Текст книги "Приключения радиолуча"
Автор книги: Валерий Родиков
сообщить о нарушении
Текущая страница: 16 (всего у книги 23 страниц)
ТЕЛЕВИДЕНИЕ… В БЛОКАДНОМ ЛЕНИНГРАДЕ
Об одной удивительной странице истории отечественной радиотехники рассказала в мае 1987 года газета «Советская Россия». Оказывается, в блокадном Ленинграде совершенно неожиданно увидели на экране телевизора кадры военной кинохроники из Лондона… Телевизор тот был предназначен для совершенно других целей. Но природный волновод опять подшутил над операторами. Это был первый зарегистрированный случай сверхдальнего приема телевидения. А подробности таковы.
Незадолго до Великой Отечественной войны радиолокационные станции, получившие название «Редут», поступили на вооружение Красной Армии, в том числе и в части ленинградской ПВО. Дальность обнаружения «Редута» превышала сто километров, а опытные операторы по характеру перемещения отметки от цели по экрану индикатора даже могли определить, что за цель движется.
Армейские рационализаторы изобрели дополнительные приборы и смогли определять не только дальность до цели, но и ее высоту. Поначалу, когда радиолокаторы располагались на подступах к городу, все было вроде бы нормально. Баланса времени хватало, чтобы своевременно обнаружить цель и передать ее координаты летчикам на аэродром.
Но когда локаторы пришлось передвинуть дальше от линии фронта, сразу же выяснилось «тонкое место» в системе: слишком много времени затрачивалось на передачу данных на аэродром. Обнаружив цель на индикаторе, оператор зашифровывал координаты и передавал их в штаб ПВО. Там расшифрованную информацию сопоставляли со сведениями других радиолокаторов, опять зашифровывали и отправляли летчикам.
Раньше, пока локаторы были за городом, такая многоступенчатость не очень-то сказывалась. А теперь, когда рубеж обнаружения придвинулся к городу, цена каждой минуты резко возросла. За время, пока данные о целях обрабатывали, самолеты успевали пролетать несколько десятков километров, и для их перехвата оставалось слишком мало времени.
Надо было срочно что-то изыскать, что-то придумать, чтобы уменьшить время на передачу данных о вражеских самолетах летчикам. 11 января 1942 года в блокадном Ленинграде командование 2-го корпуса ПВО провело… конференцию изобретателей и рационализаторов. На ней военнослужащий 72-го радиобатальона Э. И. Голованский предложил создать телевизионную систему ПВО.
Горком партии буквально на следующий день включил создание блокадного телевидения в число первоочередных задач. Определенный задел у наших инженеров уже имелся, особенно в лаборатории телевидения одного из ленинградских научно-исследовательских институтов, которой руководил Александр Андреевич Расплетин.
В 1939 году сотрудник института Иван Завгороднев построил телевизор с огромным – почти два квадратных метра – экраном. Война прервала работы. Многие инженеры из лаборатории Расплетина ушли на фронт. В срочном порядке они были отозваны с передовой. Им-то и поручили сделать телевизионную систему передачи информации о целях для ПВО.
Участник работы Иван Завгороднев рассказывает:
– Уже 15 января в помещении НИИ, где мы трудились до войны, появились первые узлы и блоки будущего телецентра, собранные из разных организаций Ленинграда. Здесь же, в Лесном – так называется один из районов Ленинграда – установили и «Редут».
Электронный луч на приемном экране заставили вращаться по часовой стрелке, точь-в-точь как в современных радиолокаторах кругового обзора. На экран нанесли прозрачную карту Ленинграда и области, провели линии – радиусы с делениями, обозначавшими удаление цели, и окружности равных расстояний. Центр экрана обозначал место установки «Редута». Любой самолет, появившийся в ленинградском небе, немедленно давал о себе знать яркой светящейся точкой, а оператор, пользуясь нанесенной на экран картой города и шкалами, мог тут же определить расстояние до него.
Над экраном радиолокатора установили передающую телекамеру, сигнал от нее передавался на ультракоротких волнах с помощью направленной антенны в штаб ПВО города. На крыше построили радиорубку, приемную антенну разместили на наблюдательной вышке штаба. Ну а сами «телевизоры» стояли на главном командном пункте ПВО, на командных пунктах истребительной авиации и зенитной артиллерии.
Передача данных о предстоящем налете стала мгновенной. Круглые сутки работала телевизионная система, лишив врагов преимущества внезапности…
Не сразу поверили в новую систему. Слишком все было необычно. На экране возникали светящиеся скачкообразные перемещающиеся точки, глядя на которые трудно было вообразить реальные самолеты. Доходило до того, что дежурные сверяли показания индикатора с данными постов наблюдения. В этом нет ничего особенного. Новое подчас бывает необычным. А описываемые события происходили пятьдесят лет назад.
Но результаты говорили сами за себя: уже в первые месяцы блокады в окрестностях Ленинграда было сбито почти 750 многомоторных машин. Телерадиолокационная система стала неотъемлемой частью противовоздушной обороны города.
Однажды летом на экранах вместо привычной картинки операторы увидели танки в пустыне, солдат, бронетранспортеры… Как позже выяснилось, в Лондоне шли пробные телепередачи. Несколько раз в неделю экспериментальный телепередатчик транслировал военную хронику для лондонских госпиталей. Так получилось, что характеристики обеих телевизионных систем – лондонской и ленинградской – совпали. Такова необычная история первого сверхдальнего приема телевидения.
Инженеры не удовлетворились достигнутым. Нельзя ли оперативно передавать данные о воздушной обстановке на борт самолета? Над решением такой задачи работал А. А. Расплетин вдали от блокадного Ленинграда. В Ленинграде аппаратуру с нетерпением ждал Иван Завгороднев. И такая система была создана и внедрена.
Даже с дистанции сегодняшних дней господства телевидения нельзя не восхищаться изобретательностью наших инженеров. Работала система так. На командном пункте авиации ПВО на специальном планшете изобразили карту Ленинградской области с указанием основных ориентиров. Планшет был снабжен масштабными линейками и символическими изображениями самолетов. Наши самолеты по форме напоминали бабочек, а фашистские – тупорылых свиней (видимо, здесь сказалась историческая параллель с излюбленным боевым строем тевтонских рыцарей). Оператор по данным с экрана радиолокатора передвигал самолетики на планшете и на нем же писал дополнительные данные – высоту полета и команды летчику.
С помощью телекамеры, установленной над планшетом, обстановка, изображенная на нем, передавалась на борт истребителя Як-9. Маленький телевизор удалось удачно разместить в кабине летчика. После первого же испытательно-боевого вылета Герой Советского Союза подполковник Мациевич с похвалой отозвался о работе системы. Правда, отметил он единственный недостаток: слишком ярко светил экран. Ночью он мешал летчику, ослеплял его, подобно фарам встречного автомобиля. Но смекалка изобретателей и тут нашла выход из положения. На полуразрушенном складе кондитерской фабрики нашли цветной целлофан, оставшийся с тех времен, когда фабрика выпускала конфеты. Затянули экран телевизионной трубки целлофаном, и яркость уменьшилась.
Радиоэлектронная система ПВО, созданная в тяжелейших условиях блокады, на несколько лет опередила мировой уровень. Такова еще одна страница летописи подвига защитников города.
Итак, как же возникают радиоволноводы?
Мы знаем, что в свободном пространстве, например в космическом, радиоволны, как и свет, распространяются прямолинейно, но в атмосфере воздух немного искривляет их путь, или как говорят специалисты, «имеет место рефракция» (от латинского слова «преломленный»). Довольно часто над морем (реже над сушей) при определенных метеорологических условиях (в основном при повышении температуры с высотой или при резком уменьшении влажности воздуха с высотой) воздух приобретает способность фокусировать радиоволны в пределах невидимого глазом естественного канала который назвали природным волноводом. Радиоволны захватываются волноводом и распространяются в нем на феноменальные расстояния. Это явление называется сверхрефракцией. Высота атмосферного волновода обычно равна нескольким десяткам метров и редко превышает 150—180 метров. Благодаря атмосферным волноводам радиолокатор может «увидеть» цель далеко за радиогоризонтом (радиогоризонт лежит примерно на 15 процентов ниже геометрического горизонта из-за преломления радиоволн в атмосфере). При нормальных же условиях радар не «видит» объекты, расположенные ниже радиогоризонта.
Наибольшие дальности обнаружения наземных радаров были зафиксированы в Индийском океане во время второй мировой войны. Радиолокационная станция в Бомбее принимала в жаркое время года сигналы, отраженные от пунктов, находящихся на Аравийском полуострове на расстоянии 2700 километров. Однако при нормальных условиях та же станция обнаруживала корабли на расстояниях не более 30—35 километров. Атмосферные волноводы довольно распространенное явление, особенно в морских районах и пустынях. Часто радиолокационные и оптические миражи возникают одновременно. Подобные же метеорологические условия приводят к сверхдальнему приему телевизионных передач и сверхдальней радиосвязи. Известен случай переговоров по обычному судовому радиотелефону из бухты Тикси с кораблями, находившимися в районе Уэллена. Слышимость была такой, как если бы разговор шел с одним из кораблей каравана, стоящего в бухте Тикси.
Радиолокационный мираж и был причиной курьезной истории с крейсером в Средиземном море. Оказалось, что операторы радара на крейсере принимали эхо-сигналы от острова Мальта, который находился далеко от них, и безуспешно пытались его потопить. Масштаб экрана радара не был предназначен для приема сигналов со столь больших расстояний, и пришедший с опозданием эхо-сигнал, отраженный от острова, операторы приняли за расположенный неподалеку вражеский корабль.
«Скачущий призрак Нансай-Шато» – тоже радиолокационный мираж. Сигнал, излученный радаром подводной лодки, прежде чем попасть обратно в антенну, многократно отражался от корабля, берега, других кораблей, а иногда и от корпуса самой подводной лодки, если она производила разведку в надводном положении. Радиоволна мало ослаблялась при каждом отражении из-за атмосферного волновода. В итоге скорость перемещения отметки на экране оказывалась равной сумме скоростей движения всех объектов, от которых отражалась радиоволна при своем многократном блуждании.
Дорого порой обходились ошибки операторов из-за радиолокационных миражей. Незадолго до конца второй мировой войны американцы готовились захватить остров Киска в Тихом океане, занятый японцами и имеющий важное стратегическое значение. Американский флот находился в 600 милях от острова и готовился к предстоящей операции. Неожиданно операторы радаров обнаружили всего в 40—50 милях таинственную эскадру. Была объявлена боевая тревога, флот приготовился для отражения вражеского нападения. Но через некоторое время неизвестные корабли исчезли с экранов так же внезапно, как и появились. Через несколько недель американская авиация и флот напали на остров. На нем никого не оказалось. Таинственная эскадра была японской, обнаруженной за несколько недель до нападения и уже эвакуировавшей войска с острова. Благодаря радиомиражу, операторы увидели ее на своих экранах, хотя она находилась на расстоянии 600 миль. Операторы ошиблись на 550 миль. Если бы они знали причуды распространения радиоволн, то американский флот смог бы провести успешную операцию.
Дальность связи по лазерному лучу при мираже тоже может во много раз превысить прямую видимость. Известны случаи, когда лазерная система связи устойчиво работала на расстояниях свыше 300 километров.
ПРИРОДНЫЕ ТЕЛЕСКОПЫ?..
Естественные волноводы, которым обязаны оптические и радиомиражи, образуются вдоль поверхности Земли. Но возможно, существуют и вертикальные волноводы. На такую мысль наводит явление сверхзоркости, которое не раз наблюдалось у космонавтов на орбите.
«Это случилось, когда станция «Салют» пролетала над Бразилией, – вспоминает космонавт Юрий Глазков. – Мне нравилось рассматривать через иллюминатор поверхность планеты. Я быстро научился различать реки, озера, горные хребты. Мог с закрытыми глазами рассказать о ландшафте местности, над которой «проплывала» станция.
Так вот, летим над Бразилией… Вижу тоненькую ленточку. Через секунду сообразил – это шоссе, и по нему мчится автобус. Самый настоящий. Вроде даже голубого цвета. Я понимал, что с такого расстояния невооруженным глазом увидеть его невозможно, но тем не менее я видел!
Уже после полета я рассказал об этом заместителю директора Института океанологии Академии наук СССР доктору географических наук А. А. Аксенову. Тот предположил, что «сработали» мои ассоциации. То есть я только представил себе автобус, а глаза уже видели».
Феноменальная сверхзоркость, которую пришлось испытать Юрию Глазкову на орбите, – одна из интереснейших психофизических особенностей зрительного восприятия в космосе.
Космонавт Виталий Севастьянов отметил, что вначале при кратком воздействии невесомости острота зрения может ухудшиться. Но проходит время, и начинаешь распознавать острова, моря, горные цепи. После второй недели полета стоило космонавту взглянуть в иллюминатор, и он сразу узнавал, где летит корабль. Стал замечать суда в океане, потом суда у причалов, а однажды обнаружил поезд, подходивший к мосту. Пролетая над своим родным городом Сочи, он даже увидел телевизионную вышку.
Было высказано предположение, что это результат домысливания. Ведь разрешающая способность зрения – одна угловая минута, а Юрий Глазков видел автобус с расстояния 300 километров под углом всего несколько секунд.
Обострение зрения в космосе отметили и американские космонавты. Гордон Купер при полете на «Меркурии» с высоты нескольких сот километров ясно видел трубы на домах в Тибете и грузовик на границе США с Мексикой. Позже с подобным же фактом столкнулся и космонавт Эдвард Уайт. С космического корабля «Джемини» он различал дороги, волны, создаваемые моторными лодками, и вереницы огней уличного освещения городов.
Наблюдал мелкие детали рельефа и летчик-космонавт В. Коваленок. В течение небольшого промежутка времени у него несколько раз создавалось впечатление, что он видит поверхность Земли через увеличительное стекло. С ростом продолжительности полетов о таких случаях аномальной видимости космонавты докладывают все чаще.
Специалисты сделали расчеты и показали, что даже при обычных условиях слой атмосферы дает увеличение от 4 до 15 процентов в зависимости от высоты полета космического корабля. И космонавты подтверждают – зрение на орбите несколько обостряется.
– В первые дни полета, – рассказывает космонавт Владимир Соловьев, – когда еще не полностью адаптируешься к невесомости, может показаться – цвет поверхности океана везде одинаков. Но постепенно острота зрения усиливается – так свидетельствуют все космонавты, которые совершали длительные путешествия, – и начинаешь различать малейшие оттенки цветов.
Опыты, предпринятые для проверки этих утверждений, показали: действительно, в условиях невесомости реакция глаза на изменение яркости изображения значительно увеличивается. Некоторые ученые объясняют явление так: в обычных условиях глаз человека находится в постоянном движении, совершая от 20 до 150 перемещений в секунду, невесомость же облегчает движение глаза, и потому обостряется зрение. Но пока это гипотеза…
Да, человеку на данном этапе принадлежит важная роль в исследовании Земли из космоса. И не удивительно, ведь глаз космонавта – самый совершенный прибор, который есть на борту орбитального комплекса. Он способен различать разницу в цвете и освещенности воды всего на один-два процента, в то время как самые совершенные фотоаппараты «видят» в десять раз хуже, а телекамеры еще более уступают по чувствительности человеческому глазу.
Необыкновенна чувствительность нашего глаза к свету. Он способен воспринимать единичные его кванты: ясной ночью человек может увидеть пламя зажженной свечи на расстоянии 25 километров.
Но совершенством человеческого глаза все же нельзя объяснить космическую сверхзоркость. Правда, известно, что у некоторых людей глаза могут соперничать и с телескопом и с микроскопом. В литературе описан случай остроты зрения в тридцать единиц. Человек невооруженным глазом видел спутник Юпитера, который астроном наблюдал только в телескоп. В данном случае глаз различал объекты, разнесенные всего на несколько угловых секунд.
А вот другой пример, о котором сообщалось в газетах, – женщина, прозванная «живым микроскопом». Разрешающая способность ее глаз столь высока, что ей даже трудно читать – мешает отлично видимое переплетение волокон бумаги. Цветной телевизор она вообще не может смотреть, потому что изображение распадается на множество точек. У женщины необычное хобби, под стать ее способностям. С помощью карандаша с особо прочным грифелем она наносит тексты литературных произведений на странички крошечных тетрадок. Последний ее «шедевр» – почтовая открытка, на которой уместилось 327 тысяч слов, что примерно равняется восьмистам страницам машинописного текста.
Таких уникумов среди космонавтов нет. Так в чем же причина космической сверхзоркости? Видимо, иногда случаются и особые условия, например такие, как вблизи горных хребтов, когда подветренные волны уже на высоте 100 метров образуют области с резким изменением коэффициента преломления. Такие локальные образования ведут себя как линзы с большим увеличением. Они-то и могут придавать столь неожиданную зоркость космонавтам.
В целом при наблюдении из космоса, по мнению некоторых специалистов, атмосферу можно рассматривать как самофокусирующуюся, увеличивающую газовую линзу различной толщины, в зависимости от того, где находится космический корабль – над зимним или летним полушарием. В линзе-атмосфере большое число неоднородных вкраплений. Большинство из них, такие, как облака, туманы, аэрозоли, густые дымки, ухудшают прозрачность атмосферы. Меньшая часть неоднородностей, как, например, возникающие иногда локальные области в горных районах, в несколько раз повышают зоркость космонавтов.
Не этими ли феноменами – сверхзоркими людьми и природными волноводами – можно объяснить некоторые исторические загадки астрономии. Например, известно, что четыре наиболее ярких спутника Юпитера – Ио, Европу, Ганимед и Каллисто – открыл знаменитый Галилей в 1610 году с помощью построенного им же телескопа. А между тем недавняя находка китайских ученых свидетельствует, что об одном из спутников Юпитера было известно почти две тысячи лет назад. Специалисты случайно обнаружили записи одного из древнейших астрономов, датированные 364 годом до нашей эры, в которых указано, что за двадцать лет наблюдений ему удалось невооруженным глазом увидеть по соседству с Юпитером небольшую звезду. По всей видимости, это был Ганимед, самый яркий спутник Юпитера.
Сведения о четырех спутниках Юпитера, кольцах Сатурна и других астрономических объектах есть и в древних мифах африканского народа догонов, жившего на плато Бандиагар в республике Мали.
Или другой пример. Древние египтяне еще четыре тысячи лет назад связывали звездное скопление Плеяды со словом «тысяча», хотя человек с нормальным зрением видит в Плеядах всего шесть-восемь звезд. Тысячу же звезд в Плеядах обнаружили лишь в XVIII веке – разумеется, с помощью телескопа.
Не исключено, что в некоторых местах древние астрономы использовали телескопы. Ведь линзы были известны за 2500 лет до нашей эры. Но прямых доказательств этого нет, а потому официальным открывателем телескопа считается все тот же Галилей.
Ну а если действительно не было в древности телескопа и единственным оптическим прибором оставался человеческий глаз, так ли тогда удивительны столь древние знания о лунах Юпитера, кольцах Сатурна, фазах Венеры?
Нет, эти знания, как мы видим, не так уж удивительны, и получены они могли быть необязательно извне, от «космических пришельцев», как полагают сторонники палеоконтактов. Вполне реально, что они добыты только благодаря одной из совершеннейших биологических структур – человеческому глазу. В совершенстве его конструкции вы можете убедиться сами: в столь малом объеме природа сумела разместить прибор необычайной сложности. Сетчатка и зрительный нерв – это же вещество мозга! Сеть кровеносных сосудов почти в два раза гуще, нежели в любом другом органе. И, наконец, уникальный хрусталик. Недаром глаза наделялись волшебными свойствами, о них складывались легенды. Но как знать, может быть их авторы были в некоторых случаях не так уж далеки от истины. Взять хотя бы историю о глазах жертвы убийства. Все мы наслышаны о ней с детского возраста. Будто на сетчатке глаза, словно на фотопленке, фиксируется картина, увиденная в момент смерти. И все мы в детстве были уверены, что если у убитого не закрыты глаза, то милиция обязательно найдет преступника. Но как потом, с возрастом, выяснилось, сыщики почему-то не пользуются этим очевидным для нас, детей, методом.
Обосновать давнее поверье пытались еще в прошлом веке. Так, в 1881 году профессор Вилли Кун из Гейдельбергского университета утверждал, что в глазах только что умерщвленной им в ходе эксперимента лягушки сохранилось отражение пламени бунзеновской горелки, находившейся в лаборатории.
Далее Кун провел эксперимент с кроликом. Ученый поместил животное перед ярким окном, после чего в темной комнате умертвил кролика и извлек из его глаза сетчатку. На ней обнаружил отпечаток яркого прямоугольника. В то время научная общественность насмешливо отнеслась к открытию Куна, но сегодня она склонна взглянуть на дело более серьезно. После двух лет изысканий два западногерманских ученых заявили, что они не только обнаружили запечатленные образы в мертвых глазах, но и научились их проявлять как фотопленку. Вот, дескать, с закреплением изображения возникли трудности… Правда, исследователи не теряют надежды. Они полагают, что в расшифровке образа может помочь ЭВМ. Решение этой задачи было бы огромным достижением в криминалистике. Не позднее чем через полчаса после убийства можно было бы, например, иметь портрет убийцы.
Цивилизация подпортила нам зрение. Сегодня едва ли не каждый четвертый носит очки. Вполне естественно: за информацию надо платить. Через глаза в наш мозг, как установили ученые, поступает до 80—90 процентов всей информации. Прав был Горький, говоря, что потеря зрения отнимает у человека девять десятых мира.
Чтение, письмо, кино, телевидение – это зрительная информация и в то же время дополнительная нагрузка на глаза. А ведь они в основном создавались для высматривания удаленных предметов. Чем дальше направление взгляда, тем спокойнее мышцы глаз.
Предки наши были зорче. Добывая свой «хлеб насущный» охотой, рыбной ловлей, скотоводством, они не напрягали глаза. В подтверждение этого можно привести пример. В джунглях Африки нашли небольшое племя, которого не коснулась цивилизация. И вот что интересно: никто из племени не страдал близорукостью.
Не исключено, что древние астрономы знали еще и секрет зелья, значительно улучшающего зрение. И такое возможно… Один из подобных препаратов был получен французскими учеными… Чудодейственным лекарством были пилюли из экстракта… обыкновенной черники, обитательницы наших лесов. На мысль использовать чернику для улучшения зрения натолкнула исследователей привычка английских летчиков во время второй мировой войны. Перед ночными полетами они интенсивно поглощали черничное варенье. Исследования, которые длились несколько лет, показали, что черника ускоряет обновление вещества сетчатой оболочки глаза, чувствительного к свету.
Интерес к изучению такого удивительного «прибора», как глаз, не ослабевает и в наши дни. И неудивительно: ведь глаз пока наиболее совершенный приемник электромагнитных волн светового диапазона, значение которого, особенно с развитием оптоэлектроники (области электроники, соединившей воедино оптические и электрические методы обработки передачи и хранения информации) все более возрастает.
Зрение начинается с преобразования порции электромагнитной энергии, называемой фотоном или квантом, в нервные сигналы, которые мозг умеет анализировать. Преобразователем являются фоторецепторные клетки глаза. Ими, словно мозаикой, выложена задняя поверхность сетчатки – тонкий листочек нервной ткани, выстилающий внутреннюю поверхность глазного яблока. Роговица и хрусталик глаза проецируют образы внешнего мира на слой фоторецепторов. Каждая клетка поглощает падающий на нее свет и генерирует сигнал, в котором закодирована информация о количестве поглощенного света. Сигналы передаются по сложной системе синапсов – так называют области контакта с нейронами – в сетчатке и мозге. В этих контактах сигналы от групп фоторецепторов объединяются и сравниваются, и в итоге зрительная система получает информацию о форме, движении и цвете объектов окружающего мира.
Примерно по такому принципу разрабатываются и приемники оптического и инфракрасного диапазонов. Роль роговицы и хрусталика выполняет оптика, фоторецепторов – чувствительные элементы, превращающие свет в электрический сигнал, а роль нервной системы – ЭВМ.
Когда такое моделирование было еще не под силу, то прибегали к помощи живого глаза. Особое внимание исследователей привлек глаз голубя, его способность обнаруживать движение объекта в определенном направлении. Свойство глаза получило название «обнаружение направленного движения». Оно привлекало тем, что по такому принципу можно было бы создать радиолокационную систему, которая предварительно обнаруживала только объекты, движущиеся в интересующем направлении.
У голубиного глаза было и другое достоинство: он точно, с малейшими подробностями воспринимал изображение. Данное свойство как-то использовали на одном американском заводе. Тамошние контролеры иногда пропускали мелкие царапины на лакокрасочном покрытии радиодеталей. Казалось бы, пустяк, но незаметный брак обходился недешево: выходили из строя дорогостоящие ЭВМ.
И тогда контролерам дали в помощники дрессированного голубя. Его поместили рядом с конвейером в клетке, в которую были вмонтированы две стеклянные пластинки, соединенные с сигнализацией. Когда шли стандартные детали, голубь клевал одно стекло, а когда случался брак – другое, так сказать, «брачное». Его труд «материально поощрялся». За каждый выявленный брак он получал в награду зерно. Даже после десятисменной работы голубиная бдительность не притуплялась. Он замечал такие дефекты, которые не под силу было заметить контролеру. Как ни странно, голубь оказался «высокосознательным». Он не клевал «брачное» стекло, если дефектов не было, не «занимался приписками».
А вот еще одно использование голубиного глаза. В 60-х годах на экранах кинотеатров шел заграничный фильм «Бей первым, Фредди!» Кажется, в заключительной сцене был такой эпизод: ракету на город наводит не пилот-смертник, подобно японским камикадзе во второй мировой войне (они наводили на цель не только самолеты, но и крылатые ракеты), а голубь. Хотя фильм был снят с изрядной долей фантазии, но то, что голубь может быть наводчиком ракеты – отнюдь не вымысел. Такая «голубиная система управления ракетами» проходила испытания, начиная с 1945 года. Что поделаешь: электронные устройства в то время были несовершенны, а птичьи глаза природа «отрабатывала» миллион лет.
Как же выполнял голубь свои функции пилота? В носовой части ракеты устанавливалось оптическое устройство, которое проецировало на экране изображение объекта. У экрана помещался дрессированный голубь, который был приучен клевать любое появляющееся на нем изображение. Оптика действовала лишь тогда, когда ракета отклонялась от курса. Если ракета шла точно на цель, изображения на экране не было. Клюз голубя снабжался металлическим наконечником, а экран изготовлялся из специального токопроводящего слоя. При ударе клювом по экрану возникали электрические сигналы, которые подавались на управляющее полетом ракеты устройство. «Голубиная система наведения», хотя и успешно прошла испытания, но не понадобилась. Появились более совершенные системы управления.
Живая природа – мудрый советчик. На многочисленных примерах человек убедился в ее правоте. Недаром возникла даже специальная наука – бионика, занимающаяся изучением «подсказок» природы: как использовать принципы биологические для целей технических.
Это относится и к органам зрения человека и животных. Например, ученых привлек глаз подковообразного краба. Он обладает особенностью усиливать контраст изображения видимых объектов. Электронный аналог такого глаза, разработанный в США, помогал анализировать телевизионные изображения, аэрофотоснимки, фотографии Луны…
Требования к приемникам света и соседнего с ним инфракрасного диапазона все возрастают. В частности, в печати сообщалось об американских планах установить на борту космических аппаратов новейшую разведывательную оптическую аппаратуру для обнаружения малых целей по отраженному солнечному свету и их собственному, даже слабому тепловому излучению.
В первом случае получается как бы солнечный радар с разнесенными передатчиком и приемником. Роль передатчика выполняет само Солнце. Считается, что такая комбинированная система, работающая по отраженному солнечному свету и собственному тепловому излучению, позволит хорошо различать и наблюдать одновременно большое число объектов в атмосфере, на земле, на морской поверхности, контролировать пуски ракет, следить за их полетом…
Правда, и для такой системы уже есть частичное противоядие. Например, специальная маскирующая окраска самолетов. Она снижает уровень отраженных солнечных лучей до 7 процентов, тогда как при обычной окраске отражается 60 процентов солнечного света. Существуют специальные покрытия и аэрозоли, сглаживающие тепловой контраст между целью и окружающим пространством. Можно также снизить и температуру выхлопных газов двигателей, примешивая к ним потоки воздуха.
Если такая система будет развернута, не исключено, что вертикальные природные волноводы зададут такие же загадки операторам, какими приземные волноводы порой терзали операторов радиолокационных станции.








