Текст книги "Приключения радиолуча"
Автор книги: Валерий Родиков
сообщить о нарушении
Текущая страница: 19 (всего у книги 23 страниц)
…И «ЛЕТАЮЩИЕ ТАРЕЛКИ»
Природные волноводы, птицы, насекомые, атмосферные возмущения далеко не исчерпывают всех потенциальных причин появления неизвестных сигналов на экранах радаров. Часть НЛО обязана своим происхождением ионизации воздуха. Это заметили еще во время второй мировой войны. Операторов беспокоили какие-то небесные посланцы. Особенно много эхо-сигналов появлялось на экранах радаров, когда Земля проходила сквозь метеорные потоки – своего рода метеорные «дожди» из хвостов гуляющих по Солнечной системе комет. Причем «дожди» шли довольно часто и с завидным постоянством.
Потом поняли, что это метеоры. Радары легко ловили все метеоры, так как даже мельчайшая пылинка, движущаяся в атмосфере с космической скоростью (а метеоры вторгаются в околоземное пространство со скоростями от 11 до 72 километров в секунду), сгорая, оставляет за собой ионизированный след воздуха. Благодаря этому метеор – прекрасный объект для радара. Кстати, свойство метеорных следов – отражать радиоволны – использовали для создания систем радиосвязи. Они работают в прерывистом режиме. Когда есть метеоры – передаются сообщения, когда нет – информация накапливается и подготавливается для передачи. В отсутствие метеорного следа излучается только контрольный сигнал. Если его получили на приемном конце, значит, можно передавать информацию. Если прохождение сигнала прекратилось, то передача информации прерывается и вновь передается контрольный сигнал. В сущности, это своего рода адаптивная система. Она ведет передачу только при благоприятных условиях.
Даже если нет метеорного дождя, все равно наблюдаются так называемые спорадические метеоры. А их, ежедневно вторгающихся в атмосферу, миллиарды. В ясную безлунную ночь в течение часа можно увидеть невооруженным глазом 5—10 метеоров, а по данным радионаблюдений в любое время за одну минуту происходит две-три метеорные вспышки, и каждая длительностью около одной секунды.
Интересно, что и сами по себе сигналы на экране радара, отраженные от метеорного следа, могут о многом рассказать ученым. В частности, о том, какова скорость метеора. По дрейфу метеорных следов, который можно наблюдать на экране радара, судят об особенностях циркуляции верхней атмосферы, причем эту информацию можно получать в любое время суток.
Иногда операторов озадачивали эхо-сигналы, отраженные от загадочных серебристых облаков, которые находятся на высоте 80 километров, примерно там же, где и следы от метеоров. Видны на экранах радаров и отражения от ионизированных облаков, образующихся во время полярных сияний, и ионизированные следы от молний.
А вот еще один пример ионизированного сгустка, который может быть увиден и визуально, и на экране радара. В некоторых каменистых породах из-за механических напряжений возникает пьезоэлектрический эффект. Возникшее электрическое поле может ионизировать воздух над породой. Ионизированная область перемещается в атмосфере, светится и подчас принимает форму, характерную для многих НЛО. Такие явления случаются в гористых местностях, в районах, где имеются разломы в земной коре и полости в горных породах, то есть в местах концентрации механических напряжений. Интересно, что насекомые в ионизированном воздухе тоже начинают светиться – излучать голубоватый свет. Светящийся рой вполне можно принять за неопознанный объект.
Можно привести еще одну вполне возможную причину, так сказать, глубинного характера.
В 1984 году Госкомитет СССР по делам изобретений и открытий внес в государственный реестр работу, авторы которой открыли, что при появлении разлома в твердых телах высвобождающиеся электроны, ударяясь о противоположную поверхность трещины, порождают жесткое рентгеновское излучение. Эффект может быть использован как сигнал о разрыве в земной коре. Или иными словами, для прогнозирования землетрясений. Но мы знаем, что рентгеновские лучи – отличный ионизатор. Значит, из разломов могут вырываться ионизированные сгустки воздуха, то есть готовые НЛО, и не из космоса, а из недр земных!
Интересные особенности воздуха открыли стражи его чистоты, к которым принадлежит и М. Т. Дмитриев, заведующий кафедрой физико-химических и радиологических исследований Института общей коммунальной гигиены имени А. Н. Сытина АМН СССР.
Много опытов поставлено ученым за это время, получены интересные результаты, проливающие свет на природу светящихся объектов в атмосфере. Оказалось, что окружающий нас воздух – своеобразный постоянно действующий «генератор» света. Только его мощность в обычных условиях мала, так что глазами этот свет не заметишь. Зарегистрировать излучение могут только специальные приборы.
Причина генерации света – в химических реакциях микропримесей, постоянно находящихся в воздухе (озона, окиси азота, органических веществ, ионов, свободных атомов и других химически активных частиц). Такое явление – выделение света при химических реакциях – называется хемилюминесценцией.
Иногда концентрация хемилюминесцирующих частиц резко увеличивается. Причины могут быть самые разные. Загрязнение и нагрев атмосферы, электрические разряды, ультрафиолетовое облучение, прорыв в нижние слои атмосферы стратосферного озона… И тогда мощность воздушного генератора света резко возрастает. Образуется светящаяся зона. Свет вблизи нее может быть в двадцать раз ярче солнечного.
Светящиеся зоны могут быстро перемещаться, совершать замысловатые маневры, неподвижно зависать. В зависимости от состава микропримесей свечение может быть самых различных цветов и оттенков.
Концентрация ионов и электронов внутри зон повышается в тысячи и даже миллионы раз. Поэтому они прекрасно обнаруживаются радарами. Если концентрация активных частиц невелика, то свечение можно и не заметить, особенно в яркий солнечный день. Но все равно чуткие радары зафиксируют зону хемилюминесценции на своих экранах. Это разновидность «ангелов».
Светящиеся зоны генерируют не только свет, но и радиоволны, причем в очень широком диапазоне. Радиоизлучение бывает довольно сильным и влияет на работу систем связи и электронных приборов, в частности ЭВМ.
Как и в фантастических произведениях, светящиеся зоны могут выстреливать сверкающие струи. Так случается, когда концентрация активных частиц в зоне хемилюминесценции неодинакова.
При движении зона иногда оставляет за собой светящийся «хвост». Воздушные перемещения внутри ее могут образовывать области с различными оттенками и яркостью. Создается иллюзия иллюминаторов на «корпусе» светящегося объекта.
Максимальные высоты, где летают светящиеся зоны, до 50—70 километров, а их размеры от нескольких сантиметров до нескольких километров, время жизни – полчаса-час.
Чаще других встречают светящиеся объекты, конечно, авиаторы. Например, видели их над Кустанаем и недалеко от Рязани на высотах 9—10 тысяч километров. Под Рязанью светящаяся зона в форме эллипса какое-то время шла на параллельных курсах с группой самолетов, а затем резко, почти вертикально взмыла вверх и удалилась в северо-восточном направлении. С момента обнаружения светящегося эллипса радиосвязь между самолетами прекратилась, а после его исчезновения наладилась вновь.
Хемилюминесцирующие вещества далеко не безвредны. Даже в зоне слабого свечения, незаметного в яркий солнечный день, их проникновение в кабину самолета может оказать токсическое воздействие на экипаж. В этом видит Дмитриев причину гибели в районе Бермудского треугольника 5 декабря 1945 года пяти американских бомбардировщиков-торпедоносцев типа «Эвенджер» и гигантской летающей лодки «Мартин Маринер», посланной им на помощь. Случай окрестили «величайшей тайной в истории мировой авиации». Когда «Маринер» приблизился к месту нахождения «Эвенджеров», связь с ним тоже прекратилась. По всей вероятности, самолеты попали в обширную зону хемилюминесценции, и летчики подверглись наркотическому воздействию.
Не раз встречали светящиеся объекты при полете над Северным Ледовитым океаном. Один из экипажей видел их сразу в большом количестве на юге под Одессой. По свидетельству экипажа, «шары были очень яркой расцветки, фантастической красоты. Внутри они были ярко-белого, слепящего цвета, по краям же разноцветные, как радуга. Впечатление было такое, что сейчас какой-либо шар вот-вот взорвется или ударится в самолет». И они иногда действительно взрываются. Это происходит, когда концентрация активных частиц в зоне свечения достаточна для начала цепной реакции взрыва…
Кстати, еще об одном источнике посторонних примесей в атмосфере, которые могут вызвать хемилюминесценцию. Их поставляют работающие двигатели ракет. Они выбрасывают в окружающее пространство инородные вещества – продукты сгорания и даже неиспользованные компоненты топлива. Неудивительно, что многие ракетные запуски сопровождаются разного рода необычными явлениями, принимаемыми порой за НЛО. Например, знаменитый «петрозаводский феномен» 20 ноября 1977 года, вызвавший так много пересудов, ученые связывают с запуском спутника «Космос-955». Свою лепту в «сотворение чудес» вносит целый ряд факторов, ведь полет ракеты вызывает комплекс сложных реакций в атмосфере и визуальные эффекты.
«Следуют» НЛО и за спускаемыми аппаратами космических кораблей. Когда спускаемый аппарат входит в плотные слои атмосферы, то перед ним возникает область повышенного давления – ударная волна. Она-то и вызывает свечение ионизированных частиц, хорошо видимое и глазом, и на экране радара.
В последнее время НЛО стали называть «аномальными явлениями». Переименование, видимо, объясняется тем, что с НЛО многие отождествляли аппараты внеземных цивилизаций, хотя для этого пока нет оснований. Кроме того, в подавляющем большинстве случаев термин «объект» употребим лишь в смысле «объект наблюдения», а не как летающий объект в общепринятом смысле слова.
Социологи подсчитали: в среднем через два года у сторонников «тарелок» наступает «кризис веры». (Видно, «жажду чуда» можно тоже назвать «волной»). То «реальный объект» оказывается совсем не таким, каким хотелось бы его видеть, то не удается найти веских доказательств его существования, и дело сводится к вере в недоказуемую гипотезу. Возможно, многие люди подсознательно понимают, что гипотеза является не просто недоказуемой, а ложной, и теряют интерес к НЛО.
Может быть, для того, чтобы подбодрить приунывших «тарелочников», на Международном симпозиуме НЛО, состоявшемся в Вашингтоне летом 1987 года, на свет появилась сногсшибательная история сорокалетней давности… И поведали о ней не какие-нибудь любители вздорных сенсаций, суеверные чудаки или поклонники разных бредней о сверхъестественных силах, каковых было достаточно среди полутысячи участников симпозиума, до отказа заполнивших зал местного университета, а люди вполне серьезные: ученые, инженеры и даже военные эксперты.
А суть истории в том, будто 2 июля 1947 года в американском штате Нью-Мексико возле города Росуэлл недалеко от секретного в ту пору испытательного полигона атомного оружия внезапно упал с неба на землю какой-то загадочный большой предмет. Заполучить его немедленно было приказано десантникам разведуправления 8-й авиадивизии на базе ВВС США в Росуэлле. И вскоре командованием был опубликован пресс-релиз о том, что «удалось найти нечто странное в форме диска». Но затем сразу же находка и все сведения о ней были строжайше засекречены, а главный штаб ВВС тогда же создал просуществовавшую до 1969 года спецгруппу по изучению НЛО.
И вот спустя 40 лет на симпозиуме был оглашен рассекреченный незадолго до этого правительственный документ, составленный в ту пору, когда директором ЦРУ был (ныне покойный) адмирал Роско Хилленкоттер. В архивном меморандуме ЦРУ сказано: «7 июля 1947 года в ходе операции по обнаружению и научному обследованию обломков упавшего на землю объекта были также найдены нашей авиаразведкой четыре небольших человекоподобных существа, которые катапультировались, очевидно, из их погибшего корабля перед его взрывом. Они приземлились примерно в двух милях к востоку от места падения корабля. Все четверо были мертвы, изуродованы и находились в стадии сильного разложения, так как до их обнаружения почти неделю были добычей грызунов, жуков, микроорганизмов. Останки четырех неизвестных обследовала научная спецкоманда. Ученые пришли к заключению, что четверо существ лишь с виду человекообразны, но биологически и эволюционно не схожи с людьми. Установлено также по обломкам их корабля, что он неземного происхождения».
На запрос организаторов вашингтонского симпозиума НЛО, адресованный командованию ВВС США, был получен официальный ответ: «По данному делу наша документация уничтожена».
Но остались свидетели. Как объявила газета «Нью-Йорк сити трибюн», отставной майор разведки ВВС США Джесси Мэрсел, собиравший в 1947 году обломки «внеземного диска», сообщил, что осмотренные им «осколки» были сделаны из неизвестного металла и некоторые имели маркировку наподобие иероглифов. А умерший в 1986 году Роберт Сарбэчер, физик из Вашингтона, также причастный к секретному обследованию диска, оставил письменные показания: «Потерпевшая катастрофу летающая тарелка была сконструирована из каких-то очень легких и крепких материалов, а внутренности трупов ее пилотов, по моему впечатлению, отдаленно напоминали строение тел насекомых».
Что тут можно сказать? Хотите – верьте, хотите – нет. Скорее всего это розыгрыш «на высоком научном уровне». Спустя несколько месяцев в газетах появилось сообщение, будто секретных бланков такой формы, на которых был исполнен сей документ, в то время не было. Они появились много лет спустя. Во всяком случае, сюжет этот для научной фантастики избитый. Кстати, писатели-фантасты обычно окружают корабли инопланетян слоем искусственно созданной плазмы. А разные плазменные сгустки, такие, как, например, шаровые молнии, свободно обнаруживаются радарами, ведь плазма – неплохой отражатель радиоволн. Еще в 1959 году был получен отраженный радиолокационный сигнал от солнечной короны. Так что визит инопланетян не пройдет незамеченным.
Чем совершеннее становятся радиолокационные станции, тем меньшие неоднородности и более тонкие явления в атмосфере начинает «чувствовать» радар. Рождаются новые «ангелы», и мы еще не раз услышим о них.
КАПРИЗЫ РАДИОЛОКАЦИОННОГО ПОЛЯ
Летом 1987 года газеты сообщили о беспрепятственной посадке самолета «Сесна» на самой крупной к югу от границ США американской базе «Говард», расположенной в зоне Панамского канала. Пилотировал «Сесну» 19-летний костариканец. Он угнал самолет, принадлежавший родственнику президента Коста-Рики, из столичного аэропорта.
Посадка на базе была полной неожиданностью для военного персонала. Самолет не был засечен радарами, хотя противовоздушная оборона базы была оснащена самыми современными средствами, в том числе и зенитными ракетами.
И этот случай совсем не единичен. Газеты сообщали о том, что, несмотря на ультрасовременную противовоздушную оборону, в США с юга, со стороны Рио-Гранде и Мексиканского залива, порой проникают незамеченными на низкой высоте самолеты контрабандистов. Примерно в то же время произошел вызвавший громкий резонанс полет 19-летнего Матиаса Руста, нарушившего воздушное пространство СССР на спортивном самолете все той же марки «Сесна».
Почему ослепли радары? Что это – халатность операторов? Возможно. Но неоспорим еще и тот факт, что цели, летящие на предельно малых и малых высотах, бывает очень трудно обнаружить. (Зарубежные специалисты предельно малыми высотами считают высоты от нескольких метров до 30—40 метров, малыми – от 30– 40 метров до 100—300 метров, средними – 300—5000 метров, а большими – свыше 5000 метров.)
Все трудности порождаются влиянием земной (или, как ее еще называют, подстилающей) поверхности, будь то суша или море. И дело не только в том, что цель может скрытно подойти к охраняемому объекту, используя естественные укрытия, хотя и этот фактор очень важен. Ведь местные предметы, возвышенности служат неплохими экранами для радиоволн – за ними образуется область радиотени, где цели не обнаруживаются. Даже небольшие углы укрытия (углы, под которыми из центра антенны радара видна вершина местного предмета – дома, возвышенности и т. д.) приводят к резкому сокращению дальности обнаружения на малых высотах, а она и без того невелика из-за кривизны Земли.
Так, если антенна радара поднята над землей на 5 метров, то самолет, летящий на высоте 100 метров, при ровной местности, например над степью, может быть обнаружен на расстоянии около 50 километров. Если же имеются небольшие пригорки или местные предметы, создающие угол укрытия всего 15 минут, то дальность обнаружения снижается более чем вдвое – до 21 километра. Если же угол укрытия составит 30 минут, то цель может скрытно подойти на расстояние 11 километров. А если самолет снизится до 50 метров то его удастся обнаружить лишь в пяти-шести километрах.
Вот почему при выборе позиций радаров стремятся обеспечить как можно большую дальность прямой геометрической видимости. Приходится размещать антенну или саму РЛС на вышках, эстакадах и даже на… аэростатах, как, например, сделала одна из американских фирм для Саудовской Аравии. С высоты трех километров такая аэростатная станция может обнаружить самолет, летящий на высоте 50—60 метров, на расстоянии 260 километров. Наземная же станция с антенной, поднятой на высоту 20 метров, даже при абсолютно ровной местности могла бы обнаружить такую цель па расстоянии примерно 46 километров.
Приведенные цифры означают максимальную дальность обнаружения, то есть дальность прямой радиолокационной видимости, которая превышает прямую геометрическую видимость примерно на 15 процентов (из-за явления рефракции). Но вовсе необязательно, что цель будет обнаружена на этих рубежах. Свои коррективы вносит и другая особенность земной поверхности, а именно, ее способность довольно хорошо отражать радиоволны.
Когда самолет или крылатая ракета летят на большой высоте, то радиоволны доходят до них только по одному пути – прямой линии, соединяющей антенну радара с целью. Такая волна называется прямой, и только она одна может достичь летящих объектов. Если же цель летит на малой высоте, то картина меняется.
Проведем одну аналогию. Чтобы увидеть какой-либо предмет, надо прежде всего взглянуть в его направлении. Так и при обнаружении маловысотного самолета антенну «заставляют смотреть» вдоль поверхности земли. Если же мы что-либо рассматриваем, то видим одновременно не только заинтересовавший нас объект, но и другие предметы. Так и в случае обнаружения низколетящего самолета в «поле зрения» антенны попадается и столь близкая от него земная поверхность. И это соседство очень мешает.
Что же происходит, когда антенный луч «задевает» землю? Естественно, в месте соприкосновения он облучает ее, и притом сигналами довольно мощными. Часть энергии радиоволны поглощается землей или водой и превращается в тепло, а остальная часть переотражается от нее. В зависимости от степени неровности поверхности (например, состояния моря) преобладает зеркальное или диффузное переотражение радиоволн. Диффузная составляющая переотражений возникает за счет рассеяния радиоволн на неровностях подстилающей поверхности. Для сантиметровых волн такими неровностями могут быть трава, посевы зерновых, кустарник… Часть диффузно рассеянных волн принимается обратно антенной РЛС. Они проявляются в виде мешающих сигналов, которые маскируют сигнал от низколетящей цели. Даже при спокойном море есть едва заметная волнистость, которая служит причиной появления мешающих сигналов.
Но главная неприятность не от диффузных отражений, а от зеркальных: когда угол падения равен углу отражения. При ровной суше и штилевом море на ник приходится основная часть мощности радиоволны переотраженной подстилающей поверхности. И вот этот-то зеркальный луч тоже, наряду с прямым, достигает самолета. Таким образом, самолет облучается сразу двумя лучами – прямым и переотраженным от земли. А мы уже знаем, что в зависимости от разности фаз две волны могут или складываться, или вычитаться, то есть они могут усилить друг друга или ослабить, а могут и вообще погасить друг друга. Это явление, как мы помним, называется интерференцией.
Интерференция происходит в каждой точке пространства вблизи земной поверхности, как раз там, где «обитают» маловысотные цели. Области, где прямая и отраженная от земли волна складываются, чередуются с местами, где они вычитаются. Там, где волны складываются, они усиливают друг друга и обнаружение улучшается (эти области называются интерференционными максимумами), а где вычитаются – вероятность обнаружения падает (эти угломестные секторы называют интерференционными провалами). Получается, что цельная диаграмма направленности в вертикальной плоскости вблизи земли как бы дробится на множество интерференционных максимумов, где цель обнаруживается, перемежающихся с провалами, в которых цель исчезает. Интересно, что чем выше поднята антенна над землей и чем меньше длина волны, тем уже становятся интерференционные лепестки и провалы, тем чаще они чередуются, тем больше их число.
Во многих случаях диаграмма направленности с большим числом узких интерференционных лепестков предпочтительнее, чем с малым количеством широких лепестков, так как для каждой цели, летящей на постоянной высоте, непросматриваемые зоны получаются сравнительно узкими, и цель быстро выскакивает из них. Это еще одна из причин, почему антенну при обнаружении низколетящих целей стараются поднять как можно выше.
Величина интерференционных максимумов и глубина провалов зависит от того, сколь хорошо радиоволны отражаются подстилающей поверхностью. Качество отражения принято определять коэффициентом отражения. Если волна отражается полностью, то коэффициент отражения равен единице. Чем больше потери при отражении, тем меньше мощность отраженной волны, тем, соответственно, меньше коэффициент отражения.
Естественно, чем лучше отражается радиоволна от земли, тем сильнее интерференционная изрезанность диаграммы направленности, тем больше ее интерференционные максимумы, тем глубже провалы. Для спокойного моря величина коэффициента отражения больше, чем у большинства типов поверхности суши. Поэтому интерференционные явления над спокойным морем будут более резко выражены, чем над сушей. Исключения составляют гористые местности, где могут возникать непредсказуемые искажения диаграммы направленности.
Изрезанность диаграммы направленности антенны из-за влияния земли приводит к сильным колебаниям мощности сигнала, отраженного низколетящей целью. При попадании самолета в интерференционный провал происходит резкое ослабление или полное пропадание сигнала на входе радиолокационного приемника.
Но интерференция не только портит, но иногда и помогает обнаружить низколетящие и надводные цели. Ведь они обнаруживаются в основном первым интерференционным лепестком-максимумом. А чем выше поднята антенна, тем сильнее этот первый лепесток прижимается к земле, и дальность обнаружения в максимуме лепестка может возрасти в два раза по сравнению со случаем, если бы отраженный от земли луч отсутствовал. Это еще одна причина, почему для обнаружения маловысотных целей стараются поднять антенну как можно выше.
Но если цель опустится ниже максимума первого интерференционного лепестка, то дальность обнаружения резко упадет. Вступает в действие другой закон: мощность сигнала на входе приемника становится обратно пропорциональной дальности, возведенной в восьмую степень, а не в четвертую, как обычно. Даже увеличение мощности передатчика для обнаружения таких целей мало что дает – уж слишком быстро падает уровень сигнала с ростом дальности: в минус восьмой степени.
На степень изрезанности диаграммы влияет и вид поляризации излучаемых антенной радиоволн. Поляризация, как мы уже знаем, определяется направлением колебаний вектора электрического поля электромагнитной волны. Оказывается, радиоволны с горизонтальной поляризацией лучше отражаются от земной поверхности, а с вертикальной несколько хуже. Поэтому в станциях, работающих по маловысотным целям, чаще используют вертикальную поляризацию.
Мы уже упоминали о помехах, обусловленных диффузным отражением радиоволн от подстилающей поверхности. Но они обычно менее интенсивны, чем другой вид мешающих отражений – от так называемых «местников»: башен, зданий и прочих сооружений, которые хорошо отражают падающие на них радиоволны. Также сильны отражения от гор, холмов. И даже специальная аппаратура, которая селектирует только движущиеся с определенными скоростями цели, не всегда может подавить эти сильные мешающие сигналы. «Засасываются» в приемник мешающие отражения и через боковые лепестки диаграммы направленности.
Но маловысотную цель непросто не только обнаружить, но и уничтожить. Чтобы поразить цель зенитной ракетой, наводимой локатором, надо в течение некоторого времени знать ее точные координаты. Эту функцию – точного измерения координат цели – выполняет станция сопровождения или слежения. Так вот, отраженный от земли луч мешает станции сопровождения точно измерять координаты, особенно угол места (или связанную с ним высоту полета цели). Часто для анализа сопровождения цели используют такой прием: считают, что источником мешающего сигнала служит не подстилающая поверхность, а своего рода «подземная цель» – антипод. Это зеркальное отображение реальной цели относительно подстилающей поверхности, то есть «подземная цель», находится под землей на расстоянии, равном высоте полета реальной цели.
Антипод мешает сопровождать реальную цель. Следящий радар порой находится в положении буриданова осла: не может решить, что же ему сопровождать: то ли антипод, то ли реальную цель. Так и перескакивает луч слежения с антипода на реальную цель и обратно. А это значит, что ошибки измерения угла места цели велики и ракета, которая будет наводиться по таким данным, не поразит ее.
Для уменьшения вредного влияния земли антенну радара иногда обносят на некотором расстоянии забором из отражающего или поглощающего материала. Забор отсекает от антенны радиоволну, переотраженную землей. Правда, «загораживаются» и цели на очень малых высотах, да и не всегда возможно возвести такой забор.
Другой метод – сделать антенну с четко выраженной плоской нижней кромкой у диаграммы направленности, чтобы она не касалась земли. Но антенна получается и сложной и громоздкой.
Судя по зарубежным источникам, придумано много способов для уменьшения ошибок сопровождения низколетящих целей, но все они отнюдь не универсальны. Природу, видно, трудно обмануть.
Вот сколько нюансов вносит земная поверхность в процесс обнаружения и сопровождения низколетящих целей. Да и поражения. Ведь радиовзрыватель на ракете (а это, по существу, миниатюрный радиолокатор) тоже может очутиться в положении буриданова осла: что подрывать-то, самолет или землю? Ведь расстояния до них соизмеримы.
Надо суметь как-то «отделить плевелы от пшеницы». Плевелы, то есть сорняки, в нашем случае – отраженные от земли сигналы, а пшеница – сам сигнал от низколетящей цели. Как лучше это сделать – пока вопрос. А до тех пор своенравная земля будет доставлять хлопоты операторам маловысотных радаров.