355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владилен Барашенков » Вселенная в электроне » Текст книги (страница 12)
Вселенная в электроне
  • Текст добавлен: 13 октября 2017, 22:30

Текст книги "Вселенная в электроне"


Автор книги: Владилен Барашенков


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 12 (всего у книги 18 страниц)

Космический круговорот

На временной оси Вселенной разумная жизнь в окрестностях нашего Солнца занимает крошечный, едва различимый интервал. Наши знания простираются значительно дальше. Мы можем делать достаточно уверенные прогнозы на 1025 – 1030 лет в будущее и заглядывать вплоть до 10-25 секунд от «начала мира» в прошлое. С помощью теории «великого объединения» удается дотянуться до времен порядка 10-40 секунд, с одной стороны, и 10100 лет – с другой. Интервал в полторы сотни порядков, где осуществляется грандиозный космический круговорот материи, где трудно вообразимые просторы соседствуют с исчезающее малым, где элементарные частицы «по совместительству» исполняют роль вселенных, а последние в определенном смысле сами являются микрочастицами.

Правда, на краях интервала надежность наших знаний заметно снижается, здесь допустимо говорить лишь о грубо качественных, ориентировочных оценках. Природа «Биг Бэнга», долговременная судьба Вселенной – это пока интригующие, будоражащие воображение загадки. Можно думать, что многое прояснится, когда будет создана теория, объясняющая величину «мировых постоянных» – скорости света, электрического заряда электрона, его массы и так далее. Сегодня все они берутся из опыта, и мы не знаем, почему они именно таковы, какими мы их видим. В своем подходе к описанию мира современная физика еще во многом следует принципу, который один из писателей-юмористов сформулировал так: жизнь такова, какова она есть, и больше никакова. А почему, собственно, такова? Почему не может быть миров с другим значением скорости света, более тяжелым или, наоборот, более легким электроном, другими свойствами пространства и времени?

Однажды Эйнштейна спросили, как делаются открытия.

«Это когда все знают, что какой-то вещи или явления быть не может, а один не знает, он и делает открытие», – ответил ученый.

Всегда следует помнить, что перед нами безграничная Страна Неизвестного, и любая картина мироздания – лишь приближенный слепок с окружающего мира. Или что-то вроде фотографии, которая раз от разу становится все более четкой, но никогда не передает всех деталей – мир неисчерпаемо многообразен.

Вокруг нас все изменяется, переходит из одной своей формы в другую, а вот элементарные частицы почему-то всегда одни и те же. Вселенная старится, а электрон и другие частицы бессмертны. Расчет показывает, что даже небольшие изменения их свойств привели бы к наблюдаемым геологическим и астрофизическим эффектам – уменьшилось или увеличилось бы количество тепла, получаемого нашей планетой от Солнца (на ней были бы ледники или, напротив, океаны кипятка), изменилась бы скорость распада радиоактивных элементов в земной коре и их концентрация была бы совсем не та, что сегодня, и так далее. Например, если бы заряд электрона изменялся всего на сотую долю процента за миллиард лет, то есть на одну-две десятых процента за все время жизни нашей Вселенной, это было бы уже заметным. В общем, если частицы и старятся, то так незначительно, что Вселенная этого почти не чувствует. Или, может быть, они действительно абсолютно неизменны и никаких других миров просто не существует?

Современная наука на эти вопросы ответить не может. Это следующий, более глубокий уровень физики. Однако ученые уже сегодня пытаются нащупать подходы к нему. В надежде найти более общие и универсальные законы природы проверяются «на прочность» самые глубинные основы наших представлений об окружающем мире, которые многим кажутся твердо и навечно установленными истинами. Говоря словами А. С. Пушкина, «и предрассудки вековые и гроба тайны роковые». О нескольких далеких рейдах в Страну Неизвестного, где фантастика смешивается с реальностью, будет рассказано в следующей главе. Первыми в такие путешествия всегда отправляются теоретики. Они не связаны со сложными, дорогостоящими приборами и с помощью своих формул могут углубляться в области, куда экспериментаторы придут лишь через много лет. Физика наших дней – наука математическая, и часто оказывается так, что в ее уравнениях бывают скрыты неожиданные возможности, приводящие к замечательным предсказаниям и к выдающимся открытиям.

Глава III

Глубокая разведка

Основы нашего понимания мира… В физике это – квантовая механика. Она – следующая ступень за механикой Ньютона. А есть ли еще более глубокий уровень – «заквантовая» теория? И почему квантовая механика такая трудная наука? Даже студентов-физиков в университете знакомят с ней только на третьем курсе, когда они освоят уже массу других предметов. Может, дело в том, что физики просто еще не проникли в суть ее законов? Знаете, как бывает с арифметической задачей: можно провозиться с ней целый вечер, а если ввести x и составить уравнение, решение находится за несколько минут. Может, «заквантовая» теория тоже все упростит?

Фундамент любой физической теории – пространство и время. Но что это такое? Обычно этот вопрос даже не возникает, так как ответ кажется очевидным: вот оно пространство вокруг нас и вот часы, показывающие время! Однако, если попытаться ответить точнее, сразу же возникают трудности. Получается так, что самые обыденные и привычные для нас свойства окружающей природы вместе с тем – самые загадочные и непонятные. Действительно, что самое главное в свойствах пространства и времени? Для времени это, по-видимому, его течение от прошлого к будущему. Пространство обычно представляют себе чем-то вроде пустой арены, на которой располагаются все физические тела и разыгрываются все процессы. Но всегда ли так? Нельзя ли каким-то образом изменить направление времени на обратное, как это делают авторы научно-фантастических романов? И можно ли пространство считать всегда лишь ареной? Мы знаем, что его кривизна проявляется как сила тяготения, может, и все другие силы природы тоже всего лишь проявления каких-то свойств пространства?

Итак, речь пойдет о «сумасшедших» идеях и теориях, выходящих далеко за рамки общепринятых научных взглядов. Скорее всего, большинство из них так и останутся «сумасшедшими», не подтвердившимися на опыте гипотезами. Но они помогают лучше понять окружающий мир и разведать пути дальнейшего развития физики. Без такой глубокой разведки наука развиваться не может.

«Пьяные» частицы

Американский физик-теоретик Ричард Фейнман как-то заметил, что хотя квантовая механика существует уже более полувека, ее до сих пор не понимает ни один человек в мире. И тут же добавил, что он может утверждать это вполне смело. Заявление, прямо скажем, удивительное, особенно из уст одного из самых знаменитых физиков нашего времени.

Как же так? Ведь с помощью квантовых законов рассчитываются тончайшие явления микромира и выводы подтверждаются с огромной точностью, иногда до миллиардных долей процента. Более того, квантовая механика уже давно используется на практике – например, лазер был изобретен, рассчитан и создан на основе квантовых законов. Эти законы управляют работой электронных микроскопов, используются при проектировании новых электронных приборов, с их помощью рассчитывают свойства сверхпроводников, способных без потерь передавать электрический ток на огромные расстояния. Квантовая механика нашла применение в химии и даже биологии. Как же можно говорить, что никто ее не понимает?!

И тем не менее в утверждении Фейнмана есть большая доля истины. Все дело в том, что поведение микрочастиц настолько непохоже на движение окружающих нас тел, что кажется противоречащим здравому смыслу. Неискушенному человеку часто трудно поверить, что такое может быть в природе. В нашей повседневной жизни мы привыкли к тому, что все тела движутся по строго определенным путям-траекториям. Если известна начальная скорость тела и действующие на него силы, то с помощью законов Ньютона его траекторию можно точно вычислить. Подобную задачу, наверное, приходилось решать каждому школьнику. В любой момент времени мы можем точно установить, в каком месте находится тело и какова его скорость. Точность законов Ньютона очень высока, с их помощью можно, например, предсказать движение небесных тел на многие десятки и сотни лет вперед. Но вот если попытаться применить эти законы к движению микрочастиц, то придем к поразительному выводу: частицу можно обнаружить в любой точке любой траектории, соединяющей начало и конец ее пути! Получается так, как будто частица движется сразу по всем траекториям либо совершает что-то вроде «броуновского движения» («броуновской пляски») в абсолютно пустом пространстве, многократно, без всякой видимой причины, изменяя направление своего движения и мгновенно перемещаясь из одной пространственной точки в другую.

Как известно, в начале прошлого века, наблюдая под микроскопом взвесь мелких частичек в жидкости, английский ботаник Роберт Броун заметил, что все они «пляшут» – выписывают запутанные зигзагообразные траектории. Как теннисные мячики, по которым случайным образом бьют невидимые ракетки. Сегодня мы знаем, что роль таких ракеток играют молекулы жидкости, которые сталкиваются с частицами взвеси и передают им свое хаотическое тепловое движение. Но что может толкать частицу в абсолютно пустом пространстве? Ведь не может же она сама по себе, по собственной воле, метаться по пустому пространству!

Было выполнено огромное количество экспериментов, и все они привели к одному выводу: размазка движения микрочастицы возникает как бы сама по себе, из ничего!

Иногда говорят, что микрочастица движется по траектории, которая расплылась по всему пространству. Не знаю, поможет ли это более наглядно представить движение микрообъектов, но, как бы там ни было, с точки зрения законов Ньютона, да и просто с позиций здравого смысла, это движение совершенно не предсказуемо. Оно выглядит так, как будто в микропроцессах нарушена связь между причиной и следствием, и, исходя из одних и тех же начальных условий, можно прийти к совершенно различным результатам. А главное, неизвестно, к каким. Один раз получается одно, в другой раз при точно таких же условиях – совсем иное. Похоже на блуждание пьяницы по пустой площади – движется под влиянием ему одному известных причин! Лишь в случае очень массивных, тяжелых частиц с большой инерцией движение начинает постепенно «стягиваться» к ньютоновской траектории, и будущее снова становится однозначным следствием прошлого. Опять как в броуновском движении. Там тоже сильнее всего «пляшут» легкие частицы, тяжелые ведут себя более степенно. Однако «беспричинное блуждание» еще не самая главная трудность, с которой мы встречаемся в микромире. Ведь начальные условия никогда не известны нам абсолютно точно, все величины измеряются с какой-то маленькой погрешностью. В принципе можно было бы рассчитывать на какое-то сложное обобщение уравнений Ньютона, которое было бы очень чувствительно к начальным условиям и в каждом конкретном случае позволило бы шаг за шагом проследить витиевато запутанную траекторию частицы. Более удивителен и непонятен другой факт: оказывается, одна и та же частица может быть сразу в нескольких местах.

Один в двух лицах

Представим себе, что электрон попадает на поглощающий экран с двумя отверстиями, за которыми расположена фотопластинка. Электрон пройдет через одно из отверстий и оставит точечный след на фотопластинке. Повторяя многократно этот опыт, мы должны получить на ней наложение двух картин: черное пятно от электронов, прошедших сквозь одно отверстие, и такое же пятно от электронов, воспользовавшихся вторым отверстием.

Казалось бы, это – единственно возможный результат, другого и быть не может. Так вот, ничего подобного! На фотопластинке получается в точности такая же картина, как при столкновении двух волн на воде, когда на водной поверхности образуется рябь горбиков и ложбин. На пластинке им соответствует рябь размытых пятен и просветов между ними. В физике это называется интерференцией.

Две волны сталкиваются, и там, где пик одной накладывается на пик другой, они усиливают друг друга, а там, где пик одной волны совпадает с направленным в обратную сторону пиком другой, образуется ложбина – здесь волны гасят друг друга. Отсюда и возникает рябь. Можно бросить два камня в воду и посмотреть, как происходит такая интерференция. Но откуда ей взяться, когда сквозь экран каждый раз проходит только один электрон? Столкнуться и интерферировать он может лишь… сам с собой. Другими словами, электрон каким-то образом ухитряется стать одним в двух лицах и пройти сразу сквозь два, далеко отстоящих друг от друга, отверстия. Это напоминает картинку из рубрики «Чудаки» на последней странице «Литературной газеты»: длинная ровная лыжня из двух параллельных следов, и вдруг невесть откуда взявшаяся елка между ними!

Может, электрон распадается на какие-то куски? Но нет, если бы это было так, то, закрыв одно из отверстий, мы могли бы «поймать» кусочек электрона, который прошел сквозь оставшееся открытым отверстие. Опыт показывает, что никаких кусков от электрона не откалывается, и сквозь отверстие каждый раз проходит вполне нормальный, совершенно целый электрон.

Поведение электрона выглядит просто невероятным, противоречащим самой элементарной логике, – все равно что войти в комнату с двумя дверями и столкнуться лбом с самим собой! И тем не менее никакого другого объяснения наблюдаемому ходу событий, с точки зрения ньютоновской механики, дать нельзя. Точно известно, что каждый электрон проходит через одно из двух отверстий, а фотопластинка убеждает нас в том, что он раздваивался. Вопиющее противоречие, как будто мы имеем дело с электроном и его двойником-призраком!

Когда такое необъяснимое, «противоестественное» поведение микрочастиц было обнаружено впервые на опыте, многие ученые восприняли его как конец физической науки, которая, казалось им, добралась, наконец, до исходного, «первозданного микрохаоса», прикоснулась к «праматерии», где уже нет никаких законов. Знаменитый голландский физик Г. Лоренц еще совсем недавно, в 1924 году, с горечью писал: «Где же истина, если о ней можно делать взаимно исключающие друг друга утверждения? Способны ли мы вообще узнать истину и имеет ли смысл вообще заниматься наукой? Я потерял уверенность, что моя научная работа вела к объективной истине, и я не знаю, зачем жил; жалею только,что не умер пять лет назад, когда мне все еще представлялось ясным… Взамен ясных и светлых образов возникает стремление к каким-то таинственным схемам, не подлежащим отчетливому представлению».

Положение казалось безнадежно запутанным: беспричинно мечущиеся в пространстве частицы, каждая из которых может столкнуться сама с собой. И в то же время состоящие из них тела с удивительной точностью подчиняются законам Ньютона. Было от чего прийти в отчаяние. Как шутили в то время физики, по четным дням недели им приходилось пользоваться механикой Ньютона, а по нечетным – доказывать, что она не верна! Казалось бы, мир и минуты не мог бы существовать, будь в нем такие ужасные противоречия, а он живет уже двадцать миллиардов лет! Физика зашла в тупик.

Загадка света

Теоретическая путаница у физиков возникала не только при попытках понять, как движется микрочастица, но и при объяснении природы света. Что это, частица или волна? Еще триста лет назад об этом ожесточенно спорили Ньютон и Гук. Первый разделял точку зрения, которой придерживались еще древнегреческие ученые: свет – это поток мельчайших, не различимых глазом частиц-корпускул. Это хорошо объясняло известные в то время оптические явления – поглощение света экранами, его отражение от зеркал, преломление в линзах и многое другое. Все это удавалось объяснить, используя законы механики для частиц-корпускул. Гук был убежден в том, что свет по своей природе похож на звук, – это тоже волны, испускаемые источником.

Фольклорное эхо донесло до наших дней немало пикантных подробностей этих словесных баталий, то и дело выходивших далеко за рамки научных дискуссий. Говорят, что после одного из споров, в котором темпераментный и не стеснявшийся в выборе выражений Роберт Гук превзошел самого себя в язвительной критике ньютоновской теории световых корпускул и ее автора, последний решил вообще не публиковать своих трудов по оптике, пока будет жив Гук.

Надо заметить, что Роберт Гук отличался удивительно неуживчивым, болезненно самолюбивым характером. Разносторонний, талантливый человек с живым, нестандартным мышлением, он в своих исследованиях часто далеко опережал коллег. Бывало, правда, переоткрывал открытое, с жаром доказывая свой приоритет. Ни одно его исследование, ни одно изобретение не было доведено до конца. Непрерывные недоразумения, ссоры, склоки, приоритетные споры заполняли жизнь этого исключительно одаренного, но крайне мелочного и вздорного человека. Почти всякий талантливый ученый вскоре становился его врагом. Ньютон в этом отношении не был исключением.

Но главной причиной решения Ньютона воздержаться от публикации своих трудов была, конечно, не полемичная страстность Гука и его необузданный характер, а сила приводимых им новых фактов. Корпускулярная гипотеза, развивавшаяся Ньютоном, не могла устоять против них. Только с помощью волновых представлений можно было объяснить, почему прибавление света к свету может не только увеличивать, но иногда и уменьшать освещенность, порождая сложные интерференционные картины, как у волн в жидкости, или почему, например, свет огибает мелкие препятствия и на краях тени всегда есть некоторая полутень. В случае потока частиц тень должна иметь резкие края – частица либо поглощается экраном, либо пролетает мимо, и направление ее движения нисколько не изменяется.

Явлений, в которых проявляется волновая природа света, становилось все больше, и в течение трех последующих веков ученые были твердо убеждены, что свет – это волновое движение некой сверхтонкой, заполняющей все пространство материи. Ее стали называть эфиром. Так древние греки в своих мифах называли особый «сверхтонкий» воздух, которым дышит Зевс и другие боги на вершине Олимпа. Для объяснения оптических свойств эфир впервые широко стал использовать голландец Христиан Гюйгенс.

Однако, как это часто бывает в физике, ее развитие неожиданно снова возродило старую идею. Несмотря на успехи волновой теории, с конца прошлого века стали быстро накапливаться факты, которые можно было объяснить, лишь допустив, как это делал когда-то Ньютон, что свет – это поток отдельных, не связанных между собою частиц. Их называют теперь фотонами. Идею о корпускулярном строении света в начале нашего века возродил Эйнштейн. Об этом уже рассказывалось в первой главе. Теория Эйнштейна объединила старую ньютоновскую гипотезу с выдвинутой незадолго до этого идеей немецкого теоретика Макса Планка о том, что при всех взаимодействиях энергия передается квантами – дискретными порциями, кратными некоторой минимальной величине, которая является такой же фундаментальной постоянной, как скорость света или заряд электрона. В честь открывшего ее ученого эту постоянную стали называть константой Планка.

Идея дискретного, квантованного света получила блестящее подтверждение в атомных процессах. Сталкиваясь с атомными электронами, световые частицы рассеиваются, подобно упругим горошинам. В тех случаях, когда их энергии недостаточно для полного отрыва электрона от атома, электрон поглощает фотон, увеличивает свою энергию, становясь менее скованным силой электрического притяжения, переходит на большую, более далекую от центра атома орбиту – атом возбуждается. В последующем электрон может вернуться на исходное место, ближе к ядру, а освободившаяся энергия излучится в виде фотона.

Атомы могут возбуждаться и при столкновениях друг с другом. Так происходит при нагревании. Слабо нагретое тело испускает лишь невидимые инфракрасные фотоны, при увеличении температуры, то есть скоростей хаотического движения составляющих тело атомов, испускается видимый свет – сначала «мягкие» красные фотоны, а затем «жесткие» синие. При высоких температурах рождаются очень жесткие фотоны ультрафиолетового света. Все особенности испускания и поглощения света прекрасно объясняются фотонной теорией.

Казалось бы, можно уверенно сказать, что корпускулярная теория света одержала победу. Но как быть с волновыми свойствами света? Они не перестали существовать. Как и во времена Ньютона, корпускулярная теория их не объясняет. Поэтому загадка света ничуть не прояснилась, наоборот, она стала еще непонятнее.


    Ваша оценка произведения:

Популярные книги за неделю