Текст книги "История инженерной деятельности"
Автор книги: В. Морозов
Соавторы: В. Николаенко
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 16 (всего у книги 23 страниц)
Развитие промышленности, непрерывный рост различных потребностей общества: в жилье, средствах транспорта, связи, одежде, обуви, предметах быта и т.д. породили и обострили противоречие между все возраставшими масштабами индустрии и производством естественного сырья. Это противоречие может разрешить только развернувшаяся научно-техническая революция: в научных лабораториях были разработаны промышленные способы получения разнообразных искусственных материалов. Развитие данного направления привело к созданию смол и пластмасс, различных волокон, нитей, тканей, заменителей кожи и меха, линолеумов и полимерных отделочных материалов, всевозможных пленок и кровельных материалов, кристаллов, паст, синтетического каучука и др.
Искусственные материалы обладают рядом особенностей, делающих их предпочтительнее по сравнению с естественным сырьем. Им можно придавать любые заданные свойства, они легче и дешевле естественных материалов, более стойки к действию химических реагентов, атмосферных процессов и света, менее подвержены коррозии, более технологичны при изготовлении из них различных видов продукции. В промышленности из них изготавливают корпуса машин и аппаратов (радиоприемников, магнитофонов, холодильников, телефонов), шестерни, трубы, лаки, клеи, предметы быта – ванны, раковины, тазы, ковры и паласы, абажуры, посуду, детские игрушки и другие изделия. В строительстве – различные строительные материалы и оборудование: пенобетоны, стеклопласты, пенопласты, облицовочные, теплозвукоизоляционные и гидроизоляционные материалы, пластмассовые трубопроводы, санитарно-техническое оборудование и т.д.
Искусственные материалы получают из природных или синтетических полимеров. Широкий диапазон применения этих материалов обуславливает быстрый рост объемов их производства. В 1940 г. в бывшем СССР было произведено синтетических смол и пластических масс 109 тыс.т., химических волокон и нитей 11 тыс.т., а в 1985 г. соответственно 5019 тыс. т. и 1394 тыс.т., т.е. производство увеличилось более чем в 500 и 130 раз.
Производству искусственных материалов важное место отводится в Украине на будущее. Особое внимание обращается на увеличение объема синтетических смол и пластических масс, химических волокон и нитей, а также синтетических каучуков.
НТР распространяется и на другие направления жизнедеятельности людей: выход в космос и его освоение, космизация науки и производства; расширение средств массовой коммуникации, совершенствование и развитие транспортных средств, а также средств передачи информации и др. Под влиянием НТР существенные изменения претерпевают механизированное производство, особенно при внедрении роботов, традиционных видов технологии и естественных материалов.
Развитие НТР приводит к изменениям в структуре производительных сил, характере труда, соотношении научного и технического прогресса, в характере и направленности развития материально-технической базы, а главное – в воздействии на человека как основную производительную силу общества.
НТР – главный рычаг преобразования материально-технической базы общества. Обновление производственного аппарата в результате внедрения новой техники, более прогрессивной технологии и гибких производств, существенная структурная перестройка всего производства и оптимизация его размещения, повышение культурно-технического уровня рабочих, крестьянства, производственной интеллигенции и служащих, инженерного труда, достижение и превышение мировых параметров эффективности и качества продукции позволит значительно увеличить национальный доход, объем промышленного производства и производительность труда. Все это будет означать крутой поворот к интенсификации производства, продвинет экономические реформы. Это – не только насущная необходимость, но и реальная возможность нового этапа развития общества.
Оценивая конкретную экономическую ситуацию конца ХХ – начала ХХІ ст. в СССР, а затем в Украине и других ныне самостоятельных государствах – бывших союзных республиках, мы должны заметить, что имеющий место замедленный период экономического роста, внедрения достижений НТР, а следовательно, и темпов роста производительности труда, объясняется тем, что своевременно не была обнаружена и реализована необходимость изменения некоторых сторон, существующих производственных отношений и форм собственности. Отрицательную роль в этом сыграли разрыв экономических связей между бывшими республиками. Действующие формы, хозяйственный механизм, который, в основном сложился в условиях экстенсивного развития экономики, устарели и не только утратили свою стимулирующую роль, но и мешают более полному использованию имеющихся возможностей, сдерживают движение вперед, а кое в чем вообще превратились в тормоз.
Анализ экономического развития показывает, что решение экономических и социальных задач невозможно без глубокой интеграции науки с производством. Здесь ранее большая роль отводилась межотраслевым научно-техническим комплексам, которые были созданы более двадцати пяти лет назад.
Вскрывая трудности, противоречия в возможностях, тенденциях, направлениях академической, вузовской и отраслевой науки, Верховная Рада, Президент, обращаясь к ученым, нацеливают их на интеграцию усилий всех наук, комплексность проводимых исследований, глубину постановки фундаментальных проблем, вообще коренное изменение отношения к науке. Чтобы стать активной участницей жизни и реформ, наука сама должна во многом перестраиваться. Таково веление времени.
Видные ученые Украины в своих публикациях отмечают определенную замкнутость нашей науки, острую необходимость борьбы с бюрократизмом, планомерное развитие науки от достигнутого. Организация научной деятельности как никакая другая сфера требует развития демократии и гласности, прозрачности, новых подходов ускорения этих процессов в НАН Украины.
Следует признать, что реальной основой возможности ускорения развития науки и техники является мощный научно-технический потенциал Украины. В НАН Украины ведутся исследования в области материаловедения, математики, кибернетики, физики, астрономии, филологии, биологии, гуманитарных наук. На начало 90-х гг. численность ученых в Украине достигала 220 тыс. человек. Вместе с НАН Украины действуют другие научные учреждения, академии педагогических, сельскохозяйственных, медицинских, юридических, инженерных и иных наук, научно-исследовательские институты, центры, лаборатории.
Наряду со значительными достижениями наблюдается накопление серьезных проблем и просчетов, среди них – постоянный приоритет прикладных исследований в ущерб фундаментальным. К тому же, свыше 90 % технологических разработок не внедряется в производство.
Наряду с недостаточной материально-технической базой науки это привело к потере ведущих позиций по ряду фундаментальных исследований, отставанию от Запада в уровне научных разработок. Ощутимо снизился уровень изобретательства, усилился отток ученных за кордон и многое другое. Действуют и другие факторы.
Получив высокие результаты в лабораторных условиях, авторы разработок нередко сталкиваются с большими затруднениями, проволочками как в признании ценности и важности своих открытий и предложений, так и в промышленной реализации своих идей, отсутствием финансирования.
Что же касается в целом возможностей и перспектив стран СНГ в области науки и техники, то они располагают крупным научно-техническим потенциалом. На долю СНГ приходится значительная часть заявок на изобретения, новые материалы, препараты.
Следует заметить, что НТР ускоряет процесс монополизации, обобществления, концентрации и специализации материального производства. Поскольку этот процесс складывается стихийно, в ходе конкретной борьбы и погони за максимальной прибылью, НТР усиливает диспропорцию в развитии экономики стран, неравномерность их развития, увеличивает разрыв между развивающимися и развитыми капиталистическими странами. Неоколониалистическая политика империализма привела к тому, что развивающиеся страны, где проживает более 2 млрд человек, стали практически сплошным регионом бедности. В начале 80-х годов уровень доходов на душу населения в освободившихся странах в целом был в 11 раз ниже, чем в развитых капиталистических. На протяжении трех последних десятилетий ХХ века разрыв этот не сокращался, а возростал.
Рост концентрации и централизации производства и капитала под влиянием НТР обостряет имеющиеся определенные противоречия и порождает новые. К последним относится противоречие между необычайными возможностями, открываемыми НТР, и препятствиями, которые выдвигаются на пути их использования в интересах всего общества. Так, широкое внедрение новой техники и технологии приводит к ряду существенных социальных и человеческих издержек, прежде всего к росту массовой безработицы. Предполагалось что к 2000 г. роботы в развитых капиталистических странах смогут вытеснить до 75 % занятой сегодня рабочей силы. Например, в США "вторая промышленная революция" изменяет характер труда около 50 млн рабочих и служащих. Будет автоматизировано 80 % всех ручных операций. В результате лишними «окажутся» не менее 40 млн рабочих. Исследования, проводимые в Японии Международной организацией труда, социально-экономических последствий внедрения новых технологий, показывают, что количество рабочих мест ликвидируемых при роботизации, варьируется от менее 0,5 до 5. Подобные исследования в Германии дали соотношение от 0,8 до 6,2 рабочего места на один робот.
В связи с этим на Западе широкое распространение получаютразличного рода социал-реформистские утопии, авторы которых рисуют картины будущего "информационного общества", "новой индустриальной цивилизации",1 "научного капитализма" и проч., утверждая, что в "век роботов" якобы можно решить проблему "лишних рабочих рук", преодолеть социальное отчуждение и деградацию личности. Они предлагают различные меры для более активного использования "нематериальных сфер труда и быта людей", призывают учитывать такую "пружину", как человек, и способствовать более интенсивному развитию. Об этом много говорится, например, в Японии, где радужные перспективы связываются порой с национальными особенностями культуры, представлениями о нравственности и трудолюбии народа. Аналогичные цели преследуются при возрождении сегодня в США и других странах тех или иных вариантов теории "человеческого капитала". Расходы в области науки в Японии в 1975 г. составляли 1,12 % от ВПП, в 1988 г. – 1,96 %, США – 1,01 % и 1,38 %, Великобритании – 0,8 и 0,06 %.
Cледует заметить, что в условиях НТР имеет место эксплуатация науки, извращается ее сущность и предназначение. Крайние формы эксплуатация науки достигла сегодня в ее милитаризации. Известно, что сейчас в мире в военной сфере занята примерно четвёртая часть общего числа научных работников и она поглощает почти до 40 % расходов на все научные исследования и опытно-конструкторские разработки (НИОКР).
Длительное время гигантские материальные и человеческие ресурсы отвлечены в отраслях, работающих на военную сферу. При этом наиболее квалифицированные кадры, самые крупные капиталовложения направляются в отрасли военно-промышленного комплекса. Милитаризация деформировала науку, исказила ее гуманную сущность. В гонку вооружений прямо или косвенно вовлечено около 1 млн. научных работников. Жизнь свидетельствует, что бездумное продолжение научно-технической политики в нынешних условиях недопустимо.
Несомненно, в условиях НТР предмет профессиональной заботы инженерных работников, их деятельности и сегодня, и завтра, и в сравнительно отдаленном будущем один – техника и технология. Однако техника и технология завтрашнего дня будут не похожи на те машины, механизмы, производственные циклы, которые действуют сегодня. Научно-индустриальное производство, в основе которого лежит наука, предполагает ориентацию на технические новшества высшего технико-экономического уровня. Создаются такие новшества одновременно в двух направлениях: во-первых, при решении традиционных инженерно-технических задач нетрадиционными методами; во-вторых, в процессе исследования и решения производственных задач нового класса. Задание инженера – отыскать более рациональный, более дешевый в экономическом и рациональный в технико-технологическом отношении способ производства нужной обществу продукции. Под воздействием научно-технического прогресса существующая отраслевая структура общественного производства коренным образом изменится и произойдет это (уже происходит) в самом скором времени. А вместе с ней изменится и структура предмета инженерной деятельности: увеличится поле применения инженерных знаний и методов; иными, несопоставимыми с прежними по степени сложности станут инженерно-технические задачи; инженерные разработки еще теснее переплетутся с научными.
Предмет инженерной деятельности будет, образно говоря, разрастаться «вширь» и «вглубь». Расширение области профессиональной деятельности инженеров будет происходить буквально «не по дням, а по часам», а в молодых, бурно развивающихся отраслях техники и технологии едва ли не по минутам. И это не художественная гипербола, а точное отражение состояния дел. Известно, что уже сейчас в мире в течение года ученые открывают до 30 тыс. новых химических соединений – примерно 90 в день! Или другой пример – из области электронной техники. За последние 10-15 лет производительность интегральной схемы выросла в 100 тыс. раз; современный микрокомпьютер в 40 раз мощнее и в тоже время в 10 тыс. раз дешевле, в 17 раз легче, в полторы тысячи раз меньше по объему, и в 2,8 тыс. раз менее энергоемок, чем первые ламповые компьютеры. Эти цифры дают наглядное представление о проблемах, с которыми предстоит столкнуться инженерам всех рангов и специальностей – от исследователя до эксплуатационника – уже в недалеком будущем.
Таким образом, научно-техническая революция коренным образом изменяет технический базис общества, а вместе с ним и инженерную профессию и инженерную деятельность. Во-первых, качественно иным станет сам предмет инженерной деятельности: значительно расширится сфера деятельности инженера, стоящие перед ним задачи будут усложняться, едва ли не в геометрической пропорции. Во-вторых, кардинально изменятся средства инженерного труда. В своих профессиональных занятиях инженер будущего сможет опереться на достижения информатики и компьютерной техники. Широкое применение баз знаний, систем «искусственного интеллекта», создание сетей ЭВМ откроют перед ним фантастические с позиций сегодняшнего дня возможности. В-третьих, инженерная деятельность обретет новое содержание в плане резкого усиления интеллектуально-творческих компонентов, уровня предварительной подготовки и последующей систематической переподготовки. В-четвертых, закрепятся ныне существующие прогрессивные формы интеграции науки, инженерии и производства и раскроются новые, пока непредсказуемые. В-пятых, – и это, может, самое важное – изменятся многие личностные черты человека, возникнет инженер нового типа.
В Ы В О Д Ы
50-е годы ХХ в. ознаменовались вступлением человечества в период научно-технической революции. Научно-техническая революция носит глобальный, интернациональный характер, охватывает весь мир, она имеет всеобъемлющий характер, так как влияет на все стороны жизни, органически соединяет коренные изменения в науке и технике, выдвигает на передний план новые технологии.
В многообразии отраслей науки и техники выделяются основные направления, определяющие характер современной НТР. Это широкое использование электричества, применение атомной энергии в мирных целях, радиоэлектроника, получение искусственных материалов с заранее заданными свойствами, изучение Вселенной и другие достижения, которые воздействуют на все сферы деятельности человека, революционизируют современное производство, являются ускорителями научно-технического прогресса. Разваются новые технологии (в том числе биотехнологии), новые источники энергии, новые транспортные средства и средства связи, создаются новые предметы труда. Генеральным направлением НТР остается автоматизация производственных процессов на основе создания электронно-вычислительной техники, роботов, станков с ЧПУ, гибких автоматизированных производств.
В результате НТР достижения естественных наук все больше и больше используются в производстве, наука отделяется от непосредственного труда, во многих областях промышленности создаются автоматические системы машин, идет процесс применения технических средств, способных заменять логические функции человека.Под влиянием НТР не только улучшаются технологии, повышаются производительность труда и качество продукции, сокращаются затраты на производство.
Под ее влиянием возрастают противоречия в социальной жизни общества цивилизованных стран. НТР тесным образом связана с социальным развитием в рамках определенного общества, обусловлена и может быть правильно оценена в таком контексте, ибо социальная сфера есть продукт научно-технической, экономической деятельности государства, затрагивающий жизненные интересы людей. Влияние НТР на многие отрасли науки и техники поставило на повестку дня вопрос интенсификации инженерной деятельности, расширения инженерных специальностей, совершенствования инженерного образования. Возрастает роль профессии инженера в производстве. В этой связи при формировании инженерного корпуса нового типа обращается внимание на подготовку инженера с гуманистическим мировоззрением, фундаментализацию и информатизацию инженерного образования, подготовку специалиста с глубокой экологической и менеджментской подготовкой способного искать, принимать патентоспособные и конкурентоспособные решения.
ТЕМА XI. ЭЛЕКТРОХИМИЯ И ИНЖЕНЕРНАЯ
ДЕЯТЕЛЬНОСТЬ
Окружающий мир разнообразный и загадочный. Вся природа, весь мир объективно существует вне и независимо от сознания человека. Мир материален; все существующее представляет собой различные виды материи, которая всегда находится в состоянии непрерывного движения, изменения, развития. Движение, как постоянное изменение, присуще материи в целом и каждой мельчайшей ее частице.
Формы движения материи разнообразны. Нагревание и охлаждение тел, излучение света, электрический ток, химические превращения, жизненные процессы – все это различные формы движения материи. Одни формы движения материи могут переходить в другие. Так, механическое движение переходит в тепловое, тепловое в химическое, химическое в электрическое и т.д. Эти переходы свидетельствуют о единстве и непрерывной связи качественно различных форм движения. При этом соблюдается основной закон природы – закон вечности материи и ее движения. Этот закон распространяется на все виды материи и все формы ее движения. Ни один вид материи, ни одна форма движения не могут быть получены из ничего и превращены в ничто. Это подтверждено многовековым опытом науки.
Отдельные формы движения материи изучаются различными науками: физикой, химией, биологией и другими.
Каждый отдельный вид материи, обладающий при данных условиях определенными физическими свойствами (массой, объемом, агрегатным состоянием и т.д.), например вода, называют веществом. Одна из древнейших, важнейших и обширных наук о веществах – это химия.
Впервые определение химии как науки дал М.В.Ломоносов: «Химическая наука рассматривает свойства и изменения тел..., должна исследовать состав тел», она «объясняет причину того, что с веществами при химических превращениях происходит».
Согласно сегодняшним представлениям химия – это наука о превращениях веществ. Она изучает состав и строение веществ, зависимость свойств веществ от их состава и строения, условия и пути превращения одних веществ в другие.
Возникнув в древности, роскошное и мощное дерево химии бурно разрослось и расцвело – возникли и плодотворно развиваются такие отрасли, как неорганическая, координационная, органическая, элементорганическая, аналитическая, физическая, радиационная, коллоидная химия, биохимия, геохимия, космохимия, химия полимеров, химия плазмы, химия низких температур и др. И везде нужны подготовленные люди: инженеры-химики, ученые, рабочие, насыщенная инженерная деятельность, развитая наука.
Одним из важнейших и обширных разделов химии является электрохимия. Электрохимия представляет собой область химии, которая изучает условия и механизм превращения одних веществ в другие, связанные с подводом или отводом электрической энергии. Процессы, протекающие за счет подведенной извне электрической энергии, или же, наоборот, служащие источником ее получения, называют электрохимическими процессами.
Химические и электрохимические реакции люди широко используют на протяжении многих веков, вкладывая свои знания и умения в решение сложных задач, в том числе и конкретные инженерные знания. Рассмотрению некоторых аспектов возникновения электрохимии, ее развития, конкретной инженерной деятельности в этой области посвящена настоящая лекция.
1. Зарождение электрохимии и ее становление.
2. Достижения в электрохимии и практическое их применение.
Термин «химия» («хемия») впервые упоминается в трактате Зосимуса – египетского грека из города Панополиса (ок. 400 г. н.э.). В нем Зосимус рассказывает, что «химии», или же «священному тайному искусству» людей обучили демоны, сошедшие с небес на землю. Первая книга, согласно Зосимусу, в которой описывались приемы тайного «искусства», была будто бы написана пророком Хемесом, от имени которого и берет начало «хемия», «химия».
На родине химии – в древнем Египте – тайной «священного искусства» владела каста жрецов. Они были настолько всесильными, что их побаивались даже фараоны. В храмах египетские жрецы, кроме богослужения, занимались также политикой и науками – астрономией, математикой, медициной. Они с большой точностью предвидели солнечные затмения, перемену погоды, проводили сложные расчеты пирамид и других сооружений. Успешно развивалось в Египте и химическое ремесло. Изобретенный жрецами способ бальзамирования умерших (мумификация) еще и сегодня вызывает удивление и восхищение. До наших дней чудесно сохранилось много египетских мумий и среди них знаменитая мумия 18-летнего фараона Тутанхамона. Жрецы владели секретами изготовления косметических препаратов, лекарств, ядов, кирпича, стекла, лаков, красок и т.д.
Успешно развивалась химия и в странах Азии – Месопотамии, Индии, Китае. Металлурги древнего Вавилона выплавляли сурьму и сурьмянистые бронзы уже около 3000 лет до н.э.
При раскопках около Багдада ученые нашли глазурованные керамические горшки, в которые были вставлены медные цилиндры, а в них через битумную пробку – железные стержни. Причем медь оказалась сильно разъеденной. Если в такой цилиндр налить электролит, например, раствор соляной кислоты, то возникает электрический ток. Нет сомнения, что здесь мы имеем дело с древним гальваническим элементом – электрохимическим источником тока.
Одновременно были найдены серебряные изделия с чрезвычайно тонкой и равномерной позолотой. Такую позолоту, по мнению ученых, можно нанести только электрохимическим способом.
Значительные успехи в развитии практической химии, в том числе электрохимии, были достигнуты в Китае. На гробнице китайского полководца Чжао-Чжу, похороненного в 316 г., есть металлический орнамент. Когда химики сделали анализ металла, то оказалось, что он содержит 5 % магния, 10 % меди и 85 % алюминия. Сегодня известно, что алюминий можно получить исключительно электрохимическим способом.
Приведенные факты свидетельствуют, что еще в древности человек стремился познать тайны превращения веществ и достиг немалых результатов, используя химические и электрохимические процессы.
Так как при электрохимических превращениях веществ обязательным условием является участие электричества, то становится очевидным, что развитие электрохимии тесно связано с ассимиляцией достижений в познании электричества. Впервые мысль о глубокой взаимосвязи электрических и химических явлений высказал в 1765 году М.В.Ломоносов: «Без химии путь к познанию истинной природы электричества закрыт».
Электричество, как и химические процессы, было знакомо людям еще в древности. Они обнаружили, что при трении кусочка янтаря о шелковую ткань он приобретает удивительное свойство – может притягивать к себе легкие предметы. Греки назвали янтарь электроном. Отсюда и появилось слово электричество.
Особый интерес к электричеству проявили в XVII–XVIII веках. Тогда же появилась и первая теория о сущности электричества. Ее создатель – знаменитый Бенджамин Франклин – тот самый, известный деятель борьбы за независимость британских колоний в Америке. Самым значительным достижением ученого является попытка выяснить природу электричества. В соответствии с философскими представлениями своего времени о явлениях природы, Франклин ищет материальный носитель электричества, похожий на некоторое вещество – «электрический флюид», который содержится в телах и может переходить из одного тела в другое. По его мнению «электрическая материя» состоит из частиц, которые так малы, что могут легко и свободно проникать в обыкновенную, даже самую плотную материю.
Идею Франклина о существовании мельчайших материальных носителей электричества; «атомов электричества», с доверием встретили многие ученые.
Начались поиски атомов электричества. Следовало отделить их от атомов вещества, открыть и изучить процессы, в которых атомы электричества проявили бы свои свойства. Такая возможность представилась при исследованиях явлений в разряженных газах.
Было установлено, что при прохождении электрического тока в стеклянных трубках, наполненных разряженными газами, проявляются лучи, которые распространяются от катода к аноду. Их назвали катодными лучами.
Немецкий ученый Ф.Леонард установил, что катодные лучи могут проникать через очень тонкое окошко запаянной трубки.
Дальнейшие исследования Уильяма Крукса, Дж. Томсона и других ученых позволили определить, что катодные лучи – это поток отрицательно заряженных частиц, масса которых почти в 2000 раз меньше массы самого легкого атома – атома водорода. Таким образом стало ясно, что атом не является наименьшей неделимой частицей вещества. Было установлено, что атом состоит из положительно заряженного ядра и отрицательно заряженных электронов. При сообщении атому дополнительной энергии некоторые электроны могут утратить связь с ядром. При этом атомы превращаются в положительные ионы. Оторвавшись от одного атома, электрон может присоединиться к другому, образуя отрицательный ион. Таким образом была подтверждена гипотеза Франклина о существовании «электрического флюида». Им оказался поток электронов в металлах и поток положительных и отрицательных ионов в растворах и расплавах солей, растворах кислот и щелочей.
Первые научные представления о принципах взаимосвязи электрических и химических явлений относятся к концу XVIII – началу XIX века. Итальянский физик А.Вольта, один из основоположников учения об электричестве, в 1793–1801 годах предложил разместить металлы в так называемый электрохимический ряд напряжений в зависимости от того, насколько легко атомы металлов способны окисляться, т.е. переходить в состояние положительных ионов. А побудило его к этому наблюдение итальянского врача А. Гальвани, который обнаружил появление электрического тока в мышцах лапки лягушки (по сокращению мышцы) в тот момент, когда лапка лягушки, подвешенная на медной проволоке, касалась железной сетки. Обнаруженное явление привело к изобретению химического источника электрического тока – Вольтова столба.
С помощью Вольтова столба шведскому химику И. Л. Берцелиусу в 1802 году удалось электрически разложить водные растворы солей, а английскому химику Г. Дэви в 1807 году – расплавы солей.
Изучение таких электрохимических процессов привело к необходимости поиска механизма протекания электрического тока в этих системах.
К объяснению механизма протекания электрического тока в растворах солей ученые шли долго и настойчиво.
Первое и удачное объяснение принадлежит К. Гротгусу. По представлениям Гротгуса, компоненты воды – это частицы, несущие электрический заряд: кислород – отрицательный, а водород – положительный. Длинные цепи последовательно расположенных атомов кислорода и водорода простираются от одного электрода к другому. Крайние атомы этих цепей – на одном конце водород, а на другом кислород, разряжаются на электродах и выделяются в виде газов. Теория Гротгуса отличалась наглядностью и простотой, но не могла до конца объяснить механизм электропроводности растворов.
Новый крупный шаг в объяснении механизма протекания электрического тока в растворах сделал в первой четверти XIX века шведский химик И. Берцелиус. Он разделил все «тела» на два класса – с положительным электрическим зарядом и с отрицательным. При химическом соединении тел происходит нейтрализация противоположных зарядов. Далее Берцелиус предположил, что при пропускании электрического тока через раствор нейтрального «тела» последнее распадается на составляющие – положительно заряженное и отрицательно заряженное «тела». Так возникла электрохимическая теория химической связи. Простота теории и большой авторитет ее создателя определили ее широкое применение при объяснении химических процессов, несмотря на то, что данные экспериментов очень часто не согласовывались с теоретическими постулатами.
В начале XIX века свой вклад в электрохимию внес М. Фарадей. Он впервые вводит понятия: электролит, электрод, электролиз, анод, катод, ион, анион, катион, которые стали научными терминами и широко используются в наши дни. По мнению Фарадея, электролиты – это вещества, которые в водном растворе распадаются на положительные и отрицательные ионы (катионы и анионы). Он считал, что такой распад возможен только под действием электрического тока.
И далее усилия многих ученых были направлены на изучение электропроводности растворов. Русский физик А. Савельев в 1853 году установил существование зависимости электропроводности растворов от температуры и концентрации.
Немецкий физик и химик В. Гитторф всесторонне изучал движение ионов в растворах. Он доказал, что при протекании электрического тока в растворах катионы (положительные ионы) движутся к катоду, а анионы (отрицательные ионы) – к аноду. Впервые он высказал мысль, что «появление ионов не есть результат действия электрического тока». Но смелые идеи Гитторфа не были поддержаны известными учеными того времени. Г. Дэви, М. Де ла Гив, М. Фарадей продолжали считать, что ионы появляются только под действием электрического тока.







