355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вилен Барабой » Солнечный луч » Текст книги (страница 12)
Солнечный луч
  • Текст добавлен: 5 октября 2016, 05:18

Текст книги "Солнечный луч"


Автор книги: Вилен Барабой


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 18 страниц)

Особенно сильно продукты фотолиза возбуждают деятельность той системы организма, которая непосредственно ведает защитой от вредных внешних влияний. Называется она ретикуло-эндотелиальной или, по определению выдающегося советского ученого А. А. Богомольца, физиологической системой соединительной ткани. В ней вырабатываются белые тельца крови и тканей (лейкоциты и гистиоциты), особые белки (антитела), разрушающие чужеродные вещества и микробы. Под влиянием эритемных доз ультрафиолетовых лучей лейкоциты и гистиоциты становятся более активными, энергичнее поглощают и разрушают микроорганизмы; антитела вырабатываются быстрее и в большем количестве. Значительно возрастает сопротивляемость не только простудным заболеваниям, но и другим болезням, быстрее заживают раны. Кожа, защищающая тело от ушибов, проникновения бактерий, ядов и раздражающих веществ, под влиянием облучений усиливает свои барьерные свойства. Наконец, ультрафиолетовые лучи устраняют повышенную чувствительность организма – аллергию. При многократном воздействии ультрафиолетовых лучей продукты распада белков, возбуждая симпатико-адреналовую систему, как бы тренируют ее, увеличивая выносливость организма, закаляют его.

Такое же значение имеет тренировка систем, вырабатывающих гистаминазу – фермент, который разрушает гистамин и быстро устраняет его вредное влияние на opганизм.

Однако ультрафиолетовые лучи могут действовать на организм и посредством других природных факторов. Речь идет о влиянии ультрафиолетовых лучей на воздух, которым мы дышим, на его физическое состояние. Загрязнение воздуха пылью, газами, водяными парами оказывает вредное влияние на организм. Ультрафиолетовые лучи Солнца усиливают процесс естественного самоочищения атмосферы от загрязнений, способствуя более быстрому окислению пыли, частичек дыма и копоти, уничтожая находящиеся на пылинках микроорганизмы. Конечно, эта природная способность к самоочищению имеет пределы и при очень сильном загрязнении воздуха оказывается недостаточной.

Но роль ультрафиолетовых лучей не ограничивается этим. Самый чистый воздух все же недостаточно «аппетитен», если он не прошел «обработки» лучами Солнца. Советскими учеными А. Л. Чижевским, Л. Л. Васильевым, А. А. Минхом установлено, что воздух открытых пространств действительно обладает целебными свойствами, и ультрафиолетовый луч – одна из причин появления этого свойства.

Ультрафиолетовые, космические лучи и другие природные факторы ионизируют воздух. Ионы благодаря наличию заряда легче вступают в химические реакции, свободнее проникают через тканевые мембраны. Азот, составляющий основную массу атмосферы (78%), и углекислота (0,03%) в результате ионизации существуют преимущественно в виде положительных ионов. Выбитые электроны связываются главным образом с молекулами кислорода, обладающими особыми магнитными свойствами. Если азот не влияет на организм человека, а углекислота вредна, то отрицательные ионы кислорода, легко проникая в кровь через стенку легочных пузырьков – альвеол, лучше взаимодействуют с гемоглобином, улучшают снабжение организма столь необходимым для его жизни продуктом, влияют на уровень серотонина и других биологически активных веществ в крови. Вот почему чистый воздух так целебен для человека, вот почему так легко и глубоко дышится на лоне природы!

К сожалению, примеси, содержащиеся в воздухе больших городов, жилищ и общественных зданий, быстро уничтожают или сводят до минимума количество легких аэроионов. В последние годы широкое применение находят установки кондиционирования воздуха, которые очищают воздух от примесей, придают ему нужную температуру и влажность. Но такие установки, как правило, не могут восстанавливать нормальный ионный состав воздуха. Заменить природные факторы, в том числе ультрафиолетовые лучи, не так-то просто! Но ученые нашли выход: были созданы ионизаторы – приборы, искусственно ионизирующие воздух.

Для здоровья людей полезны легкие отрицательные аэроионы – ионы кислорода. К сожалению, многие конструкции ионизаторов дают ионы обоих зарядов или, что еще хуже, в результате разбрызгивания воды дают тяжелые ионы. Пожалуй, наилучшим является ионизатор конструкции А. Л. Чижевского. В этом приборе поток отрицательных аэроионов образуется в электрическом поле. Ионизация атмосферы – еще один важный путь воздействия ультрафиолетовых лучей на жизнь и здоровье человека. Чтобы человек до глубокой старости сохранял душевную бодрость, ясность ума и несокрушимое здоровье, он должен уметь использовать благотворную силу солнечного света.

«Куда заглядывает солнце, туда не заглядывает врач»

Это старинное изречение весьма современно и в наши дни. В трущобах больших городов в капиталистических странах немало людей томится без света, без надежды на лучшую жизнь. Именно там – в темных и тесных жилищах – издревле гнездятся рахит и туберкулез, ревматизм и бронхиальная астма, сыпной тиф, трахома, дизентерия, холера, черная оспа – болезни, большинство которых ликвидировано в нашей стране.

Ультрафиолетовые лучи, разрушающие клетки зародышевого слоя кожи человека или клетки слизистой оболочки глаз, легко уничтожают и возбудителей всевозможных заразных болезней: туберкулезные палочки, холерные вибрионы, стрептококки, вирусы гриппа и др. Механизм разрушения одинаков, но значение бактерицидного действия ультрафиолетовых лучей огромно и вполне самостоятельно.

Наиболее эффективно и быстро уничтожают микроорганизмы лучи с длиной волны 2537—2675 А. В обе стороны спектра бактерицидная эффективность излучения падает. Если принять максимум эффекта за 100%, то активность лучей с длиной волны 2900 А (близких к коротковолновой границе солнечного спектра) составит 30%, действие лучей с длиной волны 3000 А – всего 6%, а лучей, лежащих на границе видимого света (4000 А),– лишь 0,01% максимальной.

Микроорганизмы обладают различной чувствительностью к ультрафиолетовым лучам. Дрожжи, плесневые грибки и споры бактерий гораздо устойчивее к их действию, чем вегетативные формы бактерий. А споры некоторых грибков, окруженные толстой и плотной оболочкой, отлично себя чувствуют в высоких слоях атмосферы и, не исключена возможность, могут путешествовать даже » космосе. Чувствительность микроорганизмов к ультрафиолетовым лучам особенно велика в период деления и непосредственно перед ним. Кривые бактерицидного эффекта, торможения деления и роста клеток почти точно совпадают с кривой поглощения ультрафиолетовых лучей нуклеиновыми кислотами (см. рис. 16). Следовательно, денатурация и фотолиз нуклеиновых кислот – важнейшей составной части аппарата наследственности – образование димеров тимина, сшивок между нитями ДНК, приводят к прекращению деления и роста клеток, а в больших дозах – к их гибели.

У человека среди микроорганизмов наряду с друзьями немало и врагов. Ультрафиолетовые лучи – одно из самых мощных орудий борьбы с вредными микробами. В ртутных лампах низкого давления, носящих название бактерицидных (серия БУВ), на долю излучения с длиной волны 2537 А, обладающего максимальным бактерицидным эффектом, приходится больше 85% светового потока. Эти лампы чаще всего применяют для уничтожения микроорганизмов.

...Идет операция. Хирурги в стерильных халатах, шапочках и масках склонились над больным. Края раны закрыты стерильной простыней, обработаны йодом. Руки хирургов надежно упрятаны под тонкими резиновыми перчатками. Казалось бы, все сделано для того, чтобы уберечь операционную рану от заражения микробами. И все же гнойные осложнения иногда бывают после самой тщательной медицинской подготовки. Источником заражения является воздух. Для дезинфекции воздуха отличный эффект дают бактерицидные лампы. При их использовании число осложнений уменьшается в 5—10 раз.

Сейчас бактерицидными лампами оборудованы многие операционные, перевязочные, больничные палаты, ясли и детские сады. Это очень полезное нововведение. Только нужно помнить, что бактерицидные лучи вредны для кожи и прежде всего для глаз. Поэтому лампы следует включать либо тогда, когда в помещении нет людей, либо направлять их свет вверх и в стороны, но не вниз, избегая при этом и отражения от потолка и стен.

Бактерицидные свойства ультрафиолетовых лучей используются при дезинфекции игрушек, посуды, инструментов; с их помощью удлиняется срок хранения многих пищевых продуктов. Лучи обеззараживают питьевую воду (если она достаточно прозрачна), инактивируют вирусы при изготовлении вакцин.

Лучи изменяют природу организмов

Современная наука достигла больших успехов в изучении проблемы наследственности. Доказана решающая роль нуклеиновых кислот, а также белков в накоплении, хранении, передаче наследственной информации от родителей к детям. Но нуклеиновые кислоты и белки легко поглощают фотоны ультрафиолетового света. Вызывая изменения структуры биополимеров, их частичную денатурацию, эти лучи могут вносить изменения в наследственную информацию. Если облучению подверглись половые клетки организма, то изменения, вызванные ультрафиолетовыми лучами в молекулах нуклеиновых кислот, будут свойственны всему организму, выросшему из этих клеток, и даже его потомкам. Стойкие, передающиеся по наследству изменения носят название мутаций, а вызывающий их агент называется мутагенным. Мутагенное действие ультрафиолетовых лучей было обнаружено в 1932—1934 гг. американским генетиком Е. Альтенбургом в опытах на мушках дрозофилах. Взрослые мушки, выросшие из облученных яиц, отличались от своих собратьев формой крыльев, цветом, размерами брюшка и т. п.

Появление мутаций при действии ультрафиолетовых лучей наблюдается у всех одноклеточных и простейших многоклеточных организмов, на семенах многих растений. Если облучать ультрафиолетовыми лучами бактерии, простейших, клеточные культуры, то относительно небольшие дозы облучения увеличивают частоту возникающих мутаций от 1 тыс. до 1 млн. раз. При больших дозах облучения почти все выживающие клетки оказываются носителями тех или иных наследственных повреждений. Однако малая проникающая способность ультрафиолетовых лучей ограничивает возможности их использования для получения мутаций. У большинства организмов, и прежде всего у млекопитающих, половые клетки расположены в теле так глубоко, что ультрафиолетовые лучи их не достигают. (Только более крупные и высокоэнергичные кванты рентгеновских и гамма-лучей обладают достаточной для этого проникающей способностью.) И все же мутагенная активность ультрафиолетового излучения находит практическое применение. Лучистые и плесневые грибки, микроскопически малые по величине, производят могучие лечебные препараты – антибиотики. В повышении «производительности труда» грибков надежным помощником служат ультрафиолетовые лучи. Среди потомства облученных и мутировавших грибков отбирают наиболее производительных, которых снова облучают, добиваясь в конце концов нужных результатов.

С. И. Алиханян с сотрудниками вывел новые расы грибков, которые изготовляют антибиотики (террамицин и эритромицин) в 5—10 раз больше, чем исходные образцы. А всего за время использования антибиотиков в медицине производительность грибков удалось повысить в тысячи раз, а стоимость производства – значительно снизить. Так мутагенные свойства ультрафиолетовых лучей используются для селекции одноклеточных организмов и некоторых растений.

Нарушения, вносимые квантами ультрафиолетовых лучей в структуру молекул ДНК, могут быть различны. Если происходит замена одного пиримидинового основания другим (например, тимина – цитозином или урацилом) или пурина – пурином (аденина – гуанином и наоборот), то такие ошибки – их называют транзициями – не нарушают конфигурации молекулы ДНК; обычно они не распознаются и не устраняются восстановительными системами клетки (о них идет речь в главе V). Другой тип мутации – трансверсии, в которых происходит замена пурина пиримидином и наоборот, довольно заметно искажают скелет молекулы и обычно устраняются раньше, чем клетка успевает передать ошибочную информацию потомкам. Наконец, третий тип мутаций – выпадение (делеция) или вставка одного или нескольких азотистых оснований.

Каковы возможные последствия мутаций рассмотренных типов? Так как триплет азотистых оснований в молекуле ДНК соответствует одной аминокислоте в структуре кодируемого белка, то замена одного азотистого основания другим в ДНК (мутации первого и второго типов) означает замену аминокислоты; это может отразиться на функции будущего белка в клетке и даже на течении определенных обменных реакций. Мутации третьего типа могут давать гораздо более серьезные последствия: выпадение или вставка основания изменяет весь шифр, так как сдвигается граница между триплетами, и структура кодируемого белка очень сильно искажается.

Мутации возникают и при поедании корма, облученного короткими ультрафиолетовыми лучами, в котором в результате облучения образуются, очевидно, химические мутагены.

Мутации, возникающие в клетках тела многоклеточных животных, не могут оказать влияния на наследственность всего организма или его потомков. Их влияние распространяется лишь на потомство самой облученной клетки. Но иногда, при каких-то невыясненных еще полностью условиях, перерождение клетки может зайти так далеко, что она превратится в раковую. Длительное воздействие солнечного света или ультрафиолетовых лучей искусственных источников в больших дозах вызывает образование злокачественных опухолей у подопытных животных (мышей, крыс) на участках кожи, не защищенных шерстью: на носу, ушах, хвосте. После облучения роговой слой кожи утолщается, и чтобы вызвать образование опухоли, нужно начинать с большой дозы лучей и постепенно ее увеличивать.

Доказана также роль солнечного света в происхождении рака кожи у людей. Он появляется исключительно на открытых участках кожи (на лице, шее, кистях рук) и главным образом у людей, длительно находящихся под воздействием солнечных лучей. Заболеваемость раком кожи тем выше, чем больше солнечной радиации в данном географическом районе. При этом чаще всего болеют не местные жители, а белокожие приезжие из более северных районов, менее приспособленные к данным условиям. Так, в южных штатах США белые болеют раком кожи в 10—12 раз чаще, чем негры, а на Гавайских островах – даже в 42 раза чаще.

В возникновении рака кожи, возможно, некоторую роль играют канцерогенные вещества, обладающие фотодинамическим действием. Подтверждено опытами, что ультрафиолетовые лучи вызывают фотохимические превращения, окисление жироподобных веществ кожи, причем некоторые из продуктов окисления приобретают канцерогенные свойства. Некоторые ученые предполагают, что злокачественное перерождение клетки происходит в результате прямого поглощения ультрафиолетовых лучей нуклеопротеидами клеточного ядра и возникающих вследствие этого ошибок в передаче наследственной информации дочерним клеткам организма. Так или иначе, опасность возникновения рака кожи существует, и люди, постоянно работающие на открытом воздухе (моряки, пастухи, некоторые категории строителей, сельскохозяйственных рабочих), должны заблаговременно принимать меры для защиты кожи.

Свечение живого тела

О каком свечении пойдет здесь речь? Ведь о биолюминесценции – свечении живых организмов, рассказывалось выше. Явление, с которым познакомится сейчас читатель, существенно отличается от биолюминесценции. Развитие учения об ультрафиолетовом, невидимом свечении живого тела тесно связано с работами крупного советского ученого А. Г. Гурвича. Еще в 1923 г. он сумел доказать, что ткани растительного или животного организма, в которых происходит быстрое размножение клеток, являются источниками невидимого излучения. Если на пути пучка этих лучей поместить другой образец живой ткани, то и в нем под влиянием излучения деление клеток станет совершаться быстрее. Вновь открытые лучи Гурвич назвал митогенетическими, т. е. ускоряющими, вызывающими митоз – деление клеток.

Как пришел он к этому открытию, выдающееся значение которого становится ясным только сегодня, спустя полвека? Крупный цитолог и эмбриолог, посвятивший себя изучению развития организма из оплодотворенной яйцеклетки, Гурвич пришел к выводу, что формирование различных тканей, органов, систем происходит в зародыше из первоначально однородного зачатка не только в силу реализации наследственной программы развития, но и благодаря взаимному влиянию клеток эмбриона друг на друга.

Анализируя процесс клеточного деления – основу всех процессов роста и развития организмов, Гурвич установил, что он является следствием двух разных причин. С одной стороны, внутри клетки должны завершиться многочисленные сложные биохимические реакции, подготавливающие клетку к делению. В настоящее время мы внаем об этих процессах бесконечно больше, чем было известно полвека назад. До начала клеточного деления должен завершиться процесс самоудвоения молекул ДНК – основных носителей наследственной информации; только в этом случае каждая из дочерних клеток получит полный ее комплект. Кроме того, в клетке должен сформироваться специальный аппарат – веретено деления, который как бы растаскивает потом в противоположные стороны половинки разделившихся хромосом. Должна завершиться выработка всех необходимых для деления ферментных систем.

Одним словом, только завершение всех этих внутриклеточных, подготовительных процессов создает внутренние предпосылки для деления. Совокупность этих внутриклеточных причин Гурвич назвал «фактором готовности».

Но большой опыт цитолога и эмбриолога убеждал ученого, что дело не только во внутриклеточных процессах. Нередко клетка, полностью готовая к делению, сутками, неделями, месяцами прозябает в неподвижности, как бы ожидая команды извне. А клетки печени, нервных центров вообще делятся, только попав в особые, непривычные условия. Значит, наряду с внутренним «фактором готовности» для деления клетки нужен еще какой-то стимул, толчок извне. Гурвич назвал его «фактором осуществления».

Природа этого пускового агента на многие десятилетия приковала внимание ученого. Как истинный биолог-материалист, Гурвич не тратил времени на подыскание умозрительных, иррациональных объяснений, на поиски причин, лежащих вне ткани, вне организма. Почти сразу сложилась мысль: не есть ли «фактор осуществления» тот самый агент, с помощью которого клетки взаимодействуют между собой? Привычные представления о способах межклеточной связи не помогали: нервной системы, даже самой примитивной, у эмбриона еще нет. Химические взаимодействия возможны, но ими всего объяснить не удается. Напряженный поиск возможных механизмов привел к первой гипотезе.

В клеточной массе эмбриона, в быстро растущих тканях создается, по мысли Гурвича, своеобразное биологическое поле (аналог гравитационного, электромагнитного полей, существование которых служило в те годы предметом споров и дискуссий физиков), поле взаимодействия клеточных сил, формирующее дифференциацию клеток, образование из одного зачатка разных тканей, органов.

Если такое поле существует, значит при определенных конфигурациях пластов делящихся клеток силы взаимодействия должны выходить за пределы ткани, и их можно обнаружить. Такой ход рассуждений привел Гурвича к постановке опытов на корешках лука. Слои клеток, в которых идут процессы деления, изогнуты в корешке так, что, по мысли ученого, гипотетические силы биологического поля должны выходить за пределы корешка.

Как их обнаружить? Очевидно, удобнее всего использовать другой биологический объект: ведь природа и даже факт существования сил биологического поля еще не установлены, следовательно, для их обнаружения нельзя применять физические или химические методы. Решающий опыт Гурвич поставил в 1923 г.: ученый поднес к донцу корешка лука, где активно шли процессы деления клеток, другой корешок. Спустя некоторое время второй корешок был разрезан, покрашен и помещен под микроскоп. Внимательный глаз исследователя обнаружил на срезе удивительное явление: количество делящихся клеток в той половине препарата, которая была обращена к донышку первого корешка, увеличилось на 20—40% по сравнению с более удаленными клеточными слоями.

Многократно, с неизменным успехом, повторив опыт, Гурвич понял, что это не случайность, что делящиеся клетки (первого корешка) каким-то образом на расстоянии оказывают влияние на клетки другого растения, усиливая в них процесс клеточного деления. Вопрос о природе этого дальнодействия немедленно заинтересовал ученого. Изменяя расстояние, используя различные экраны и образцы размножающихся клеточных культур, Гурвич пришел к важным выводам. Некоторые растительные ткани выделяют в воздух летучие вещества, способные стимулировать или угнетать (в зависимости от концентрации) клеточные деления в бактериальных и других клеточных культурах. Известный советский биолог Б. П. Токин, посвятивший впоследствии изучению этих веществ всю жизнь, назвал их фитонцидами.

Однако в опытах Гурвича силы биологического поля выходили и из герметически закупоренного, даже запаянного сосуда с культурой делящихся бактерий, дрожжей и усиливали деление клеток корешка лука, если только сосуд был изготовлен из кварцевого стекла. Обычное стекло прерывало взаимодействие делящихся клеток, становилось непреодолимым препятствием для сил биологического поля. Но кварц отличается от стекла прежде всего способностью пропускать, не поглощая, ультрафиолетовые лучи. Так Гурвич пришел к убеждению, что силы биологического поля имеют электромагнитную, оптическую природу.

В распоряжении Гурвича не было достаточно чувствительных приборов для измерения количества излучаемого тканью невидимого света, для его объективной регистрации, количественной характеристики. И все же ученому удалось установить, что спектр митогенетического излучения лежит в пределах 1800—3260 А и что достаточно одного кванта этого излучения, чтобы вызвать деление клетки, завершившей внутреннюю подготовку к митозу. Невидимые лучи выделяются в виде короткой вспышки перед началом деления клетки. Излученная порция фотонов, поглощаясь соседними клетками, вызывает и в них невидимую вспышку, своего рода цепную реакцию, вторичное излучение.

Можно только поражаться, как удалось Гурвичу, опередив развитие науки на 30—50 лет, гениально предсказать и частично доказать (пользуясь примитивной с нашей сегодняшней точки зрения лабораторной техникой) не только существование митогенетического излучения, но его физическую природу и внутриклеточные источники энергии, оценить величайшее значение информации, выносимой из глубин клетки невидимым светом. Так, выяснилось, что импульс возбуждения, пробегающий по нервному волокну, сопровождается не только волной колебания электрического потенциала (так называемым потенциалом действия), но и волной ультрафиолетового излучения. Оказалось, что сильными излучателями являются клетки опухолей. Но зато в крови раковых больных появляется вещество, препятствующее излучению – так называемый раковый тушитель.

Гурвич пришел к убеждению, что энергия, необходимая для митогенетического излучения, освобождается в процессе нормальных обменных реакций, но непосредственный ее источник – побочные, в какой-то мере случайные продукты обмена – свободные радикалы. В наши дни твердо установлено, что главным источником энергии излучения живых тканей является взаимная нейтрализация перекисных радикалов – продуктов неферментативного окисления главным образом жироподобных веществ – липидов.

Исследования в новой области сулили много интересного. Но на пути их развития стояло серьезное препятствие. Световой язык клеток был настолько слаб, что физические приборы того времени не могли его зарегистрировать. Поэтому и в качестве источников и приемников (детекторов) излучения приходилось использовать биологические объекты – корешки лука, затем – дрожжевые культуры на твердых питательных средах. Учет эффекта производился визуально – по количеству делящихся клеток, и очень многое зависело от внимательности и добросовестности наблюдателя. Наконец, далеко не всегда эффект митогенетического излучения удавалось зарегистрировать. Если клетки ткани или культуры размножались быстро и беспрепятственно, толчок извне был лишним. Митогенетические лучи ускоряли деление только на фоне его задержки.

Отдельные энтузиасты-физики упорно работали над созданием приборов, достаточно чувствительных для регистрации митогенетических лучей. Такие приборы – «счетчики фотонов» – были созданы у нас Г. М. Франком и за рубежом французским физиком Р. Одюбером. В 1938 г. крупнейший советский физик-оптик, впоследствии президент Академии наук СССР С. И. Вавилов, так отзывался об этих работах: «Результаты чрезвычайно интересных исследований Одюбера… позволяют нам считать, что эмиссия ультрафиолета… при биологических процессах окончательно установлена обычными физическими методами. Эти исследования являются очень достоверным подтверждением важного открытия, сделанного Гурвичем в середине прошлой декады» [Цит. по: А. Г. Гурвич, Л. Д. Гурвич. Введение в учение о митогенезе. М., Изд-во АМН СССР, 1948.].

Но количество работ, в которых данные Гурвича не подтверждались или подвергались сомнению, также возрастало. В конце концов решающую роль сыграло общее несовершенство тогдашней лабораторной техники, регистрирующих оптических приборов. Нашлись в первые послевоенные годы люди, увидевшие в теории биологического поля проявление идеализма, припомнившие, что учитель Гурвича, выдающийся немецкий эмбриолог Г. Дриш в последние годы своей жизни стал открытым виталистом. В конечном счете интерес к исследованиям с митогенетическим излучением резко упал, а после смерти 'А. Г. Гурвича работы в этой области по существу прекратились.

Прошли годы. Далеко вперед шагнула радиоэлектроника, техника измерений. Появились новые высокочувствительные приборы – так называемые фотоэлектронные умножители (ФЭУ), соединяющие свойства фотоэлементов и усилителей тока. На новом методическом уровне стало возможно то, о чем долгие годы мечтал А. Г. Гурвич,– стала возможной надежная объективная регистрация ничтожных по своей интенсивности световых потоков, посылаемых отдельными живыми клетками.

В 1954 г. итальянские исследователи Л. Колли и У. Фаччини с помощью ФЭУ, охлажденных сухим льдом .(для повышения чувствительности), обнаружили свечение проростков некоторых растений. В 1958—1959 гг. ученые Московского университета Ю. А. Владимиров и Ф. Ф. Литвин доказали существование свечения живых тканей, которое они назвали сверхслабым. Начиная с 1961 г. широкие исследования сверхслабых свечений развернули там же Б. Н. Тарусов с сотрудниками, А. И. Журавлев и другие ученые. В наши дни работы в этой области ведутся очень широко, их количество возрастает с каждым годом. И дело здесь не только в создании чувствительной регистрирующей аппаратуры. Общий уровень развития биологии ныне столь высок, что она начинает свободно оперировать такими физическими понятиями, как свободные радикалы, хемилюминесценция, квантовый выход, понятиями, которые Гурвич одним из первых ввел в биологию.

Сверхслабое свечение клеток и тканей, подобно биолюминесценции, о которой шла речь в предыдущей главе, осуществляется за счет энергии окисления органических веществ. Но в люциферин-люциферазной реакции наличие специального фермента обеспечивает превращение в свет почти всей освобождающейся при окислении энергии. Поэтому-то дрожащий огонек светляка можно увидеть в темную ночь на расстоянии сотен метров. Сверхслабое свечение (которое для отличия от дюциферин-люциферазной реакции именуют биохемилюминесценцией) не имеет своего фермента, и его квантовый выход 10-5—10-6, т. е. лишь одна стотысячная часть энергии окисления липидов тканей высвечивается. Для регистрации этого излучения необходимы высокочувствительные фотоэлектронные умножители.

Процесс окисления липидов или фосфолипидов кислородом воздуха совершается с образованием промежуточных продуктов – перекисных радикалов и представляет собой цепную разветвленную, самоускоряющуюся реакцию. Если предоставить ее своему естественному течению, количество окисленных продуктов нарастает лавинообразно.

В организме эта реакция не может идти бесконтрольно: слишком важную роль выполняют в нем липиды – обязательная деталь мембран, основы структуры и функции клеток. В состав всех жиров наших тканей входят особые вещества – антиокислители (токоферол и др.), которые перехватывают и нейтрализуют радикалы, возникающие при окислении жиров, и постоянно удерживают процесс окисления на стабильном низком уровне. Этот механизм, как показали исследования Н. М. Эмануэля, Е. Б. Бурлаковой, А. И. Журавлева и других ученых, используется в организме для управления скоростью клеточных делений.

Дело в том, что свободные радикалы задерживают деление клеток. Чем выше в ткани количество антиокислителей, тем быстрее совершаются в ней митозы. Вероятно, поэтому быстро растущие опухоли накапливают большое количество ингибиторов – веществ, замедляющих процесс окисления жиров. Вот как далеко завело нас знакомство с биохемилюминесценцией. И, что особенно важно,– все эти и еще многие интересные факты о работе клеток нашего тела были раскрыты и изучены во многом благодаря анализу сверхслабого свечения тканей – тайного языка клеток, открытого А. Г. Гурвичем.

В 1939 г. в выступлении, посвященном памяти выдающегося советского ученого-биохимика Е. С. Лондона, Гурвич говорил, что есть два типа ученых. Открытия Одних проходят в момент, когда наука готова к ним, когда созрели условия для всеобщего признания их открытий. Другие – к ним Гурвич относил Лондона – это ученые, опередившие время, те несчастливые гении, которые не пользуются признанием современников. Такая нелегкая судьба выпала и на долю Александра Гавриловича Гурвича. Мысль его на полстолетия опередила время, и лишь сегодня его идеи, открытия и предвидения начинают сбываться, подтверждаются всем ходом науки.

И хотя сегодня большинство работ по изучению сверхслабого свечения ведется в видимой области спектра (ультрафиолетовое излучение тканей еще в тысячи раз слабее, чем видимое), нет сомнения, что ультрафиолетовое свечение тканей существует не как случайный побочный продукт реакции, а как способ общения между клетками, важный канал обмена информации. Недавнее открытие группы советских биологов во главе с В. П. Казначеевым из Новосибирска – еще одно доказательство этого.

Если культуру клеток заразить вирусом или ввести в среду ядовитую сулему, клетки погибают. Но если к гибнущей культуре поднести другую, здоровую, таким образом, чтобы их разделяла двойная стенка из кварцевого стекла, – в незараженной культуре с некоторым отставанием возникают изменения, зеркально повторяющие картину драмы, развернувшейся в зараженной культуре. Что это – случайность? Тысячи опытов утверждают, что в 90% случаев наблюдается зеркальный эффект. Но, быть может, вирус ухитрился проникнуть в соседнюю культуру? Проверка опровергает это допущение. В то же время замена кварцевой посуды стеклянной полностью прекращает описанное явление.


    Ваша оценка произведения:

Популярные книги за неделю