355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владилен Барашенков » Вселенная в электроне » Текст книги (страница 16)
Вселенная в электроне
  • Текст добавлен: 13 октября 2017, 22:30

Текст книги "Вселенная в электроне"


Автор книги: Владилен Барашенков


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 16 (всего у книги 18 страниц)

Золушка или принцесса?

На пути науки есть несколько трудных барьеров, которые ей предстоит преодолеть. Первый из них, его «дыхание», ощущается уже сегодня, – это быстро растущая стоимость науки. Если все затраты на научные исследования от времен Архимеда до второй мировой войны составили всего лишь несколько миллиардов долларов, то в наше время на науку только за один год в мире тратится более ста пятидесяти миллиардов долларов. В ее сфере занято более трех миллионов научных работников и инженеров и в несколько раз большее число техников, лаборантов, рабочих и другого обслуживающего персонала. Стоимость крупных исследовательских установок, таких, как ускорители частиц, достигает миллиарда рублей. В конце прошлого века, проводя свой знаменитый опыт по измерению скорости света, Альберт Майкельсон затратил ровно десять долларов, а сегодня рядовой эксперимент по физике высоких энергий стоит уже около миллиона. Современный эксперимент имеет «индустриальный характер». Крупные физические лаборатории превратились в настоящие города с опытными заводами, конструкторскими бюро, сложным энергохозяйством. Давно прошли те времена, когда для опыта было достаточно маленького прибора на лабораторном столе.

Усложнение и удорожание опытов связано с тем, что наука стремится проникнуть все глубже в недра материи, а это требует постоянно увеличивать энергию зондирующих частиц, то есть создавать все более сложные экспериментальные установки. То же самое с космическими объектами – чем они дальше, тем более мощные и изощренные приборы нужны для их изучения. Это и понятно: чем глубже и дальше, тем труднее и дороже. Поэтому стоимость опытов будет возрастать и далее.

А раз так, то, может, и вправду лучше совсем отказаться от фундаментальных исследований микромира и космоса и сосредоточиться на прикладных разделах науки, на практическом использовании уже открытых законов природы, и не растрачивать ресурсы на «пустое» удовлетворение любопытства, которое становится слишком обременительным и малопонятным всем, кроме самих ученых? Особенно часто такие сомнения высказывают далекие от науки люди, которым кажется, что, экономя на «ненужных», чисто научных исследованиях, можно даже ускорить развитие общества. Однажды в «Литературной газете» мне попалась статья, автор которой для повышения эффективности науки предлагал оплачивать лишь те разработки, которые имеют очевидный выход в практику, а так называемые «чисто научные» исследования вообще не оплачивать, пусть желающие занимаются ими в свободное время, для своего удовольствия, так же, как, например, коллекционеры занимаются сбором почтовых марок или старых монет. Такая стратегия, если бы ее действительно взяли за основу, – верный и быстрый способ вообще покончить с наукой. Смещение акцентов исследований в сторону «потребительских интересов» хотя и дает гарантированные практические результаты, тем не менее в долгосрочной перспективе крайне невыгодно, так как уничтожает источник, питающий технику новыми идеями, и довольно скоро обернется снижением темпов научно-технического прогресса.

Даже весьма далекие от практики научные исследования далекого космоса и микромира оказывают влияние на технику, медицину и другие, «более близкие к жизни» разделы науки не только практическим использованием открываемых принципиально новых явлений, но и тем, что в процессе таких исследований, выполняемых, как правило, в экстремальных, предельных по своим параметрам условиях, разрабатываются новые приборы, оригинальные методы и неожиданная технология, которые затем также находят широкое практическое применение. Так, физика элементарных частиц содействовала быстрому внедрению в электротехнику сверхпроводящих магнитов и связанной с этим технологии сверхнизких температур, помогая резко снизить потери электроэнергии на ненужное, а во многих случаях и очень вредное нагревание питаемых электрическим током устройств. В исследованиях реакций рождения и распада элементарных частиц, где в поисках нужных процессов приходится просматривать десятки тысяч, а то и миллионы фотографий отдельных событий, были впервые разработаны методы автоматической обработки огромных массивов экспериментальной информации. Для этого впервые были использованы мощные ЭВМ, которые по заданным признакам с большой скоростью сортируют и расшифровывают микрофотографии. Теперь эти методы применяются при аэрофотосъемке, при наблюдениях за земной поверхностью со спутников и во многих других областях. Как показал экономический анализ, разработки, выполненные в связи с исследованиями по физике элементарных частиц, оказали влияние даже на такие далекие отрасли, как сталелитейное дело и железнодорожный транспорт. Полученная прибыль окупила все затраты на опыты с частицами.

Огромный экономический эффект дали космические исследования, которые на первом этапе выглядели тоже «чисто научными».

Как видим, практический опыт убедительно говорит о том, что «чистая наука» жизненно необходима и занятие ею – достойное и важное дело. В научно-техническом прогрессе она, образно говоря, играет роль генератора и ускорителя. Поэтому можно с уверенностью сказать, что человечество никогда не утратит к ней интереса. Наука, изучающая глубинные проблемы окружающей природы, не золушка, которую терпят из милости и сострадания, а принцесса, способная одарить человечество фантастическим богатством. Говоря словами Циолковского, «фундаментальные изыскания имеют чрезвычайно осязаемую, так сказать, хлебную важность для общества».

В недалекой перспективе – создание работающих при комнатной температуре сверхпроводников, по которым электрический ток, не ослабевая, может циркулировать в течение многих суток, сверхдальняя космическая связь на нейтрино, создание мощных генераторов гравитационного поля и множество других вещей. Но самое важное в том, что продвижение в глубь материи связано с открытием и освоением новых источников энергии взамен постепенно истощающихся старых. И если не выполнять исследований впрок, с дальним прицелом, то может случиться, что имеющихся источников просто не хватит для того, чтобы овладеть новыми, – ведь спуск по ступенькам структурной лестницы в недра вещества связан с затратами все большей и большей энергии. И здесь у «чистой науки» есть уже несколько многообещающих заделов. Один из них касается практического использования больших ускорителей частиц, которые часто называют «пирамидами XX века», подчеркивая этим их дорогую цену и кажущуюся практическую бесполезность.

Ускорители – фабрики энергии

Производство энергии в мире за последние десятилетия возрастало в среднем на пять процентов в год. Если этот темп сохранится, то энергетические потребности человечества во второй половине следующего века в пятьдесят – сто раз превзойдут современный уровень. В то же время запасы наиболее энергоемких и удобных для использования видов органического топлива, нефти и газа, в основном будут исчерпаны уже в сравнительно недалеком будущем. Лучше обстоит дело с каменным углем. При современных темпах развития экономики его хватит по крайней мере на несколько сотен лет. Но в этом случае придется сжечь значительную часть атмосферного кислорода. Экологические последствия будут, по-видимому, катастрофическими. Конечно, есть еще солнечные батареи, ветряные двигатели, энергия, запасенная в земной коре, в морях и океанах. Все это – важное подспорье, но полностью удовлетворить потребности экономики таким путем нельзя.

Единственный выход – использование энергии атома. Атомные электростанции уже сегодня дают весьма заметный вклад в производство электроэнергии. В некоторых странах – например, во Франции и ФРГ, где мало нефти и угля, – он приближается к 50 – 70 процентам. Предполагается, что к концу столетия мощность атомной энергетики в мире возрастет по крайней мере втрое.

Радикальным решением энергетической проблемы, освобождающим нашу планету от забот об источниках энергии по крайней мере на ближайшую тысячу лет, был бы переход к «термояду» – использованию энергии термоядерного синтеза. В воде морей и океанов содержатся практически неограниченные запасы необходимого для этого сырья – атомов тяжелого водорода – дейтерия. Однако перед физиками здесь стоят еще чрезвычайно трудные научно-технические задачи, и пройдет очень много времени, прежде чем будут созданы экономически выгодные термоядерные реакторы.

Сегодня атомную энергию получают с помощью реакции деления ядер урана. Именно эта реакция «работает» на атомных электростанциях, приводит в движение подводные лодки и ледоколы. Запасы ядерного горючего, урана, на нашей планете хотя и не столь велики, как запасы тяжелого водорода, тем не менее вполне достаточны для того, чтобы в течение столетий служить надежной основой земной энергетики. Но вот что плохо: топливом для современных атомных реакторов может служить не весь уран, а только весьма редкая его разновидность – изотоп с атомным весом 235, доля которого в природном уране составляет менее процента. Остальная часть урана – а это ни много ни мало более девяноста девяти процентов всей его добычи! – идет пока на склады и сохраняется до лучших времен, когда будут созданы реакторы, способные использовать весь уран, оба его изотопа 235 и 238, которых много. В опытном порядке подобные системы уже действуют в нашей стране и за рубежом. Они 'перерабатывают уран в новый элемент – плутоний, который, как и уран 235, является хорошим топливом для «атомных печей». К сожалению, переработка в плутоний происходит пока еще довольно медленно и обходится дорого.

Есть еще один путь для переработки неиспользуемого урана 238 в плутоний – с помощью установки, которая является гибридом мощного ускорителя частиц и уранового реактора. Представьте себе большой кусок урана, скажем, кубический метр в объеме, – мишень, в которую бьет пучок протонов, ускоренных до высоких энергий. Сталкиваясь с ядрами, энергичные протоны дробят их на множество протонов и нейтронов – расшибают в веер нуклонных «брызг». Родившиеся при этом частицы дробят следующие ядра и так далее, до тех пор, пока их энергия не станет такой маленькой, что они уже будут не способны расколоть атомное ядро. В урановой мишени образуется мощный каскад, лавина постепенно замедляющихся частиц. Как в горах, когда сорвавшийся камень сбивает несколько следующих, те сбивают другие – и грохочущий веер камней летит вниз!

Часть образовавшихся в каскаде и постепенно замедлившихся нейтронов захватывается ядрами урана, и в результате образуется плутоний. Другие нейтроны делят ядра урана, как в обычном атомном реакторе. При этом в мишени выделяется так много энергии, что ее достаточно для того, чтобы возместить затраты электростанции на ускорение протонов, а образовавшийся плутоний можно «сжечь» с выделением большого количества энергии либо в самой мишени, либо в других атомных реакторах.

Это так называемый электроядерный метод получения атомной энергии, или, как говорят физики, «электрояд». Ускоритель становится фабрикой энергии. Скорость наработки плутония здесь во много раз больше, чем в реакторах деления, работающих без «подсветки» пучком ускорителя.

История науки убедительно говорит о том, что исследования фундаментальных явлений природы никогда не бывают напрасными, хотя на первых порах иногда и кажутся не имеющими никакого отношения к практике. С течением времени они обязательно дают выход в жизнь, сторицей окупая все затраты. Такой процесс «отдачи» уже начался в физике высоких энергий. Правда, как это всегда бывает, для того, чтобы от физических моделей перейти к мощным и надежно работающим промышленным установкам, требуется определенное время, когда главными фигурами становятся инженер и конструктор. Обычные ускорители, используемые сегодня для экспериментов с элементарными частицами, для «электрояда» не годятся. Здесь нужны так называемые сильноточные ускорители, которые могут за раз ускорять по меньшей мере в десять или даже в сто тысяч раз большее число частиц, чем, например, ускорители, работающие в подмосковном городке физиков Дубне. Различные типы сильноточных ускорителей проектируются и уже строятся во многих странах мира, в том числе и в нашей.

Некоторые ученые считают, что в будущем электроядерные установки с сильноточными ускорителями будут размещаться где-нибудь в космосе или на Луне, где высокий вакуум, не требуется специального охлаждения для сверхпроводников, а главное, не нужно заботиться о защите от мощного и опасного для людей радиоактивного излучения, испускаемого ускорителем и урановой мишенью. Там же можно хранить и радиоактивные отходы производства, которые представляют большую опасность для окружающей среды.

И вот тут мы встречаемся еще с одной очень важной проблемой современной науки – с опасностью, которой чреваты научные изыскания.

Опасна ли «чистая наука»?

Как повествуют исторические хроники, стремясь обезопасить себя от воинственных соседей, правители Персии всеми способами старались убить македонского царя Филиппа. Однако, когда, наконец, это им удалось, последствия были катастрофические. Новый царь Александр Македонский не стал следовать политике своего более осторожного отца и уже через несколько лет разгромил и уничтожил Персидское государство. Подобных примеров, когда, стремясь к определенной цели, люди забывают о том, что ее достижение может вызвать лавину нежелательных событий, в истории немало. Это относится и к науке. Еще сто лет назад Карл Маркс отмечал, что наука и технология, если они развиваются стихийно, а не направляются сознательно, оставляют после себя пустыню. Человечество в своем стремлении к благу не должно быть похожим на героев рассказа английского писателя Джекобса, престарелых родителей единственного сына, которые нашли волшебный талисман – обезьянью лапу, способную выполнить любое желание их владельца, и, неосторожно попросив у него немного денег, немедленно получили их в виде извещения о пенсии, назначенной им за неожиданно умершего сына. Сиюминутная выгода может не стоить и сотой доли того, что потом придется за нее заплатить.

В наше время могущество человека достигло планетарных масштабов, и он может легко нанести огромный и труднопоправимый вред и себе, и окружающей природе, поэтому тщательное изучение и учет возможных последствий человеческой деятельности, в том числе и научной, становятся обязательным условием. Этим занимаются и сами ученые, и специальные государственные организации.

Еще одна проблема, которая волнует сегодня ученых, касается их моральной ответственности за последствия «чисто научных» исследований, которые, будучи применены на практике, могут принести горе и страдания миллионам людей. Несут ли ученые ответственность за это? Все ли подряд можно подвергать исследованию, или же здесь тоже должны быть какие-то ограничения морального характера?

В последнее время, особенно в зарубежной прессе, часто встречаются высказывания о том, что сама по себе наука, как поиск истины, вне морали. Мораль касается лишь того, как использовать ее результаты, – ведь один и тот же нож годен для того, чтобы нарезать хлеб, и им же можно убить человека. А раз так, то ученый в своей работе не подвластен суду гражданской совести и не несет никакой ответственности за последствия своих исследований. Это совершенно неприемлемая, антигуманистическая точка зрения. Она уводит ученых от того факта, что использование результатов их работы уже заранее предопределено строем и политическими установками общества, в котором они живут Не случайно, что такая идеология особенно пропагандируется в Соединенных Штатах Америки.

Когда в секретном атомном городке Лос-Аламосе ученые готовили атомную бомбу, итальянский физик Энрико Ферми успокаивал себя и своих коллег: «Что бы там ни было, а мы занимаемся настоящей физикой!» «А в это время, – вспоминал позднее Роберт Оппенгеймер – американский физик, руководивший работами по созданию бомбы, – в верхних эшелонах власти не состоялось ни одного достаточно ответственного обсуждения моральных проблем, связанных с появлением нового оружия. Атомная бомба была хладнокровно испытана на сотнях тысяч жителей Хиросимы и Нагасаки».

Физик Коуэн, который изобрел нейтронную бомбу, оставляющую почти без повреждений материальные ценности, но уничтожающую все живое в радиусе сотен метров, несет такую же ответственность, как и руководители США, размещающие это оружие в густонаселенных областях Западной Европы.

«Как страшен может быть разум, если он не служит человеку!» Это сказал Софокл почти две с половиной тысячи лет назад.

Сам собой напрашивается вопрос: а нельзя ли запретить или, как принято теперь говорить, наложить мораторий на те исследования, которые могут быть использованы для создания нового страшного оружия, грозящего гибелью нашей планете? Кроме того, и некоторые «невоенные» исследования, если общество в силу социально-экономических условий или просто из-за недостатка знаний не готово к использованию их результатов, могут сыграть роковую роль джинна, выпущенного из бутылки. Например, много писалось о потенциальной опасности бесконтрольных коммерческих исследований по генной инженерии – выведению путем воздействия на генный аппарат клеток совершенно новых организмов, о направленном воздействии электромагнитных полей на психическое состояние человека и так далее. Современная научно-фантастическая литература полна романами-предупреждениями о том, к чему могут привести подобные «чисто научные» эксперименты. Не разумно ли воздержаться от потенциально опасных исследований до тех пор, пока не создадутся условия, необходимые для безопасного их продолжения?

Казалось бы, здесь нет проблемы, нужно только принять соответствующий закон или издать распоряжение. Но это только с первого взгляда. На самом же деле задача ограничения и контроля научных исследований чрезвычайно сложна. Прежде всего потому, что мы живем в разобщенном, раздираемом противоречиями мире. Конечно, соглашения возможны и в этом случае. Вспомним, например, о заключенном, по инициативе нашей страны, договоре о запрете испытаний атомного оружия в воздухе и в космическом пространстве.

Еще одна трудность связана с тем, что научно-технический прогресс делает невозможным полный запрет и необходимую для этого полную изоляцию какой-либо области знания. Рано или поздно неизбежно обнаружатся неожиданные, достаточно простые для осуществления и неподдающиеся контролю выходы в эту область. У американского писателя-фантаста Айзека Азимова есть рассказ о том, как строго охранявшееся направление исследований, грозивших человечеству неисчислимыми социальными и психологическими катаклизмами, оставалось запретным лишь до тех пор, пока открытия в смежных науках не привели к тому, что запрещенные исследования стало возможным проводить в домашних условиях, с помощью обычных бытовых приборов, которые продаются в любом магазине. Мораль этого замечательного рассказа в том, что люди должны с большим вниманием присматриваться к так называемым «чисто научным» разработкам.

Как остроумно заметил однажды Д. И. Блохинцев, «чистая наука» – это волшебная курочка, несущая для нас золотые яйца, некоторые из которых, однако, начинены динамитом.

Абсолютно безвредной науки не бывает. Используя ее достижения, мы каждый раз должны чем-то поступиться, пожертвовать менее важным в пользу более существенного и перспективного. Строительство гидростанций связано с затоплением земель, а создание атомных электростанций требует затрат на защиту окружающей среды от радиоактивных излучений, создания специальных «могильников» для захоронения радиоактивных шлаков. Скоростные воздушные лайнеры, за считанные часы переносящие нас с одного края страны в другой, сжигают массу атмосферного кислорода, а их шум мало приятен жителям поселков вблизи аэродромов. И так далее.

В повести писателей А. и Б. Стругацких «Понедельник начинается в субботу» рассказывается о неком выдающемся ученом Саваофе Бааловиче Одина, который вывел и решил Уравнения Высшего Совершенства и мог бы стать богом: он обрел способность удовлетворить любое желание и совершить любое чудо. Однако на деле он был беспомощным, поскольку Уравнения имели решения при обязательном граничном условии: выполнение желания не должно причинять вреда ни одному разумному существу во всей Вселенной. А это было невозможно.

Итак, мы видим, что при соответствующем контроле «чистая наука» не только очень прибыльный для общества, но и необходимый вид человеческой деятельности. Общество всегда будет поддерживать исследования новых фундаментальных законов природы. Однако не наступит ли время, когда все законы будут открыты и наука прекратит свое существование, поскольку нечего будет изучать?


    Ваша оценка произведения:

Популярные книги за неделю