355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Валентин Асмус » Учение логики о доказательстве и опровержении » Текст книги (страница 3)
Учение логики о доказательстве и опровержении
  • Текст добавлен: 19 марта 2017, 00:30

Текст книги "Учение логики о доказательстве и опровержении"


Автор книги: Валентин Асмус


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 3 (всего у книги 7 страниц)

Открытие Лобачевским неевклидовой геометрии означало эпоху не только в развитии математики, но также и в развитии логического учения об аксиомах как об основаниях доказательства. Это открытие Лобачевского нанесло смертельный удар идеалистическим теориям рационалистов и кантианцев. Логики этого направления сущность аксиом полагали в их интуитивной, т. е. непосредственной очевидности, в их априорной, т. е. будто бы предшествующей всякому опыту, безусловной и необходимой наглядности. Так как, по Канту, истины математики имеют, во-первых, всеобщий и необходимый характер, во-вторых, основываются на априорных формах чувственной интуиции, то ни о какой неевклидовой геометрии, разумеется, не может быть и речи.

Напротив, по Лобачевскому, вопрос о том, какие аксиомы или постулаты должны быть приняты в число оснований всей системы доказательств данной науки, определяется отнюдь не априорными формами интуиции. Такие положения геометрии, как постулат Евклида или постулат Лобачевского, отнюдь не безусловно самоочевидны.

Так как аксиомы не обладают безусловной очевидностью, то для решения вопроса о том, какие из небезусловно очевидных положений будут в данной науке доказываться, а какие будут приняты в ней без доказательства, т. е. в качестве аксиом,– необходимо некоторое основание.

Таким основанием не может быть произвол, условное соглашение, субъективная точка зрения. Если в числе оснований данной науки имеются аксиомы, то в такой науке основанием для выбора системы или группы аксиом, входящих в начальные основания науки, являются следующие требования:

1. Выбранная группа аксиом должна представлять группу допущений, между которыми нет противоречий. Другими словами, группа аксиом должна быть такова, чтобы, опираясь на неё, нельзя было доказать суждение и отрицание этого суждения.

2. Выбранная группа аксиом должна быть такова, чтобы из неё (а также из принятых наукой определений) могла быть последовательно выведена вся совокупность теорем данной науки. При этом число аксиом не должно превышать того, какое необходимо и достаточно, чтобы с помощью данной группы аксиом могли быть доказаны все теоремы данной науки.

3. Ни одна из принятых в данной науке аксиом не может быть получена как вывод ни из какой другой аксиомы или других аксиом той же науки, т. е. каждая аксиома должна быть предположением вполне независимым от предположений, выражаемых всеми другими аксиомами данной науки.

Последнее свойство аксиом нуждается в объяснении. Свойство это нельзя понимать так, будто аксиома вообще не может быть выводима ни из каких других положений. Аксиома не может быть выводима из других аксиом только в рамках данной системы науки. Так, 11-я аксиома Евклида (постулат о параллельных) не может быть выведена из других аксиом геометрии Евклида. Именно поэтому все попытки доказать эту аксиому в рамках геометрии Евклида с её аксиомами и постулатами потерпели неудачу.

Но можно взять другую систему или группу аксиом геометрии. Можно выбрать такую группу аксиом, что постулат о параллельных, который в системе геометрии Евклида является независимой аксиомой, будет в этой другой системе теоремой, выводимой из принятых в этой системе аксиом.

Таким образом, аксиоматическое значение некоторых положений науки не есть безусловное свойство этих положений. Разница между аксиомой и теоремой – не безусловная. Положение, которое в одной системе науки будет аксиомой, оказывается теоремой в системе науки с другой совокупностью аксиом. И наоборот: положение, доказываемое в данной системе науки как её теорема, не доказывается, а принимается в качестве аксиомы в системе науки с другой совокупностью аксиом.

В конечном счёте выбор той или другой группы аксиом (или постулатов) в качестве принятой в науке системы оснований её доказательств обусловливается и оправдывается не самоочевидностью этих оснований, а всей суммой результатов, к которым приводят доказательства науки, опирающиеся на принятые аксиомы и постулаты. Только содержательная плодотворность результатов, полученных с помощью принятой в данной системе науки группы аксиом, составляет основание для их выбора. Тем самым выбор оснований для всей системы доказательств науки – выбор аксиом или постулатов – связывается с проверкой этих оснований по их результатам, связывается с материальной практикой, с опытом.

Таким образом, с точки зрения современной логики, опирающейся на данные новейшей науки, аксиомами называются положения, не доказываемые в данной науке и играющие в ней – наряду с определениями основных понятий – роль допускаемых оснований всех доказываемых в науке истин. Роль эту аксиомы играют не в силу своей безусловной очевидности, хотя некоторые аксиомы представляются очевидными, и тем более не в силу своей априорности, так как никаких априорных положений нет ни в какой науке. Аксиомы данной науки выбираются в качестве аксиом. Однако основанием для выбора является не субъективный произвол, не «удобство», не «соглашение», а способность выбранной группы аксиом доказать всю совокупность известных истин науки, оправданных в своих результатах, т. е. в конечном счёте удостоверенных в своей истинности материальной практикой.

То, что в аксиомах не следует видеть истины безусловно недоказуемые, было не раз показано классиками марксизма-ленинизма. Энгельс говорит, что, например, аксиомы математики «доказуемы диалектически, поскольку они не чистые тавтологии»[21]21
  К. Маркс и Ф. Энгельс. Соч., т. XIV, стр. 398.


[Закрыть]
. И точно также Ленин поясняет в конспекте «Науки логики» Гегеля, что фигуры силлогизма могли получить значение аксиом только после того, как значение это было доказано в миллиардах случаев опытом: «практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, дабы эти фигуры могли получить значение аксиом»[22]22
  В. И. Ленин, Философские тетради, Госполитиздат, 1947, стр. 164.


[Закрыть]
.

Таким образом, и аксиомы как части оснований доказательства отнюдь не «возвышаются» над опытом, отнюдь не «предшествуют» опыту, а составляют результат материальной практики и опыта, лежащего в основе доказательства.

Все указанные выше требования, предъявляемые при выборе аксиом, имеют силу, разумеется, только в отношении тех наук, которые имеют в числе своих оснований аксиомы (постулаты) или, как говорят, допускают аксиоматическое построение. Таковы математика, теоретическая физика. Но существует обширный класс наук, в которых аксиоматическое построение неприменимо. В этих науках аксиомы (постулаты) не входят в число оснований науки» Такова, например, история.

г) Доказанные ранее положения науки как основания доказательства. Непосредственные и предшествующие основания доказательства. Начальные основания

В число оснований доказательств, кроме положений об удостоверенных фактах, на которые опирается доказываемый тезис, кроме определений основных понятий науки и аксиом, входят ещё доказанные ранее положения науки, необходимые для обоснования тезиса.

Так, при доказательстве теоремы евклидовой геометрии о сумме внутренних углов плоского треугольника в качестве оснований доказательства используют не только определения понятий, например понятий о параллельных, о смежных углах о внутренних накрест лежащих углах, о соответственных углах, и не только аксиомы, например аксиому (постулат) Евклида о параллельных. В качестве оснований доказательства этой теоремы используют также доказанную до неё теорему о равенстве суммы смежных углов двум прямым.

Рассматривая доказательство, нетрудно убедиться, что ранее доказанные положения, на которые опирается доказываемый тезис, используются в ходе доказательства либо непосредственным, либо опосредствованным образом.

Непосредственно используются те положения, на которые прямо ссылаются в ходе доказательства, как на положения, из истинности которых следует истинность доказываемого тезиса. Так, одним из положений, непосредственно используемых для доказательства теоремы Пифагора, будет 41-я теорема первой книги Евклида. Теорема эта утверждает, что если параллелограмм имеет с треугольником одно и то же основание и находится между теми же параллельными, то параллелограмм будет вдвое больше треугольника. Теорема эта принадлежит к непосредственным основаниям теоремы Пифагора, так как при доказательстве последней Евклид дважды ссылается в самом ходе доказательства на 41-ю теорему. Иными словами, 41-я теорема прямо входит в число оснований, истинность которых приводит к признанию истинности теоремы Пифагора.

Опосредствованным образом используются для доказательства те положения, на которые в самом ходе данного доказательства прямо не ссылаются, но при помощи которых были ранее доказаны непосредственные основания данного доказательства. Положения эти могут быть названы предшествующими основаниями доказательства. Так, для той же теоремы Пифагора одним из таких ранее доказанных, или предшествующих, оснований её доказательства будет 38-я теорема первой книги Евклида. Теорема эта утверждает, что треугольники, находящиеся на равных основаниях и между теми же параллельными, равны между собой. Эта теорема не входит в число непосредственных оснований доказательства теоремы Пифагора, так как в ходе этого доказательства Евклид на 38-ю теорему не ссылается. Но она входит в число оснований доказательства опосредствованным образом, будучи одним из оснований, при помощи которых была доказана 41-я теорема. А эта последняя есть, как мы уже знаем, одно из непосредственных оснований доказательства теоремы Пифагора.

Чем дальше развивает наука доказательства своих положений, тем большим становится число предшествующих оснований доказательства каждого нового положения. Если, рассматривая данный тезис науки, мы задались бы целью выяснить все основания, на которые опирается его доказательство, то оказалось бы, что непосредственные основания его доказательства опираются на некоторые предшествующие им основания, эти последние – в свою очередь на другие предшествующие основания и т. д. Однако, каким бы большим ни было число предшествующих оснований данного доказательства, оно не может быть бесконечным. Рано или поздно мы дойдём до таких предшествующих оснований, которые ни из каких предшествующих им оснований уже не могут быть выведены.

Основания доказательства, которые не могут быть выведены ни из каких предшествующих им оснований, называются начальными основаниями данной науки.

Начальными основаниями для данной науки являются: положения об удостоверенных единичных фактах, определения и аксиомы (постулаты). Теоремы не могут быть начальными основаниями, так как начальные основания ниоткуда не выводятся; напротив, всякая теорема – доказываемое положение, а все доказываемые положения выводятся из оснований непосредственных или предшествующих.

Все определения и аксиомы, которые могут встретиться в отдельных доказательствах в качестве непосредственных оснований или к которым доказательство может быть возведено как к своим предшествующим основаниям, входят в число начальных оснований науки. При этом, однако, в доказательства эти основания входят в каждом отдельном случае лишь частично. Так, доказательство, например, теоремы Пифагора опирается непосредственно не на все, а лишь на некоторые аксиомы, не на все, а лишь на некоторые определения, входящие в круг начальных аксиом и определений.

Напротив, в числе начальных оснований науки находится не часть аксиом, а все аксиомы данной науки, не часть определений, а все её определения.

Чем дальше отстоит доказываемое положение от начальных оснований данной науки, тем большим становится число предшествующих оснований доказательства. И действительно: каждое доказанное ранее положение, на которое в данном доказательстве наука ссылается, как на одно из непосредственных оснований доказываемого тезиса, обусловлено, в свою очередь, длинным рядом предшествующих ему положений. Ни на одно из них в пределах данного доказательства не ссылаются – иначе доказательство каждой теоремы было бы повторением всего предшествующего этой теореме содержания науки со всеми её доказательствами. В то же время все они могут быть найдены в соответствующем месте системы науки, где они полностью излагаются, иначе основание, на которое опирается доказываемое положение, само было бы -недоказанным.

Наличие в далеко продвинувшейся науке длинной цепи не непосредственных оснований, предполагаемых каждым непосредственным основанием любого доказательства, делает особенно важным условием состоятельности доказательства истинность всех оснований доказываемого тезиса.

В самом деле, непосредственное для данного доказательства основание есть только звено предшествующей ему цепи обусловливающих его оснований. Если эта цепь длинна и если какое-нибудь из её звеньев окажется ложным, то и заключительное звено – данное непосредственное основание доказательства – тоже может оказаться ложным. А в таком случае и доказываемый тезис, как опирающийся на ложное основание, может оказаться ложным.

Поэтому в качестве оснований доказательства должны быть принимаемы только истинные, строго доказанные, проверенные и удостоверенные в своей истинности положения. Любой вид оснований, вообще говоря, сказывается на истинности результата. Поэтому ни входящие в число оснований доказательства положения об удостоверенных фактах, ни определения основных понятий науки, ни аксиомы, ни уже ранее доказанные положения науки не должны быть ложными. Основания доказательства не должны быть даже сомнительными. Сомнительность основания есть по крайней мере возможность его ложности, а возможность ложности в основаниях доказательства делает возможным ложность самого доказываемого тезиса. Поэтому доказательство, опирающееся на сомнительные основания, не есть, строго говоря, подлинное доказательство. Только вполне удостоверенная истинность всех оснований, на которые опирается доказательство, делает доказательство (при соблюдении всех прочих условий и правил, о которых речь впереди) путём и средством к отысканию новой истины.

3. Способ доказательства (демонстрация)

Мы рассмотрели две составные части доказательства: доказываемый тезис и основания доказательства. Мы видели, что главная задача доказательства – сделать непреложной либо истинность доказываемого, либо ложность опровергаемого. Мы видели также, что истинность доказываемого или ложность опровергаемого тезиса не могут быть обнаружены непосредственно. Чтобы убедиться в истинности доказываемого тезиса, следует указать истинное основание, признав которое истинным, мы с необходимостью должны признать истинным также и доказываемый тезис.

Однако, хотя указание истинных оснований для выяснения истинности доказываемого тезиса необходимо, но одним лишь этим мы ещё не достигаем цели доказательства. Только в немногих случаях указание истинных оснований даёт истинность доказываемого тезиса сразу, в виде непосредственного вывода. Так, если требуется доказать, что некоторые из равных между собой углов – прямые углы, то для доказательства истинности этого утверждения достаточно сослаться, как на основание, на истину о том, что все прямые углы равны между собою. Из этого основания сразу, непосредственно, по законам одной лишь логики (а именно – согласно правилам обращения) получается истинный вывод, что некоторые из равных между собой углов – прямые.

Но в огромном большинстве случаев знания истинных оснований, ведущих к признанию истинности тезиса, недостаточно. Необходимо кроме того показать, какова связь, необходимо ведущая от истинности данных оснований к истинности обусловленного ими тезиса. Связь эта во многих случаях непосредственно не видна и требует выяснения. Так, если ученик знает все определения, все аксиомы и все теоремы, из истинности которых, как из оснований, выводится истинность теоремы Пифагора, это ещё не значит, что ученик знает доказательство теоремы Пифагора. Для знания доказательства требуется, чтобы ученик знал, какова связь между всеми известными ему порознь основаниями теоремы Пифагора,– другими словами, какова последовательность оснований и выводов из оснований, необходимо ведущая к признанию истинности доказываемого в этой теореме положения.

Последовательность, или связь оснований и выводов из оснований, имеющая результатом необходимое признание истинности доказываемого тезиса, называется способом доказательства у или демонстрацией. Демонстрация есть не составная часть доказательства, но третья, наряду с доказываемым тезисом и основаниями, логическая характеристика доказательства.

Из этого определения демонстрации видно её отличие от составных частей доказательства– тезиса и основания. И тезис и каждое из оснований – положение об удостоверенном факте, определение, аксиома, ранее доказанное положение науки – представляют собой отдельное суждение. Напротив, демонстрация никогда не есть ни отдельное суждение, ни простая сумма отдельных суждений. Демонстрация всегда есть логическая связь суждений, приводящая к определённому логическому результату. Демонстрация это более или менее длинная цепь умозаключений у посылками которых являются основания данного доказательства, а последним заключением – доказываемый тезис у который, таким образом, удостоверяется в качестве истинного.

Так, при доказательстве теоремы евклидовой геометрии о сумме внутренних углов треугольника (см. рис. 2) мы сначала продолжаем сторону треугольника АВС, например сторону АС до точки Е. Затем проводим из точки С прямую CD, параллельную АВ и по одну с ней сторону от прямой АС. Затем мы рассуждаем следующим образом. Прямая ВС пересекает параллельные (по построению) прямые АВ и CD. Следовательно, углы АВС и BCD будут равны как внутренние накрест лежащие. Прямая АС пересекает те же—параллельные по построению – прямые АВ и CD. Следовательно, углы ВАС и DCE равны как соответственные. Угол ВСЕ, представляющий сумму углов BCD и DCE, равен сумме двух внутренних углов треугольника (АВС и ВАС), так как угол BCD равен углу АВС, а угол DCE равен углу ВАС. Прибавим к углу ВСЕ угол ВСА – третий внутренний угол треугольника АВС. Тогда сумма углов DCE, BCD и ВСА будет равна сумме внутренних углов данного треугольника: углов ВАС, АВС и ВСА. Но так как сумма углов ВСЕ (равного сумме углов ВАС и АВС) и ВСА равна сумме двух смежных углов, а эта сумма равна двум прямым углам, то сумма внутренних углов ВАС, АВС и ВСА в треугольнике АВС также равна двум прямым.

Всё в целом это рассуждение – демонстрация. Основания доказательства не выделяются в группу положений, отдельных от демонстрации, но появляются каждое на том месте, какое определяется для него логической связью всех звеньев демонстрации.

Так как демонстрация – порядок связи между основаниями и тезисом– порядок, непросто усматриваемый из оснований, но такой, который ещё должен быть найден, то доказательство одного и того же положения науки может быть более или менее сложным или простым, громоздким или кратким и т. д. Самый порядок, план доказательства может варьироваться.

Связь оснований, ведущая к усмотрению истинности доказываемого тезиса,– не единственная. А так как связь эта не дана вместе с самими основаниями, но ещё должна быть открыта, выяснена, найдена, то доказательство есть творческая задача науки, которая творческими же средствами и решается.

В ряде частных случаев задача доказательства оказывается настолько сложной, что разрешение её требует от учёных огромных усилий на протяжении целых десятилетий или даже столетий. До сих пор не найдено доказательство теоремы Ферма о том, что уравнение xn = yn+zn не может иметь решений для всех целых значений n больших дЕух. В течение почти двух с половиной тысячелетий оставалось недоказанным существование атома, пока успехи новейшей экспериментальной и теоретической физики не принесли, наконец, это доказательство. Гениальная догадка Джордано Бруно о существовании планет, обращающихся вокруг других звёзд, получила доказательное подтверждение только в последние десятилетия. Во всех этих случаях учёным пришлось приложить немало усилий для доказательства того, что могло быть доказано лишь при определённых условиях развития наблюдения, эксперимента и теоретического анализа.

С другой стороны, там, где задача доказательства успешно разрешалась, пути и средства её разрешения у разных учёных были неодинаковы. Уже античная математика знала не одно единственное доказательство теоремы Пифагора, а целый ряд таких доказательств. И это типично для доказательства. Доказываемый тезис – один, логические законы мышления – одни, но способы, ведущие к признанию истинности тезиса, могут быть разные. Способы эти определяются: 1) основаниями, из которых выводится тезис, 2) связью между основаниями и тезисом. Связь эта не видна из оснований, отдельно взятых. Она находится посредством рассмотрения отношений между доказываемым тезисом и тем, что уже ранее было доказано.

Но так как от доказываемого тезиса к уже доказанным положениям можно перейти не одним единственным способом, доказательство способно к развитию и совершенствованию. От примитивных способов доказательства, опиравшихся на неточные, приблизительные и потому часто ошибочные наглядные представления, до современных доказательств, опирающихся на точно определённые понятия, на не зависящие одна от другой, свободные от противоречий, достаточные в своём числе аксиомы, а также на чрезвычайно строго доказанные теоремы, практика доказательства прошла большой путь уточнения и совершенствования. Соответственным образом изменилась, уточнилась и логическая теория доказательства.


    Ваша оценка произведения:

Популярные книги за неделю