Текст книги "Солнечный луч"
Автор книги: Вилен Барабой
сообщить о нарушении
Текущая страница: 15 (всего у книги 18 страниц)
Чудо-ферменты
При знакомстве с явлением живого свечения – биолюминесценции – выяснилось, что высокий коэффициент ее полезного действия обязан участию специализированного фермента люциферазы. Когда же хемилюминесценция тканей совершается без участия фермента, ее эффективность, квантовый выход, снижается в миллионы раз.
Фотореактивация – ферментативный процесс, и благодаря этому димеры тимина, возникшие при ультрафиолетовом поражении живых клеток, устраняются почти полностью. Для того чтобы процесс восстановления достиг максимального выражения, наряду с избытком реактивирующего света необходимо еще и время. Дело в том, что процесс внутриклеточного восстановления совершается в период между клеточными делениями, во время так называемой интерфазы. Наступление митоза (клеточного деления) прерывает процесс восстановления, и не ликвидированные еще повреждения становятся необратимыми. Поэтому всякого рода задержки деления (вызванные, например, понижением температуры, недостаточным питанием и т. п.) облегчают деятельность фермента фотореактивации, делают ее более продуктивной.
Если облучить культуру бактерий или колонию инфузорий бактерицидным ультрафиолетом в дозе, вызывающей гибель практически всех клеток, то после выставления облученной колонии на рассеянный дневной свет выживает от 35 до 70, а иногда и до 90% пострадавших клеток. Такова мощь этого чудо-фермента! Детали его работы еще не вполне изучены. Сравнительно недавно американскому биохимику К. С. Руперту удалось выделить его из дрожжей. Он получен в чистом виде, но его структура и, в частности, устройство хромофора, улавливающего видимый свет, пока не установлены; известно, что максимум поглощения им света лежит у 2800 А. Вероятнее всего, фермент представляет собой флавопротеид. Восстановление поврежденной ультрафиолетом нуклеиновой кислоты совершается в два этапа. Сначала фермент, двигающийся вдоль двойной цепи ДНК, обнаруживает дефект – димер тимина и присоединяется к нему своим активным центром. Энергия видимого света, поглощенная хромофорной группой, используется для того, чтобы отделить фермент от отремонтированного участка ДНК, после чего можно заняться следующим димером. Производство фотореактивирующего фермента «запрограммировано» в генетическом аппарате клетки, где имеется специальный ген, обозначаемый латинскими буквами UVR. Потеря или отсутствие этого гена означает утрату способности к фотореактивации.
Почему же чудо-фермент не справляется со своей благородной задачей на 100%? Для этого есть несколько причин. Прежде всего ультрафиолетовые лучи вызывают появление не только димеров, но и других, не фотореактивируемых типов повреждений (окисление и разрушение отдельных оснований, разрывы цепи и т. п.). Во-вторых, для ремонта части димеров может не хватить времени – наступление митоза прерывает работу фермента.
Значит, полного восстановления и не может быть? Нет, такой вывод был бы преждевременным. Дело в том, что фотореактивация – не единственный механизм ремонта поврежденной ДНК. Эти повреждения могут возникать не только при воздействии ультрафиолетовых лучей. Ионизирующая радиация и различные химические вещества – мутагены способны вызвать разнообразные поломки, изменения, нарушения структуры ДНК. Димеры тимина – лишь один из возможных видов повреждений. Поскольку для ультрафиолета их образование имеет главное значение, постольку фотореактивация – специализированный механизм восстановления – направлена именно против димеров.
Но наряду с этим тонким механизмом в тканях животных (в том числе и лишенных фермента фотореактивации) существует более общий, всеобъемлющий механизм восстановления, Поскольку он не нуждается в свете для своей работы, его называют механизмом темновой репарации. В связи с необходимостью устранять разнообразные дефекты структуры ДНК этот механизм несравненно более сложен: он складывается из содружественной взаимосвязанной работы нескольких ферментов. В процессе темновой репарации димеры (и другие нарушения структуры ДНК) не расщепляются, а удаляются из ДНК. Процесс этот совершается в несколько этапов.
Сначала специальный фермент – он носит название эндонуклеазы – отыскивает поврежденный участок в одной из нитей ДНК и надрезает нить. Следующий фермент – вырезающая нуклеаза или экзонуклеаза – удаляет из молекулы ДНК не только поврежденное звено, например димер тимина. Как заправский хирург, фермент удаляет повреждение «с запасом», оперирует «в пределах здоровых тканей». В итоге его деятельности образуется дефект структуры ДНК, брешь в одной из нитей, достигающая более или менее значительных размеров.
Молекула ДНК не распадается в результате операции выщепления, потому что вторая, неповрежденная нить скрепляет ее. Но роль второй нити этим не ограничивается. Когда встает задача ремонта повреждения, заделки бреши, требуется не только строительный материал. Ведь ДНК – молекула особая: последовательность азотистых оснований в каждой нити ДНК имеет информационное значение, содержит в зашифрованном виде сведения о структуре того или иного клеточного белка. Восстановление будет полным лишь в том случае, если восстанавливается исходная последовательность мономеров ДНК. И вот тут-то неоценимую роль играет вторая, неповрежденная нить ДНК.
Две нити ДНК связаны водородными связями между азотистыми основаниями, причем каждое из оснований имеет только одного напарника. Существует всего две разновидности связей: аденин – тимин (А—Т) и гуанин – цитозин (Г—Ц). Если в одной из нитей все азотистые основания сохранились, при восстановлении дефекта каждое из этих оснований как бы «подбирает» себе пару из имеющихся деталей. Поэтому в ремонтируемом участке нити ДНК порядок азотистых оснований восстанавливается в своем исходном, первозданном виде. Процесс застройки бреши требует участия специального фермента. Ни наличие «стройматериалов» – деталей структуры ДНК, ни присутствие второй неповрежденной сети еще не гарантирует выполнения ремонтных работ. Активная роль принадлежит ферменту ДНК – полимеразе. Завершает процесс темнового восстановления четвертый фермент – лигаза, сшивающий отремонтированный участок ДНК с концами нити, уцелевшими после операции выщепления. В итоге сложного процесса повреждение нити ДНК устраняется, а структура нити восстанавливается полностью.
Темновая репарация и фотореактивация – два великолепных природных механизма, осуществляющих защиту наследственности живых организмов от повреждений, сохранение в целости и неизменности наследственной программы вида. При определенных условиях эти механизмы способны полностью устранить возникающие повреждения. Но хорошо ли это? Следует ли к этому стремиться? Условия на Земле и прежде всего взаимоотношения, взаимодействия между разнообразными живыми организмами в пределах биосферы постепенно изменяются, усложняются. Сохранить наследственную программу вида и неприкосновенности – не значит ли отстать?
Чтобы выжить, нужно приспособиться к условиям среды. Изменение условий существования требует постоянного изменения, совершенствования, развития наследственной основы, внесения в нее дополнений, поправок. Источник этих усовершенствований – мутации, из числа которых в процессе естественного отбора сохраняются и наследуются наиболее ценные, полезные в данных условиях. Следовательно, для прогресса организации живого необходима определенная степень неполноценности, несовершенства восстановительных механизмов.
С общебиологической, эволюционной точки зрения ультрафиолетовые лучи, обладающие мутагенными свойствами, выполняют (наряду с другими мутагенами) функцию поставщиков материала, сырья для естественного отбора, а ферменты фотореактивации и темнового восстановления – роль регуляторов этого процесса. „ Вот какие сложные, но надежные механизмы выработались у живых существ в процессе эволюции для устранения наиболее опасных и вредных последствий ультрафиолетового облучения.
Свет-защитник, свет-целитель
Итак, все живое на Земле вынуждено защищаться от ультрафиолетовых лучей. Фотореактивация оказалась наиболее эффективным механизмом защиты, что и обусловило закрепление его в наследственном аппарате.
Фотореактивирующий свет используется в организме не для предотвращения или ослабления вредного действия ультрафиолета: он расходуется на устранение уже возникшего повреждения. Следовательно, мы имеем дело не с защитой от действия вредного агента, а с устранением вызванных им нарушений, т. е. с лечением. Значит, к фотореактивирующему свету применим термин «луч-целитель» больше, чем «луч-защитник».
Под фотореактивацией ученые подразумевают совершенно определенное явление: ослабление вредного действия коротковолнового ультрафиолета с помощью видимого света и длинноволновых ультрафиолетовых лучей. А как же другие лучи? Не существует ли антагонизма между другими парами излучений? На неживых системах, например на фотопленках, установлена более общая закономерность: длинноволновое излучение ослабляет эффект предшествующего коротковолнового. Проявляется ли эта закономерность и на живых организмах?
Инфракрасные лучи, например, немного ослабляют эритемное действие длинноволнового ультрафиолета, но присутствие инфракрасных лучей в спектре солнечного излучения в известной мере дополняет действие на организм других его компонентов, обеспечивая главным образом тепловое, согревающее действие солнечного света. Лучи, возникающие в процессе радиоактивного распада атомов (гамма-лучи) или в специальных вакуумных трубках в результате удара о препятствие потока электронов (лучи Рентгена), имеют еще меньшую длину волны, чем ультрафиолетовые лучи. Следовательно, их кванты несут громадную энергию. В нашу задачу не входит описание всех разрушений, которые производит в животном организме мощный поток рентгеновских или гамма-лучей. Действие их вызывает острую лучевую болезнь – бич атомного века. Борьба с лучевой опасностью – одна из важнейших задач, стоящих перед современной наукой.
А нельзя ли использовать антагонизм излучений для борьбы с лучевой опасностью? В течение двух последних десятилетий ученые пытались отыскать в широком спектре электромагнитных колебаний волны, облучение которыми ослабляло бы разрушительный эффект ядерных излучений. К сожалению, надежды не оправдались.
Впрочем, в опытах, проделанных на дрожжах и культурах ткани, было установлено, что ультрафиолетовые лучи, убивающие живые клетки, разрушающие ткани и нарушающие процесс деления, в то же время способны несколько ослаблять вредное действие предшествующего им рентгеновского облучения. Смягчающее действие ультрафиолетовых лучей, в свою очередь, может быть устранено видимым светом. Значит, небольшим реактивирующим действием по отношению к рентгеновским и гамма-лучам могут обладать ультрафиолетовые лучи, более длинноволновые, но все же непосредственно прилегающие к диапазону лучей Рентгена.
Использование фотореактивации в практике
Использование лучей в борьбе с лучевой болезнью не дает значительных результатов по многим причинам. Во-первых, проникающая способность рентгеновских и гамма-лучей очень высока: они могут проходить сквозь тело человека. Ультрафиолетовые лучи, как мы уже знаем, обладают слабой проникающей способностью, поэтому они вызывают изменения лишь в облученном участке кожи. Правда, этот участок сразу же становится источником нервных и гуморальных влияний, охватывающих весь организм, но эти влияния не имеют прямого и непосредственного отношения к повреждающему действию ядерных излучений, как при фотореактивации. Кроме того, изменения, вызванные лучами Рентгена, очень быстро становятся необратимыми. В связи с этим воздействие фотореактивирующего агента должно быть максимально быстрым и достаточно мощным. Имеет значение и то обстоятельство, что классический эффект фотореактивации выработан в течение многотысячелетнего эволюционного развития и направлен против постоянно встречающегося вредного агента – ультрафиолетовых лучей. А против ядерных излучений живой организм не выработал соответствующих защитных приспособлений, поскольку в естественных земных условиях их мощные источники отсутствуют.
Тем не менее принцип «лучи против лучей» нашел некоторое место в арсенале средств борьбы с лучевой болезнью. Действие умеренных доз ультрафиолетовых лучей приводит в известной степени к результатам, противоположным эффекту ядерных излучений. Ультрафиолетовые лучи усиливают процессы кроветворения, которые в организме, пораженном лучевой болезнью, всегда подавлены: поднимают жизненный тонус, общую сопротивляемость организма, повышают деятельность желез внутренней секреции. В связи с этим ученые решили испробовать ультрафиолетовые лучи в качестве средства профилактики лучевой болезни. Здесь, наконец, их ожидала, хотя и скромная, но удача. Организм, подвергавшийся многократному облучению ультрафиолетовыми лучами в эритемных дозах, становится более устойчивым к действию больших доз ядерных излучений.
И еще в одном случае ультрафиолетовые лучи могут оказаться полезными. Лучевые ожоги, дерматиты, язвы, возникающие иногда при лучевом лечении опухолей и других болезней, плохо заживают. Ультрафиолетовые лучи в умеренных дозах ускоряют их заживление.
Есть область практической деятельности человека, в которой фотореактивация сразу же после ее открытия интенсивно используется. Это селекция новых штаммов грибков, вырабатывающих антибиотики. Мы уже говорили, что с помощью ультрафиолетовых лучей у лучистых и плесневых грибков удается получить множество разнообразных мутаций, из которых ученые отбирают наиболее ценные и производительные. Но для получения большого количества мутаций приходится прибегать к высоким дозам ультрафиолетовых лучей, под действием которых большинство облученных грибков гибнет. Чередуя воздействие ультрафиолетовым и видимым светом, С. И. Алиханян и его ученики добились снижения смертности грибков при сохранении высокого процента мутаций. Это позволило селекционерам в кратчайшие сроки достичь больших результатов.
Фотореактивация – недавно открытое явление. Изучение его идет быстрыми темпами. Использование скрытой гигантской силы лучей солнечного спектра откроет новые пути в овладении силами и тайнами природы.
Глава VI.
Лазерный луч
В предыдущих главах этой книги речь шла об отдельных областях спектра солнечного излучения – видимом свете, ультрафиолетовых и инфракрасных лучах, различающихся длиной волны и энергией квантов. Действие их на организм было различным именно в силу этих особенностей. Излучение лазеров – искусственного Солнца, созданного руками человека, относится к тому же оптическому диапазону, что и свет настоящего Солнца. Различий в длине волны, частоте колебаний, энергии квантов между излучением лазера и светом Солнца нет. И все же отличие существует, и настолько разительное, что с открытием лазеров в оптике появилась новая глава. Посвятим и мы последнюю главу книги о солнечном луче особенностям его рукотворного собрата.
До сих пор мы рассматривали только один физический механизм излучения квантов света: скачкообразный возврат возбужденного (т. е. обладающего избыточной энергией) электрона в основное, невозбужденное состояние. Избыточная энергия высвечивается при этом в виде кванта излучения, величина которого точно соответствует разности энергетических уровней (возбужденного и основного). Но есть, оказывается, еще один способ высвечивания – так называемое вынужденное, или стимулированное излучение, принципиальную возможность которого еще в 1905—1917 гг. предсказал Эйнштейн. Сущность этого явления, лежащего в основе лазерного излучения, состоит в следующем.
Возбужденный электрон нередко растрачивает некоторую часть своей избыточной энергии в виде мелких квантов инфракрасного излучения, соответствующих энергетическим уровням колебания и вращения атомных ядер. При этом возбужденный электрон переходит на промежуточный метастабильный (триплетный) уровень возбуждения. Чтобы вернуться в исходное основное состояние, электрон, угодивший в триплетную «яму», должен проделать довольно сложный путь: сначала вернуться на главный (синглетный) возбужденный уровень,– а для этого нужно приобрести растраченную ранее энергию,– и затем скачком возвратиться на невозбужденный уровень, отдав избыточную энергию в виде кванта излучения. Таков «обычный», уже знакомый нам механизм.
Но электрон, пребывающий на метастабильном уровне, т. е. в состоянии неустойчивого равновесия, может столкнуть также квант света, пролетающий мимо, если он обладает энергией, точно соответствующей разнице энергий метастабильного и основного уровней атома. Мы встречаемся здесь вновь с разновидностью явления электронного резонанса. В результате вынужденной разрядки метастабильного возбужденного состояния электрон возвращается в невозбужденное, основное состояние, а вместо одного кванта мы имеем два кванта, обладающие одинаковой энергией, длиной волны (а значит, и частотой) и, что самое удивительное, одинаковой фазой колебаний (см. рис. 20), и распространяющиеся в одном направлении.
Рис. 20. Схема вынужденного излучения атомов
а – поглощение фотона с переходом атома в возбужденное состояние; б – спонтанный возврат атома в основное состояние с излучением фотона; в – вынужденное излучение с образованием двух фотонов, обладающих одинаковой энергией, частотой и фазой колебаний
Свет – это диалектическое единство прерывности и непрерывности, корпускулярных и волновых свойств. В обычных температурных источниках света возникающие фотоны движутся хаотически, освобождаются несинхронно и отличаются определенным, более или менее выраженным, статистическим распределением частот и длин волн. Поэтому излучение обычных источников (в том числе и Солнца) полихроматично, ибо содержит всегда довольно широкий набор длин волн – «разноцветное» свечение; оно некогерентно, так как каждый квант излучается как бы сам по себе, вне связи с другими, и распространяется поэтому непараллельно с другими квантами и не в одной с ними фазе колебаний.
Стимулированному излучению присущи совершенно новые свойства. Вследствие явления резонанса квант «вынуждающий» и квант «вынужденный» имеют одинаковую (или, строго говоря, очень близкую) энергию, длину волны и частоту колебаний. Лазерное излучение поэтому в высокой степени монохроматично. Конечно, и в свете обычных источников можно искусственно выделить интересующую нас узкую спектральную область, если, например, луч Солнца с помощью мощной призмы развернуть в полосу спектра и затем весь спектр, кроме избранной узкой полосы, экранировать и поглотить. Но какую бы узкую часть спектра мы ни старались выделить, она будет содержать лучи с несколькими различными частотами и длинами волн. Кроме того, по мере повышения монохроматичности пучка лучей интенсивность его резко падает, вплоть до ничтожной величины.
Принципиальная особенность вынужденного излучения, первая, но не единственная, и состоит в том, что практически все стимулированное свечение относится к очень узкому интервалу частот. Монохроматичность новых источников света несравненно выше всего, что можно было получить до создания лазеров.
Кстати, слово лазер (LASER) происходит от первых букв слов английской фразы Light Amplification by Stimulated Emission of Radiafion (что можно перевести как усиление света путем вынужденного испускания излучения).
Вторая, не менее удивительная особенность стимулированного излучения – пространственная и временная когерентность. Квант, столкнувший электрон с уровня возбуждения, и квант, возникший при этом соскоке, имеют не только одинаковую величину. Они и двигаются в одном направлении, распространяясь в пространстве параллельно; и волновые колебания, сопутствующие их движению, совершаются синхронно во времени, однофазно. Выделить в потоке солнечного света или излучения искусственных источников когерентную часть – еще более сложно, чем с помощью монохроматора выделить узкий спектральный пучок. Поэтому явление когерентности света физики и оптики стали изучать практически только после открытия лазеров. Эти кардинальные особенности лазерного излучения сделали возможным появление еще целого ряда удивительных свойств нового вида свечения.
Концентрация лучистой энергии во времени и пространстве
Почему вынужденное излучение не наблюдается обычно? И что нужно сделать, чтобы лазерный луч зажегся? На первый из этих вопросов ответить относительно просто. Чтобы получить вынужденное излучение, иными словами, чтобы добиться усиления приходящего извне света нужной частоты, необходимо иметь вещество, в котором большое количество электронов находилось бы на высших электронных уровнях возбуждения. А как этого добиться? Быть может, простым нагревом?
При повышении температуры, как известно, увеличивается количество атомов, энергия которых достаточно высока, чтобы забросить электрон на один из возбужденных уровней. Но эти переходы кратковременны, независимы друг от друга и, следовательно, хаотичны. В каждый данный момент все-таки подавляющее большинство электронов оказывается на основном, невозбужденном уровне.
Что произойдет в этом случае с квантами внешнего излучения, частота колебаний которых совпадает с разницей энергетических уровней вещества? Они попросту поглотятся веществом, израсходуются на возбуждение его электронов. Следовательно, для получения вынужденного излучения нужно сначала добиться перехода на уровень возбуждения большей части электронов вещества, достичь, выражаясь языком специалистов, инверсной (т. е. обратной) заселенности энергетических уровней. Если большинство электронов пребывает на уровне возбуждения, прохождение квантов резонансной частоты вызовет их массовый и одновременный соскок на основной уровень. Иными словами, инверсная заселенность – необходимое условие усиления света за счет вынужденного излучения.
Эти рассуждения, вытекающие в сущности из работ Эйнштейна, позволили в 1940 г. советскому физику В. А. Фабриканту предположить, что вынужденное излучение можно использовать для усиления светового потока. В годы Великой Отечественной войны эти работы прервались и возобновились только в 1951 г. Они завершились заявкой на изобретение. Однако дальнейшие шаги в направлении создания оптических квантовых генераторов (лазеров) суждено было сделать другим ученым – Н. Г. Басову и А. М. Прохорову в СССР, Ч. Таунсу в США. Первый действующий лазер был построен Т. Майманом в США в 1960 г.
В качестве рабочего вещества для возникновения вынужденного излучения в первых лазерах использовали стержни из искусственного рубина – кристалла окиси алюминия с небольшой (0,05—0,5%) примесью атомов хрома, придающих кристаллу красный цвет. Они-то и играют главную роль в возникновении стимулированного излучения, так как их электроны способны при возбуждении довольно длительно (3·10 -3сек) задерживаться на метастабильном уровне.
Если рубиновый стержень поместить внутрь спирально изогнутой мощной лампы (чаще всего ксеноновой), то такой рубиновый сердечник будет довольно равномерно освещаться лампой. Из широкого спектра свечения лампы какая-то одна группа частот окажется резонансной: при мощной вспышке лампы электроны атомов хрома одновременно (пусть на короткие доли секунды) взлетят на уровень возбуждения. Чтобы это произошло, вспышка ксеноновой лампы осуществляется разрядом батареи конденсаторов.
Итак, высший уровень возбуждения в атомах хрома заселен электронами. Дальше события развиваются молниеносно. Квант резонансной частоты (то ли высвеченный криптоновой лампой, то ли возникший в атоме хрома при разрядке метастабильного состояния), пролетая мимо возбужденного электрона, вызывает и его разрядку, освобождая второй, подобный себе квант. Если каждый из этих фотонов разрядит еще по одному возбужденному атому, количество фотонов снова удвоится. Налицо усиление света за счет вынужденного излучения.
Но лазер – детище второй половины XX в.– способен на большее. Если у торцов рубинового стержня установить зеркала (или нанести непосредственно на торцы, отражающий слой серебра), поток света, усиленного в стержне, отразится от зеркала, вернется в кристалл, отразится от второго зеркала и т. д. При каждом отражении интенсивность света возрастает за счет разрядки возбужденных атомов хрома. А возбуждение последних поддерживается периодическими импульсами ксеноновой лампы, которые как бы накачивают в кристалл энергию электронного возбуждения. Отсюда и название – «лампа накачки».
Интенсивность света в такой системе могла бы возрастать очень сильно. Но перегрев стержня прекращает генерацию вынужденного излучения. Поэтому в конструкции рубинового лазера – самого распространенного типа оптических квантовых генераторов в наши дни – предусмотрены, во-первых, охлаждение стержня и, во-вторых, своевременный отвод лучистой энергии. Одно из торцевых зеркал делается полупрозрачным, и когда лихорадочно (со скоростью света!) мечущийся внутри стержня от торца к торцу поток излучения достигает гигантской плотности, он вырывается наружу в виде мгновенного (длительностью в тысячные доли секунды) всплеска излучения невиданной яркости.
Рубиновый лазер генерирует излучение в красной области спектра с длиной волны 6943 А (небольшая часть излучения приходится на волну 6929 А). В энергию лазерного импульса преобразуется лишь небольшая часть энергии, излучаемой лампой накачки. Иными словами, коэффициент полезного действия рубинового лазера невелик – около 1%. Но это сравнительно небольшое количество лучистой энергии (мощность современных рубиновых лазеров колеблется от 1—2 до нескольких сот ватт) концентрируется прежде всего в пространстве – в узкий, практически не расходящийся пучок, а также во времени – в короткий импульс излучения. Если лазер генерирует лучистую энергию мощностью 1 Вт (т. е. 1 Дж. в секунду) [Джоуль равен 107 эрг.] и импульсы излучения продолжительностью в 0,001 сек следуют друг за другом с интервалом в 1 сек, то во время каждого импульса концентрация энергии в пучке достигает 1000 Дж. Особенности лазерного излучения, прежде всего его монохроматичность и когерентность, облегчают задачу концентрирования пучка в пятно ничтожного диаметра. Расчеты показывают, что предел концентрации – размер, соответствующий половине длины .волны света, т. е. для рубинового лазера минимальный возможный диаметр пятна – 0,2 мкм. Практически достигнутый предел – несколько меньше 1 мкм.
При такой фокусировке светового луча плотность энергии на единицу площади еще более фантастически возрастает, достигая совершенно невероятных величин, не осуществимых никаким иным способом. Но и это еще не предел – мощность лазерных установок непрерывно возрастает. Кроме того, есть еще один резерв – уменьшение длительности каждого отдельного импульса.
В обычном рубиновом лазере полупрозрачное зеркало препятствует слишком раннему разряду; световой импульс вырывается наружу лишь после достижения какой-то критической плотности светового потока. Если затвор на выходе из кристалла сделать более плотным, концентрацию световой энергии можно еще более увеличить. Но зато и импульс прервется раньше – так что особого выигрыша получить не удастся. Очевидно, выход состоит в том, чтобы сделать затвор переменной плотности: когда световой поток внутри кристалла достигнет предельной плотности, достаточно «раскрыть шлюз», и разрядка даст гигантский импульс еще невиданной концентрации.
Такие лазеры (с переменной, или модулированной добротностью) уже созданы. Общее количество излучаемой энергии в них не увеличивается; возрастает лишь ее концентрация во времени за счет сокращения длительности импульса до 10 -12сек и даже ниже. С помощью лазеров такого типа удается, например, достичь температуры 1—2 млн. градусов и выше – задача, совершенно неосуществимая большинством других способов. Правда, это повышение температуры невообразимо кратковременно и совершается в ничтожном объеме вещества. Но это уже реальность сегодняшнего дня, перед которой меркнут не только зеркала Архимеда, но и пламя самых мощных дуговых печей.
Лазерный луч находит себе применение в опытных установках термоядерной энергетики – с его помощью особенно удобно в кратчайшее время поднять температуру плазмы до предела, за которым становится возможным и энергетически выгодным слияние легких ядер. Можно предполагать, что когда использование термоядерной энергии станет реальностью и из стен лабораторий выйдет на простор промышленной энергетики, лазер займет достойное место в качестве одной из важнейших деталей процесса. Но это лишь одно из бесчисленных реальных применений искусственного Солнца.