Текст книги "Приключения радиолуча"
Автор книги: Валерий Родиков
сообщить о нарушении
Текущая страница: 17 (всего у книги 23 страниц)
РАДИОЭХО ШТЕРМЕРА
На странные радиоэхо обратили внимание Тесла и Маркони еще на заре радиотехники. Потом их обнаружили при работе одной из первых европейских радиостанций, принадлежавшей фирме «Филипс» и работавшей на волне 31 метр. Каждые несколько десятков секунд в часы работы станция передавала в эфир определенные телеграфные символы. Вскоре специалисты заметили, что кто-то повторяет сигналы через несколько секунд после их излучения. Создавалось впечатление, будто некто в космосе (уж слишком, по земным масштабам, велика задержка сигналов) принимает символы и транслирует их усиленными на Землю, да еще по какому-то неизвестному правилу изменяет время задержки. Такой способ передачи сообщений в современной радиотехнике называется временной импульсной модуляцией. Кстати, Тесла впервые высказал мысль, что это не иначе как инопланетяне устраивают манипуляции с сигналами.
В конце 20-х годов изучением загадочных эхо занялись доктор Ван дер Поль, который систематически исследовал распространение радиоволн, инженер Йоргеи Халльс и профессор математики из Осло Карл Фредерик Штермер.
В декабре 1927 года сосед К. Штермера, инженер и радиолюбитель Йорген Халльс рассказал ученому о явлении, свидетелем которого ему довелось быть. По его словам, через несколько секунд после сигналов мощной коротковолновой станции в Эндховене (Голландия) появлялись сильные отголоски. «Как только я услышал об этом замечательном явлении, – писал впоследствии Штермер, – мне пришла мысль, что волны беспроволочного телеграфа могли быть отражены теми токами и поверхностями электронов, на которые мысль моя была направлена с 1904-го по 1907 год при теоретическом исследовании северных сияний».
В том же месяце К. Штермер договорился с Эндховеном о сеансах радиопередачи. Первые опыты начались в январе. Прием вели две станции: в Форнебо и Бигде. Обе станции располагались близ Осло. На станции в Бигде работал инженер Халльс. Радиопередатчик в Эндховене посылал сигналы каждые пять секунд. Они регистрировались с помощью осциллографа. Очень четко фиксировались импульсы из Эндховена. Тогда же было обнаружено и несколько других сигналов, «которые могли вызываться атмосферными пертурбациями или же эхом». Во время опытов Иорген Халльс часто звонил по телефону Штермеру, чтобы сообщить о своих наблюдениях. Он слышал гораздо больше запаздывающих сигналов, чем отмечала станция в Форнебо. Это, по всей видимости, объясняется тем, что у него был очень чувствительный радиоприемник (Халльс вел прием сигналов на громкоговоритель).
Летом 1928 года состоялась встреча Штермера с Ван дер Полем, работавшим в Эндховене. Они договорились посылать стандартные телеграфные сигналы (три импульса – три тире). Период повторения таких тройных посылок составлял 20 секунд. От осциллографа решено было отказаться.
11 октября в квартире Халльса Штермер записал промежутки между сигналами и отголосками: это и были те самые серии К. Штермера, которые впоследствии неоднократно публиковались в газетах и журналах. А вот свидетельство ученого: «Отмеченные мной периоды времени не имеют притязаний на точность, поскольку я не был достаточно подготовлен, но они дают, по крайней мере, качественное представление о данном явлении. По словам Халльса, он до моего прихода наблюдал несколько отголосков через три секунды».
25 октября Штермер зарегистрировал несколько сигналов с очень большой задержкой (до 25 секунд). Затем эхо исчезло. Но уже в феврале 1929 года оно снова наблюдалось. В мае французские инженеры Галла и Талон зарегистрировали около двух тысяч отголосков, причем задержка достигала 30 секунд. Подобные исследования проводили Э. Эплтон из Королевского колледжа в Лондоне и его аспирант Р. Барроу. Им тоже удалось получить «серии Штермера».
В последующие годы были получены новые данные об эхо. Время задержки менялось, но частота эхо-сигнала оставалась такой же, как у излучаемого радиостанцией сигнала. Некоторые эхо были размыты, а часть принятых сигналов поражала своей четкостью и силой.
С ростом числа станций принимать радиоэхо становилось все труднее, тем не менее сообщения о нем появляются и в наши дни. Когда заработали телефонные коротковолновые станции, связисты, которым довелось услышать свой голос в присутствии эхо-эффекта, сравнивали его с «голосом из угла комнаты».
Предлагаемые объяснения явления столь большой временной задержки и малого ослабления сигнала были неубедительны.
Такую задержку сигнала мог дать, например, пассивный переизлучатель, находящийся где-то в районе Луны. Только величина сигнала была бы мизерной, а Штермер и другие наблюдатели порой принимали сигналы, ослабленные только в три раза по сравнению с прямым сигналом передатчика.
Много сторонников было у волноводной гипотезы необычного радиоэха. Будто причина явления – естественный волновод. Радиоволна, путешествуя в нем и многократно огибая земной шар, прорывается в разных местах и в разное время сквозь нижнюю стенку волновода, и тогда становится слышна на Земле. Таким же образом объяснялась и разная величина времени задержки сигналов.
Многие факторы могут быть причиной прорыва радиоволн из естественного канала. В частности, разного рода неоднородности, как естественные, так и искусственные, которые образуются, например, из-за ионизации ионосферы под воздействием мощного радиоизлучения или за счет химической загрязненности. Могут вывести радиоволну из природного волновода и метеорные следы, от которых она отражается.
Для того чтобы волна циркулировала в волноводе полминуты (а иногда бывали задержки и больше), она должна обежать земной шар не менее 200 раз. После такого путешествия сигнал сильно ослабевал, что не всегда согласовывалось с экспериментом. Так до сих пор у ученых и нет ясности относительно странных радиоэхо.
В 60-х годах профессор Стенфордского университета Р. Брейсуэлл выступил с гипотезой, согласно которой наши возможные соседи по Галактике посылают автоматические зонды к планетам иных звездных систем. Такие зонды могли быть отправлены и к Земле, а также и к остальным планетам Солнечной системы.
«Если мы рассмотрим ресурсы биологического конструирования, – сказал Р. Брейсуэлл на одной из своих лекций, – представляется правдоподобным, что некоторое отдаленное общество может послать космических посланцев, имеющих мозг, но не имеющих тела, впитавших традиции своего общества и распространяющих их в основном бесплотно. Однако некоторые из них окажутся средством распространения межгалактической культуры».
Такой посланец следит за радиосигналами планеты: они оповестят его, что цивилизация достигла зрелости и можно устанавливать связь. «Будем ли мы удивлены, – спрашивал Р. Брейсуэлл, – если первым его посланием будет телевизионное изображение созвездия?» «Серии Штермера», по мнению Брейсуэлла, могли быть таким посланием.
Английский астроном Д. Льюнэн отметил на графике в виде точек интервалы между сигналами и эхом, на другой оси координат он отложил порядковые номера сигналов передатчика (они посылались через равные промежутки времени). Получилась карта созвездий северного полушария! Звезды на ней занимали несколько отличное положение от того, какое наблюдают астрономы сегодня. Но она довольно точно соответствовала одиннадцатому тысячелетию до нашей эры. Именно тогда, по мнению Льюнэна, прибыл космический посланец, оснащенный радиоаппаратурой.
Только одна из звезд – эпсилон Волопаса – была явно не на своем месте. Таким способом автомат выделяет звезду, пославшую его, решил Льюнэн.
Болгарские любители астрономии применили другой способ дешифровки и пришли к заключению, что зонд прибыл со звезды дзета Льва.
Существуют еще варианты дешифровки «серии Штермера». Мы видим: смысловое содержание, при условии, что такое имеется, трактуется далеко не однозначно. Кроме того – многие сообщения не полны, поскольку Штермер пропустил однажды начало передачи. Но есть ряд факторов, которые можно отнести в пользу гипотезы Брейсуэлла. Так, задержанные эхо неизменно появлялись при освоении новых диапазонов. В дальнейшем их интенсивность и частота появления падали. И еще один факт – появление сильных радиоэхо связано с положением одной из либрационных точек системы Земля – Луна. Наиболее интенсивные сигналы наблюдались тогда, когда запаздывающая либрационная точка проходила через меридиан. В печати встречаются сообщения и о наблюдении в этих точках слабых объектов. Возможно, что инопланетный зонд находится там.
Точки либрации, их еще называют лагранжевымн, обладают уникальными свойствами. Если в нее попадет космический аппарат, то он сможет находиться в пей бесконечно долго, потому что гравитационные и центробежные силы в этих точках уравновешиваются. На практике, чтобы компенсировать разного рода возмущающие воздействия, может быть, придется иногда включать двигатель. Таких удивительных точек в системе Земля – Луна пять. Все они находятся недалеко от Луны. В проектах будущего им принадлежит видное место. В точках либрации предполагают разместить космические станции, лаборатории, ретрансляторы для создания системы земной глобальной связи и связи с обратной стороной Луны, промежуточные базы при полете на Луну, космические поселения.
Если принять гипотезу Брейсуэлла, то следует признать высокий технический и научный уровень цивилизации, пославшей зонд. Исключительны надежность и ресурс аппаратуры. Ее возраст, по крайней мере, несколько тысячелетий. Широкий диапазон длин волн, в котором наблюдались радиоэхо с космической задержкой, говорит об очень совершенных радиотехнических устройствах, к которым мы, земляне, только еще приближаемся. Высказано предположение, что зонд занимается сбором информации о земной цивилизации и имеет большое число разведывательных устройств, а то, что принимается на Земле, есть обрывки связи между ними.
Идея установления контакта или обнаружения цивилизации путем посылки автоматического зонда представляется более эффективным решением, нежели попытка поиска цивилизации из своего родного дома. По оценкам Брейсуэлла, шанс обнаружить внеземную цивилизацию при условии, что она активно ищет с нами контакта, составляет гораздо меньше, чем один из миллиона.
Зонд же во многом облегчает задачу. После того как он войдет в расположение соседней цивилизации, обнаружить ее сигналы уже не представит особого труда. Более того, становится возможной обратная связь с цивилизацией, пославшей его. Таким образом, высшая цивилизация вооружает низшую техническими средствами для связи.
Вполне возможно, что цель зонда ограничивается только задачей обнаружения цивилизации, а не контакта с ней. Тогда зонд может быть защищен от наших попыток войти с ним в контакт. На первый взгляд эта логика кажется непонятной, но проблема контакта столь многогранна, что такое поведение не исключается.
К тем же выводам, что и Брейсуэлл, пришел и американский физик и радиоинженер Деллинджер. В 1962 году он писал: «В 2012 году едва ли будут корабли, посылаемые к звездам. Человек, вероятно, не полетит в космическом корабле к звездам… Исследование космоса в 2012 году будет производиться в основном не космическими кораблями, а специальным оборудованием с использованием радиоволн».
Как на деле проверить гипотезу Брейсуэлла относительно связи непонятных радиоэхо с инопланетным зондом? По мнению специалистов, просто это сделать вряд ли удастся. Можно, например, послать космический аппарат в точки либрации и проверить: не притаился ли там межпланетный посланец. Но такая проверка требует затрат и пока, кажется, не планируется. Заведующий лабораторией Института космических исследований Л. Ксанфомалити предлагает поставить эксперимент на космических аппаратах, направляемых к планетам Солнечной системы. На аппарате должен быть установлен радиопередатчик сигнала с какой-либо модуляцией и приемник с коррелятором, то есть рассчитанный на прием такого же по форме сигнала. За длительное время полета можно получить необходимую информацию и разобраться, что к чему. Если исходить из реальности задержанных радиоэхо и из связи с зондом, предположительно находящимся не намного дальше Луны, то эффект задержанного радиоэхо должен изменяться по мере удаления аппарата от Земли и полностью отсутствовать у других планет. Если же задержанные радиоэхо будут иметь неизменные характеристики на любом отдалении от Земли, то феномен следует скорее всего связать с каким-то неизвестным явлением природы. «Такое предположение достаточно фантастично, но под стать самому задержанному радиоэхо».
КАК ВОЗНИКАЮТ РАДИОЛОКАЦИОННЫЕ МИРАЖИ-«ПРИЗРАКИ»
Ни одно техническое средство, ни один прибор (за исключением, пожалуй, телескопа) не способны заглянуть на такие большие расстояния, как это может радар. Естественно, его колоссальные возможности порождают немало загадок. Одна из них – радиолокационные «летающие тарелки». Их называют еще «призраками», «ангелами»…
Во многом благодаря радару и возникла проблема «тарелок», хотя отдельные сообщения о странных летающих предметах, в основном от летчиков, поступали и раньше. Но к радару доверие особое. «Ведь радар, – утверждали сторонники «тарелок», – лишен фантазии, он фиксирует объективную реальность, то есть какие-то материальные тела». Против такого довода трудно было поначалу возразить…
Их заметили уже давно – почти с момента появления первых радиолокаторов. Они ставили в тупик конструкторов радаров, беспокоили и заставляли ошибаться дежурных операторов. На экранах радаров появлялись отметки от неизвестных неопознанных целей, из-за чего и происходили ошибки. Порой эти отметки были похожи на сигналы, отраженные от одиночных самолетов; а иногда в виде ярких колец засвечивали экран. Загадочные отраженные сигналы принимались и при ясной атмосфере из областей, где, казалось, ничего нет.
Иногда «призраки» вызывали настоящую панику, как, например, в июле 1952 года в США. Газетные заголовки сообщали, что над Вашингтоном появилась армада «летающих тарелок», зафиксированных радарами. Вашингтонское небо с ревом прочесывали реактивные истребители. Однако они ничего не обнаружили. Несколько летчиков, самолеты которых наводили наземные радары, сообщили, что видели быстро удаляющиеся световые точки. Некоторые сразу же сделали вывод, что «тарелки» очень пугливы, а глава одного добровольного общества по ракетной технике даже обратился к министерству военно-воздушных сил с просьбой не допустить враждебных акций по отношению к космическим пришельцам. Радиостанция города Индианаполиса обратилась к «тарелкам» со специальной радиопередачей, в которой заверяла их обитателей в своем дружеском расположении, гарантировала им полную свободу и приглашала приземлиться на одном из аэродромов штата.
Относительно вашингтонских «летающих тарелок» специалисты так и не пришли к единому мнению, а вот причиной многих «призраков», как мы уже знаем, являются природные волноводы. Оператор наблюдает на экране индикатора «радиолокационный мираж», хотя целей в зоне обзора нет. Миражи – отражения эхо-сигналов от объектов, расположенных далеко за пределами рабочих дальностей, на осмотр которых радар и не предназначен. Но те далекие эхо-сигналы невольно попадают на экран радара, и подчас трудно определить: с рабочей или запредельной дальности пришел сигнал.
Посмотрим, как все происходит. Радиолокатор излучает зондирующий сигнал. На время излучения радиоприемное устройство радара электронно запирается, чтобы оно не перегорело от мощного сигнала передатчика, а затем открывается и начинает принимать эхо-сигналы. Причем поначалу чувствительность приемника мала, чтобы радар не «слепнул» от сильных эхо-сигналов, отраженных от недалеко расположенных объектов. С увеличением промежутка времени с момента излучения зондирующего сигнала чувствительность приемника увеличивается и ко времени возможного прихода эхо-сигналов от целей на больших расстояниях становится максимальной. Это так называемая временная регулировка усиления приемника.
Как мы знаем, по промежутку времени между излученным импульсом и принятым эхо-сигналом (поскольку известна скорость распространения радиоволн) автоматически определяется расстояние до цели. Зондирующий импульс запускает генератор развертки, который перемещает электронный луч на экране индикатора линейно со временем, подобно генератору строчной развертки в телевизоре, останавливает его незадолго до прихода следующего зондирующего импульса и к его началу возвращает луч в исходное положение, соответствующее нулевой дальности. Возвращение луча называется обратным ходом развертки. Когда приходит эхо-сигнал, то он дает всплеск на индикаторе в том месте, где в это время находился электронный луч. Развертка луча во времени проградуирована на экране масштабными метками в километрах, так что оператор может сразу по индикатору определить расстояние до цели. С началом каждого зондирующего импульса процесс повторяется.
Максимальная, или как еще ее называют, инструментальная дальность радара ограничивается периодом времени между двумя последовательно излученными импульсами передатчика. Она примерно равна (чуть меньше из-за времени, затрачиваемого на обратный ход развертки) произведению скорости распространения радиоволн на половину периода повторения импульсов передатчика. Половину периода – потому что за весь период повторения излученный сигнал успевает «пробежать» расстояние до объекта, расположенного на максимальной дальности, отразиться от него и вернуться обратно, то есть проделать путь вдвое больший максимальной дальности. Например, если период повторения равен одной миллисекунде, то максимальная дальность равна 150 километрам.
Мощность зондирующего сигнала и чувствительность приемника выбираются такими, чтобы с требуемой вероятностью обнаружить цель на максимальном расстоянии. После излучения зондирующего импульса радаром и до момента излучения следующего импульса приемник при нормальной, стандартной атмосфере (то есть при отсутствии природного волновода) принимает сигналы, которые для нашего примера являются эхом, отраженным от объектов на расстояниях до 150 километров. Эхо-сигналы от предметов, расположенных дальше, придут уже после излучения следующего зондирующего импульса и могут дать всплеск, когда на индикаторе будет следующий ход развертки. Но радары проектируются так, чтобы эти «опоздавшие» с запредельных дальностей сигналы были бы малыми. Например, чтобы их, по возможности, «не видела» антенна. Обычно трудно сделать так, чтобы радар сразу же «ослеп» после заданной дальности, в нашем случае дальше 150 километров, а потому на вход приемника все-таки поступают сигналы, отраженные от объектов, расстояние до которых превышает этот рубеж.
Например, на 160 километрах летит какой-либо большой самолет или находится высокая горная гряда, которую задевает диаграмма направленности антенны. Эхо-сигнал в таком случае попадает на индикатор на второй ход развертки в ее самое начало, соответствующее дальности в десять километров. В этом и заключается проблема для оператора: то ли эхо-сигнал отражен от цели на десяти километрах, то ли с дистанции, большей на 150 километров, то есть со 160 километров. Правда, в данной конкретной ситуации трудностей у оператора не будет: цель вряд ли сможет пройти 140 километров незамеченной, да еще, как мы знаем, чувствительность приемника на малых дальностях затрублена, и поверхность цели, отражающая радиоволны, должна быть довольно большой, чтобы на экране радара возник всплеск, говорящий о ее обнаружении. Но если всплеск все-таки появится, то оператор не раздумывая скажет, что это «мираж», то есть «опоздавший» сигнал от предыдущего зондирующего импульса.
Парадоксально, но трудности возникают с увеличением дальности. Допустим, что далеко за пределами зоны обнаружения на поверхности земли расположены большие объекты, например горы или большой корабль, или самолеты, летящие не так высоко. В нормальных условиях они не попадают в диаграмму направленности антенны. Природный же волновод искажает «зрение» радара, делает его на малых высотах, или, как говорят локаторщики, под малым углом места, дальнозорким. Он «загибает» путь радиоволн, направляет их вдоль поверхности земли, и они облучают предметы, находящиеся далеко за радиогоризонтом, предположим, для нашего примера – на дальности 580 километров. Радиоэхо, отраженное от этого объекта, поступит на экран индикатора, когда там будет уже четвертый ход развертки, То есть после того, как были излучены три следующих зондирующих импульса. И такой сигнал дает всплеск на экране в месте, которое соответствует дальности в 130 километров (то есть разнице между истинной дальностью 580 километров и утроенной инструментальной дальностью 150 x 3 = 450 километров). А это уже в конце дистанции, где чувствительность приемника высока. Вот так оператор может получить на экране «призрак». Цели в зоне обзора в радиусе до 150 километров нет, а сигнал на индикаторе есть. Сама же причина столь запоздавшего эхо-сигнала находится за многие сотни километров. Так и был принят сигнал, отраженный от острова Мальта, за вражеский корабль, будто находившийся в пределах досягаемости орудий, хотя сам остров пребывал за многие сотни километров.
Не всегда волноводный эффект проявляет себя одинаково по всем направлениям, или, как говорят локаторщики, по всем азимутам. Это особенно заметно, если радар расположен на берегу моря или на корабле, стоящем на рейде. Часто бывает так, что над морем – волновод, а над сушей условия распространения радиоволн нормальные.
В настоящее время применяют разные типы радаров. Некоторые из них от «миражей» избавлены. Пришлось, конечно, усложнить аппаратуру. Но по-прежнему используются и простые, дешевые радиолокаторы, в которых возникают такого рода «призраки».
Природные волноводы нередко сопровождают грозу. На индикаторе внезапно увеличивается число наземных целей. И это понятно: радиоволны «пригнулись» к земле. Правда, долго такие условия не сохраняются – всего на протяжении получаса – часа. Но данное свойство радара все равно оказалось полезным – оно используется для обнаружения грозовых очагов.
Бывает, что природа и «перегибает палку». При некоторых условиях слишком сильно «загибаются» радиоволны: они уже бегут не параллельно поверхности земли, а где-то «упираются» в землю. Тогда, например, автомашина на шоссе может быть принята за «летающую тарелку».
Со времен войны, когда еще только делались первые попытки исследовать радиоволноводы над сушей и морем, инженеров не покидала мысль: а нельзя ли обратить па пользу данное явление или хотя бы научиться предсказывать его. Особый интерес был у моряков, ведь над морем волноводы возникают довольно часто. Например, в Восточном Средиземноморье и северной части Индийского океана вероятность их возникновения – 50 процентов. Сверхдальняя радиолокация и радиосвязь в этих районах – не редкость. Появилась даже такая дисциплина, как радиоклиматология, которая занимается сбором и систематизацией данных, влияющих на процесс распространения радиоволн в разных климатических районах.
В наше время давние задумки первых локаторщиков стали реальностью. В США создана система IREPS (аббревиатура первых букв английского названия, которое в переводе на русский язык означает: объединенная система прогнозирования рефракционных эффектов). Основные ее потребители – моряки. Она прогнозирует появление радиоволноводов. В систему входит малая ЭВМ, на которой моделируется процесс распространения радиоволн при различных метеоусловиях (давлении, температуре, влажности воздуха) на трассе распространения. Данные замеряют с помощью воздушных радиозондов. Затем их вводят в ЭВМ, и машина дает ответ, как будет распространяться радиоволна – нормально или побежит по природному волноводу. Вероятность правильного ответа – около 85 процентов. Более достоверный ответ получается, если замеры проводить с самолета СВЧ-рефрактомером – прибором для измерения коэффициента преломления электромагнитных волн атмосферой. Самолеты с такими приборами базируются на американских авианосцах.
ЭВМ выводит на дисплей интересующие данные: какова будет дальность обнаружения кораблей различных классов, на какой дальности свой корабль может быть «увиден» противником, какова будет дальность средств радиосвязи, передатчиков помех… Ведь в условиях природного волновода даже небольшой передатчик помех может «ослепить» радиолокационные и связные станции. ЭВМ может и посоветовать, какую выбрать частоту повторения зондирующих сигналов передатчика радара, чтобы избежать «призраков» при сверхдальнем обнаружении.
Работы в этой области продолжаются, ведь в ЭВМ введена довольно простая модель распространения радиоволн в атмосфере, не учитывающая еще многие факторы. Так что «призраки-миражи» стали вполне предсказуемы, а из так называемого «аномального явления» природы (сверхдальнее распространение радиоволн в атмосферном волноводе называется еще и «аномальным») научились извлекать определенную пользу.