) присуждена Сталинская премия за создание генератора космических лучей.

По сравнению с его высокоэнергетическими младшими братьями, построенными и строящимися в Советском Союзе, в США, в странах Западной Европы, первый дубненский ускоритель выглядит весьма скромно. Даже у его соседа – знаменитого дубненского фазотрона, построенного на несколько лет позднее, – энергия почти в пятнадцать раз больше. Однако «зрение» первого дубненского ускорителя было в свое время самым острым, почти в сто тысяч раз острее, чем у электронных микроскопов, и с его помощью физики впервые смогли «прощупать» расположение протонов внутри атомного ядра.

Но внутреннее строение самого протона этот ускоритель еще не чувствовал. Протон для него оставался точкой. Заглянуть внутрь этой частицы удалось лишь пять лет спустя, когда на Тихоокеанском побережье США, вблизи города Сан-Франциско, был построен мощный ускоритель электронов.

Партонная «икра»

Электронное «просвечивание» показало, что протон действительно не точка, а довольно крупный объект с радиусом, всего лишь в несколько раз меньшим радиуса легких атомных ядер. Это что-то около триллионной доли миллиметра – 10-13 сантиметров.

Вещество в протоне, как и в атоме, сконцентрировано, главным образом, в его центральной части. Однако если атом состоит в основном из пустоты, то в протоне нет резкой границы между оболочкой и центральным остовом – керном. Атом своим строением напоминает Солнечную систему, а протон больше похож на планету с массивным центральным ядром и окружающей ее протяженной атмосферой. Радиус протонного керна всего лишь в несколько раз меньше размеров его мезонной «шубы».

Можно было ожидать, что аналогичное строение имеет и нейтрон. Простая модель, в которой нуклон жонглирует мячиком-мезоном, подсказывает, что окраинные области протона и нейтрона отличаются лишь знаком заряда: у протона там «танцуют» мезоны π0 и π+, у нейтрона – π0 и π-. Опыт неожиданно показал совсем другое. Радиус облака электрических зарядов в нейтроне получился равным нулю! Иными словами, внутри этой частицы есть что-то такое, что полностью нейтрализует заряд мезонного облака, или… или не верна модель жонглирования, а это, в свою очередь, означает, что наши представления о строении элементарных частиц несправедливы в самой своей основе, и физикам придется начинать все заново. Было от чего прийти в волнение!

Результат опытов с нейтроном долго оставался загадкой. Для его объяснения предлагалось множество гипотез, физики разных стран съезжались на специальные конференции, чтобы сообща попытаться понять, в чем тут дело. Но «парадокс нейтрона» не поддавался их усилиям.

Разгадать загадку пытались и мы в Дубне. Непонятно, почему происходит нейтрализация заряженных «облаков» в нейтроне, но это, по существу, следующий вопрос, прежде нужно убедиться в том, что такие облака там существуют. Это можно сделать, если поместить нейтрон в сильное электрическое поле, тогда его положительные заряды сместятся в одну сторону, а отрицательные – в другую. Нейтрон растянется, из шарика превратится в гантель, что скажется на его взаимодействиях с атомными ядрами. Идея простая, но заметить растяжение нейтрона на опыте так и не удалось, этому мешали побочные эффекты.

Разгадка пришла после открытия тяжелых мезонов ро и омега. Как это уже не раз случалось в истории науки, природа в разнообразии своих законов оказалась куда более изобретательнее физиков. Выяснилось (кто бы мог подумать!), что при определенных условиях пи-мезоны могут как бы «слипаться», образуя новые короткоживущие частицы. Это как раз и есть омега– и ро-мезоны. Из таких быстро слипающихся и снова разваливающихся частиц-капель и состоит мезонная «шуба» нуклона. Одиночные мезоны встречаются в ней редко. В протоне условия благоприятствуют образованию заряженных мезонных «капель», в нейтроне – нейтральных, поэтому электроны и не чувствуют мезонной «шубы» нейтрона. Для них она прозрачна. Чтобы ее обнаружить, нейтрон надо «прощупывать» пучком жестких протонов, которые чувствуют мезонную «мякоть» нейтрона. Во всех взаимодействиях нейтрон ведет себя как частица с размазанной в пространстве массой и равным нулю радиусом распределения электрических зарядов.

Мы видим, что просвечивание электронами принесло много новых сведений о строении нуклонов, однако не внесло упрощения в картину, наоборот, она еще более усложнилась. Если вспомнить аналогию с жонглером, то можно было бы сказать, что он играет сразу с несколькими шариками, которые иногда слипаются в пары и тройки. Положение прояснилось лишь после того, как энергию электронов подняли настолько, что они стали чувствовать в нуклоне детали, которые вдесятеро меньше его диаметра.

Если бы протон представлял собой единую монолитную систему, состоящую из перекрывающихся частей, которые по своим размерам не уступают целому, то, согласно третьему закону Ньютона, величина импульса столкнувшегося с ним и отскочившего электрона давала бы сведения о скорости движения протона как целого. Это как в радиолокации – при слежении за летящим самолетом отраженный луч приносит сведения о его размерах и скорости. Оператор на экране видит четкую светящуюся точку. В опыте с рассеянием очень жестких электронов получилось иначе – вместо четкой точки на экранах приборов было видно размытое пятно. Правда, в опыте использовались не светящиеся экраны, как это делал когда-то Резерфорд при просвечивании атома, а более сложные регистрирующие приборы, но все равно после обработки с помощью ЭВМ их показания в виде точек и пятен можно вывести на экран телевизора. И они получались не такими, как это должно быть для монолитного нуклона.

В чем тут дело, первым понял американский физик Р. Фейнман. Его имя уже не раз упоминалось на страницах нашей книги. Среди коллег он известен своим веселым остроумием, и это часто помогает ему находить ответ на самые трудные вопросы, которые преподносит физикам эксперимент. Во время второй мировой войны он участвовал в расчетах американской атомной бомбы. Работы велись в строгом секрете, и в конце рабочего дня офицер безопасности запирал все материалы в стальной сейф с цифровым кодом. Фейнман каким-то образом сумел разгадать код, и однажды, открыв утром сейф, дежурный офицер поднял тревогу – в сейфе со сверхсекретными чертежами и расчетами лежал клочок бумаги, на котором было написано: «Угадай, кто?» От строгого наказания Фейнмана спасла лишь его репутация выдающегося ученого.

Так вот, анализируя результаты новых опытов по рассеянию электронов, Фейнман использовал аналогию с радиолокацией. Когда самолет или ракета разваливаются на куски, к оператору следящей радиолокационной станции приходит отражение от каждого из них – целый набор отраженных лучей, и вместо яркой точки он видит на экране размазанное световое пятно. В своей статье Фейнман привел пример с роем пчел: близорукий человек видит его как единый темный ком, а наблюдатель с острым зрением различает множество снующих насекомых. Таким образом, сделал вывод ученый, нуклон тоже является роем каких-то очень мелких частичек. Из них состоит его керн и мезонная «шуба». Эти частицы стали называть партонами – от английского слова «парт», то есть часть.

Теперь можно спросить: так все-таки что же такое нуклон – орешек-керн, одетый в толстую мезонную «шубу», или же комочек мелкозернистой партонной «икры»? Этот вопрос напоминает индийскую притчу о том, как слепцы пытались рассказать, что такое слон. Слепец, который находился возле его ноги, сказал, что слон похож на большое дерево. Второй ощупал хобот и заявил, что слон – толстая кожаная кишка. Третий же, потрогав хвост, стал уверять, что слон – это всего-навсего лишь маленькая змейка. Каждый из них был прав, но только частично: истинная картина, подобно мозаике, получается сложением всех их рассказов. Объекты микромира, их противоречивую сущность тоже нельзя отобразить одной картиной, они слишком сложны для этого. Наглядное представление о нуклоне – это набор многих отдельных картинок.

При крупномасштабном рассмотрении нуклон предстает перед нами как сгусток накладывающихся и проникающих друг в друга мезонов и более тяжелых элементарных частиц. При большем увеличении становится заметной мелкозернистая структура этих частиц, и нуклон выглядит как шарик, наполненный партонной «икрой».

В целом картина приобрела более привычные нам черты: нуклон состоит из маленьких частичек-партонов, подобно тому как атомное ядро складывается из меньших, чем оно само, нуклонов. Большее состоит из меньшего, части-кирпичики не похожи на слепленное из них целое. Ступеньки структурной лестницы выправились и снова пошли вниз.

Но на этом история с партонами не закончилась. Их открытию очень обрадовались теоретики, которые занимались классификацией в быстро разраставшемся зоопарке элементарных частиц. Они уже давно догадывались о существовании таких частиц, только называли их по-своему – кварками.

«Три кварка для мистера Марка!»

Выше уже говорилось, что элементарные частицы нельзя разделить на более и менее элементарные, все они равноправны. Однако их можно распределить по семействам, связанным между собой правилами родства. Так же, как в настоящем зоопарке, где звери распределены по родам, семействам, отрядам. Для элементарных частиц роль родственных связей играют правила симметрии: частицы укладываются в симметричные по своим свойствам группы. Сложные семейства, насчитывающие десятки частиц-членов, расщепляются на более простые подсемейства, те – на еще более простые. В целом получается таблица, которую можно назвать периодической системой элементарных частиц.

Самое простое семейство в ней, лежащее в основе всех других, занято частицей, имеющей три состояния. (Вспомним снова аналогию с электрической лампочкой, которая меняет свой цвет! Но вот что смущает: правила симметрии приводят к выводу, что заряд этой частицы (назовем ее пока частицей «икс») меньше, чем у электрона. В одном состоянии (лампочка горит белым светом) он составляет треть заряда электрона, в двух других (синий и красный цвет) – две трети. Однако дробных зарядов никто никогда не встречал. С давних времен хорошо известно, что электрический заряд всех тел всегда – целое кратное заряда электрона (нуль тоже целое число!).

Настораживают и другие характеристики икс-частицы. По одним свойствам ее следует считать нуклоном, по другим – мезоном. В некоторых отношениях она должна вести себя, как типичная странная частица, в других же аспектах она похожа на обычные, нестранные частицы. Все у нее не так, как у «нормальных частиц»!

В древних мифах упоминаются кентавр, получеловек-полулошадь и сфинкс – существо с лицом человека и с туловищем льва. Подобным фантастическим гибридом в глазах физиков выглядит и частица икс. Вообразите на минутку, что вы видите сфинкса, мирно пасущегося в стаде коров, или большого черного морского конька с зонтиком среди гуляющей по морскому берегу публики. Можно представить, как бы вы удивились! Вот так же встретило предсказанную теоретиками икс-частицу и большинство физиков – с недоверием и подозрительностью, а некоторые так просто с юмором, как очередной «загиб» досужих на выдумки теоретиков.

С другой стороны, если сложить три икс-частицы вместе, то в зависимости от того, какие состояния «иксов» выбраны для сложения, эта триада приобретает свойства протона, нейтрона или одной из более тяжелых частиц гиперонов. Невольно приходит мысль, что удивительные «иксы» как раз и являются теми первичными блоками-кирпичиками, из которых можно составить все другие частицы подобно тому, как из протонов и нейтронов складываются ядра всех химических элементов в таблице Менделеева.

Первыми эту идею выдвинули два американских теоретика – Мюррей Гелл-Ман и Джордж Цвейг. Они же придумали и название икс-частице – кварк.

О происхождении этого странного термина среди физиков в ходу две легенды. Согласно одной, он появился как шутка – в немецком языке слово «кварк» означает одновременно: «творог», «протоплазма» и… «чепуха». Поначалу придумавшие кварк теоретики с юмором относились к своему изобретению. Другая легенда утверждает, что это слово взято из романа Джойса «Поминки по Финнегану». В бредовом сне герой этого романа видит летящие за его кораблем чайки, которые человеческими голосами выкрикивают бессмысленную фразу: «Три кварка для мистера Марка!» Вот этим коротким гортанным словом из «области бреда» и воспользовались теоретики.

Когда кварки замелькали на страницах теоретических статей, многие ученые считали их всего лишь неким курьезом, временными строительными лесами на пути к более совершенной теории. Однако не успели физики оглянуться, как оказалось, что с помощью кварков очень просто и наглядно объясняются самые различные экспериментальные факты, а теоретические вычисления сильно упрощаются. Без кварков стало просто невозможно обойтись, так же, как, например, в химии нельзя обойтись без атомов и молекул.

В теории Гелл-Мана и Цвейга нуклон, гипероны и другие похожие на них тяжелые частицы состоят из трех кварков. Мезоны состоят из «слипшихся» кварка и антикварка. Последние – такие же «сердитые» родственники, как электрон и позитрон. Их электрические заряды отличаются знаком, а столкнувшись, они могут в пух и прах разнести друг друга – аннигилировать. Но это происходит не всегда. Иногда бывает так, что вместо взаимоуничтожения частица и античастица, как борцы на арене цирка, начинают кружиться одна вокруг другой. Образуется короткоживущая система, где частицы погружены в общую энергетическую «ванну».

С помощью «кваркового конструктора» можно построить всю таблицу элементарных частиц – иногда простым сложением, а иногда придавая дополнительное вращение «частям» уже построенных частиц. Исключение составляют упрямые лептоны, их никак не удается породнить с кварками. Почему это так, мы выясним позднее, а пока будем иметь дело лишь с адронами. Их намного больше, чем лептонов. (Если кто-то забыл, чем отличаются адроны от лептонов, полезно вернуться на несколько страниц назад и еще раз прогуляться по «зоопарку» частиц.)

Подобно тому как это было когда-то с периодическим законом Менделеева для химических элементов, кварковая систематика позволила вычислить параметры и предсказать поведение новых частиц, которые затем были открыты на опыте. Но сами кварки по-прежнему оставались чисто теоретическими объектами. О них много говорили и писали, но они упорно не хотели проявлять себя в опытах.

Вот тут-то и вышли на арену феймановские партоны. Оказалось, что внутри протона и нейтрона ровно по три партонных икринки и параметры их в точности такие, как у кварков. В частности, их заряд равен 1/3 и 2/3 электронного. Точнее, один тип партонов имеет заряд -1/3, два других +2/3. Три типа партонов – три состояния кварка. Стало ясно, что партоны и кварки – это одни и те же частицы. Теоретики и экспериментаторы пришли к ним с разных сторон.

Казалось бы, наконец-то удалось свести концы с концами. Однако счастье никогда не бывает полным, и в любой бочке меда есть своя ложечка дегтя. Физиков очень беспокоило то, что в свободном виде, так сказать, наяву, кварки никто не наблюдал, хотя с тех пор как их изобрели, прошло уже достаточно много времени. Почему кварки встречаются лишь связанными в пары и тройки? Получается так, что, подобно подпоручику Киже в известном рассказе Юрия Тынянова, кварки «присутствуют, но фигуры не имеют»! В чем же здесь дело? Может, мы в чем-то здорово ошибаемся и кварковый этаж природы устроен совсем не так, как мы его себе представляем?


    Ваша оценка произведения:

Популярные книги за неделю