355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Морозов » История инженерной деятельности » Текст книги (страница 6)
История инженерной деятельности
  • Текст добавлен: 12 октября 2016, 00:45

Текст книги "История инженерной деятельности"


Автор книги: В. Морозов


Соавторы: В. Николаенко
сообщить о нарушении

Текущая страница: 6 (всего у книги 23 страниц)

Создание теории машин связано с именами Монжа и его ученика Карно. Гаспар Монж (1746–1818) учился на кондукторском отделении Мезерской военно-инженерной школы, позже серьезно изучал начертательную геометрию и создал техническое черчение, явился инициатором преподавания курса «Построение машин» и приблизился к формулировке основ классификации механизмов.

Большой вклад в механику внес Лазар Карно (1753-1823), который окончил ту же военно-инженерную школу, что и Монж. В 1783 г. Карно опубликовал «Опыт о машинах вообще», а в 1803 г. книга была переиздана под названием «Основные принципы равновесия и движения». Кстати, Карно считал, что механика по своей сущности является наукой экспериментальной и этим подтверждал ее право на самостоятельное существование вне границ математики. Свою систему он строил на основании изучения движения, отрицая возможность построения ее из «метафизического и темного понятия силы». Фундаментальным законом механики Карно считал закон количества движения. Все законы и теоремы механики он рассматривал применительно к машинам. Книгу его уже можно отнести к прикладной механике.

Формирование механіки и как науки в XVIII в. завершил Лангранж. Его классическая работа «Аналитическая механика» вышла в Париже в 1788 году, в которой он считал, что в общем-то, он обобщил и окончил труды своих предшественников. Динамика Лангранжа основана на законе, который носит название уравнения Д’Аламбера – Лангранжа. Из этого уравнения он выводит три закона: движения центра тяжести системы, моментов количества движения и живой силы. Ланггранж также формирует принцип наименьшего действия и показывает, как из последнего можно было бы получить исходное уравнение. Далее он выводит уравнения, получившие название уравнений первого и второго рода. Однако следует признать, что Лангранж не завершил механику и не сделал ее полного свода. Еще при его жизни начали формироваться новые направления: теория упругости, механика материалов, механика машин.

Большой вклад в развитие механики сделал П. С. Лаплас (1749–1827). Так 1799–1800 гг. он опубликовал два первых тома «Небесной механики». И, что самое существенное, в начале ХIХ в. начали весьма интенсивно развиваться именно те направления механики, которые основывались на экспериментальных законах и пользовались экспериментальными методами исследования.

Эксперимент еще в XVIII в. был характерен не только для науки, но и для техники, особенно для техники промышленного переворота. В принципе, все новые машины, заменившие руку человека, явились результатом глубокого и длительного экспериментирования. Так было и с паровой машиной Джеймса УАтта, который добился успеха в результате большой серии экспериментов. Следует сказать, что машина Уатта до конца ХVIII в., была государственным секретом Англии, и вывоз таких машин из страны был запрещен.

Паровые машины собственными усилиями стали строить во Франции, России, Германии, США и в других странах. Так, в США Оливер Ивэнс (1756–1819) сконструировал паровую машину высокого давления (1ОАТ), построил первый в США локомобиль и изобрел прямило («прямило Ивэнса»). Это была первая попытка после Уатта найти механизм, преобразующий поступательное движение во вращательное. Можно сказать, что к началу ХIХ в. время практический механики проходит и наступает эра прикладной науки. Кстати, в Англии – стране самой передовой техники того времени – развитие механики отстает. Но промышленный переворот, поднявший Англию на более высокую ступень экономического развития, не мог не повлиять на английскую науку. Быстро развивающаяся машинная промышленность (производство машин) требовала ответа на возникающие вопросы, и она не могла долго ждать. Поэтому с начала ХIХ в. наука в Англии приобретает практический характер. Запросы промышленности стимулируют появление новых наук – «технических», основанных на наблюдении и опыте и уже во вторую очередь пользующихся расчетно-математическими методами. Что касается «старых» наук, то здесь в основном развиваются их прикладные направления. Очевидно, именно в связи с этим в Англии до середины ХІХ в. не открываются технические школы. Англичане пользуются старыми, традиционными методами ученичества, но знания в области механики продолжают накапливать и совершенствовать.

Существенный вклад в механику упругого тела сделал Томас Юнг (1775–1829). Он в 1807 г. опубликовал в Лондоне «Курс лекций по натурфилософии и по механическим искусствам», в котором изложил сведения из самых различных областей знания. Во втором томе этого энциклопедического курса содержится определение модуля, позже названного модулем Юнга, который стал важнейшим понятием новой отрасли механики – теории упругости. Юнг показал также, что срез является одной из упругих деформаций, сформулировал понятие нейтральной линии при изгибе. Развитие теории упругости продолжили ученые, среди которых выдающуюся роль сыграли французы Навье, Коши и Сен Венан.

Значительный вклад в развитие механики, особенно на рубеже ХVIIІ–XIX вв., внесли ученые Парижской политехнической школы. Так, один из ее организаторов Пьер Симон Лаплас создал небесную механику как новое направление науки. Он завершил объяснение движения тел Солнечной системы на основе закона всемирного тяготения, в результате чего развил свою знаменитую космогоническую гипотезу. Лаплас сформулировал задачу о трех телах, изучил движения небесных тел, в частности Луны, и разработал теорию приливов и отливов, которая стала существенным вкладом в гидродинамику. В его «Небесной механике», состоящей из пяти томов, механика рассматривалась как физическая наука. Лаплас является одним из основоположников молекулярной механики – механики, основанной на молекулярной теории строения вещества (в первой половине ХІХ в. понятие молекулы и атома считались тождественными). Молекулярным притяжением тогда объясняли химическое сродство, явление упругости, капиллярность и иные физические явления, не поясняемые теорией всемирного тяготения.

Физическую сущность механики подчеркивали и другие французские ученые – Пуансо, Пуассон, Навье. Так, воспитанник Политехнической школы Луи Пуансо (1777–1859) ввел в механику понятие «пара сил» – двух равных сил противоположного направления, приложенных к разным точкам плоскости. Он показал, что значение пары сил равно произведению силы на кратчайшее расстояние между направлениями сил. Вообще, понятие «пары сил» было важнейшим в статике Пуансо, с его помощью он вывел теорему о том, что любое число сил, действующее на твердое тело, можно привести к силе и к паре сил. Пуансо разработал теорию вращения тел, установил один из случаев вращения гироскопа, сформулировал понятие эллипсоида инерции. Механика Пуансо была физической в еще большей степени, чем механика Лапласа, и в значительной мере стала основой для разработки прикладной механики.

Существенный вклад в развитие механики внес Симеон Дени Пуассон (1781-1840). Будучи учеником Лапласа, он являлся одним из самых ярких теоретиков молекулярной механики, занимался небесной механикой. Успешно решал задачи полета снаряда и отдачи орудия, издал «Учебник механики» (1811 г.), где изложил основы механики как физической науки и применил ее к различным задачам физики, астрономии и артиллерии.

Среди выпускников Политехнической школы выделяется также Луи Мари Анри Навье (1785–1836). Работая одно время инженером, он исследовал ряд вопросов практической механики, активно участвовал в создании теории упругости и сопротивления материалов. Навье развил теорию изгиба балки, предложил общий метод решения статически неопределимых задач, получил дифференциальные уравнения равновесия упругого изотропного тела. Используя метод Д'Аламбера он вывел общие уравнения движения упругого тела. Его работы лягли в основу строительной механики.

Появление локомотива, изобретение американским инженером Робертом Фультоном (1765–1815) парохода, способствовали развитию речного и морского механического транспорта, а это, в свою очередь, привлекло внимание ученых к вопросам динамики машин. Аварии локомотивов и пароходных машин происходили по разным причинам: не были известны их динамика, поведение материалов, из которых они сооружались; недостаточно была разработана и техническая термодинамика. Поэтому железные дороги стали своего рода лабораторией, на базе которой создавались прикладные и технические науки, в том числе строительная механика, теория сооружений и в значительной степени динамика машин.

В последнем направлении успешно работали почти одновременно Жан Виктор Понселе (1788–1867) и Гюстав Гаспар Кариолис (1792–1843). Так, в 1829 году Кариолис опубликовал работу «Вычисление действия машин», в которой поставил вопросы динамики машин. Ему принадлежит известная теорема о трех слагающих полного ускорения: относительной, переносной и добавочной. Понселе создал стройную систему динамики машин, основанную на глубоком изучении паровой машины. Одновременно с Кориолисом он работал над уточнением понятия механической работы, применил это понятие к вычислению действия машин.

Следует заметить, что английское машиностроение в первой половине ХIХ в. стояло значительно выше машиностроения стран континентальной Европы.

В Англии зарождается и техническая пресса. В 1797 г. вышел первый номер «Журнала Никольсона», посвященного практическим вопросам технических знаний; в 1798 г. – «Философский журнал», также посвященный техническим наукам. В 1841 г. в Англии были опубликованы две книги по вопросам прикладной механики: «Механика инженерного дела» Уэвелла (1794–1866) и «Принципы механизмов» Роберта Виллиса (1800–1875). Уэвелл систематизитровал практические задачи механики; Виллис занимался проблемами практической кинематики, в частности, ввел понятие механизма как элементарной составляющей машины. Он внес также большой вклад в создание теории зубчатых зацеплений.

В те же годы профессор математики Кембриджского университета Ч. Беббидж (1792–1871) трудился над созданием вычислительной машины. Однако задача, которую он поставил, не могла быть решена в то время. Еще не было создано соответствующих технических условий. Машина Беббиджа предполагала программное обеспечение. Кстати, первым программистом стала женщина-математик, дочь Байрона Ада Ловлейс (1815–1852).

В первой половине ХIХ в. работал замечательный английский механик Уильям Гамильтон (1805–1865). Он проводил исследования в области оптической механики, в частности, создал оптику по образцу механики Лагранжа, сформулировал закон наименьшего действия. Дальнейшая разработка этого закона привела к созданию метода интегрирования задач динамики Гамильтона – Якоби – Остроградского.

В 1851 г. в Лондоне открылась первая Всемирная выставка, на которой были показаны машины, построенные в различных странах мира. Выставка продемонстрировала значительный прогресс в области мирового машиностроения, который в том числе отражал и достижения теоретических наук, в частности механики. Поскольку теория не могла еще ответить на многие вопросы практики, вслед за прикладными возникают технические науки, основанием для которых служат наблюдения и опыт. Их научная база была неглубока: из разных соображений, иногда несовместимых между собой, строились формулы со многими эмпирическими коэффициентами. Следует заметить, что число этих наук непрерывно расло. В частности, появление железных дорог дало толчок для создания строительной механики и теории сооружений.

В строительной механике средины ХIХ в. возникает проблема расчета свода как упругого тела, которая вначале пытался решить ученик Клапейрона – Шарль Бресс (1822–1883). Затем его работу самостоятельно повторил немецкий ученый Отто Мор (1835–1918). Вскоре появилась новая задача – теория ферм. Быстрое развитие железных дорог выдвинуло на первый план необходимость расчета и строительства мостов. С середины ХIХ в. теория ферм становится одной из важнейших задач теории сооружений. Важные исследования в этом направлении выполнил русский инженер Д. И. Журавский (1821–1891). Он принимал участие в проектных и строительных работах при сооружении мостов Петербургско-Московской железной дороги, а затем руководил Департаментом железных дорог. При расчете многопролетной неразрезной фермы Журавский впервые применил метод деформаций. Дальнейшие вычисления в области теории ферм проводили Шведлер (1823–1879), Ламе и Максвелл.

К середине ХIХ в. начались поиски графических методов решения задач механики. Векторное исчисление находилось в процессе становления, но уже давно умели воспроизводить параметры статики графическими методами. В 1687 г. Ньютон и Вариньон установили закон параллелограммы сил, ставший основанием для создания графических методов. Позже Вариньон разработал метод веревочного многоугольника. Ряд графических построений предложили Клапейрон и Ламе. Дельнейшее развитие графическая статика получила в трудах профессора Римского политехникума Луиджи Кремона (1830–1903). Метод графического расчета ферм, созданный им на основе идей Максвелла, носит название диаграммы Кремона – Максвелла. Так в механику проникли графические методы расчета. Начиная с 70-х годов ХІХ в. эти методы применяются и в учении о машинах, где создаются важные разделы графической динамики и графической кинематики. Такой обмен методами и идеями, несомненно, был прогрессивным и способствовал развитию и возникновению новых направлений науки.

К концу ХIХ в. развитие механической техники еще более ускорилось. Были созданы новые машины – гидравлические и паровые турбины, электродвигатели, двигатели внутреннего сгорания. С появлением последних облегчилась работа над созданием самодвижущихся экипажей – автомобилей – и аппаратов тяжелее воздуха для воздушного пространства – самолетов. Таким образом, парк энергетических машин расширился, хотя и в не такой степени, как парк машин технологических, который увеличивался чрезвычайно быстро. Сам этот факт весьма интересен. Совершенствование старых и создание новых рабочих машин отвечало потребностям капиталистического производства, поскольку машины для осуществления технологических процессов гарантировали увеличение прибылей. Разработке энергетических машин отводилась второстепенная роль, так как к паровым за 100 лет привыкли, а к новой энергетике относились без особого доверия. С этим обстоятельством связан и другой факт из истории науки о машинах. Паровая машина в начале ХIХ в. была достаточно хорошо изучена, и ее теория составила основное содержание важнейшей отрасли механики – динамики машин; теорию же «новых» машин создать в ХIХ в. еще не удалось, да в этом и не было необходимости, поскольку разнообразные типы машин возникали как экспериментальные модели и их рабочие и технологические возможности оценивались практикой и временем.

Большое значение для изучения динамики кривошипно-ползунного механизма паровой машины имела монография австрийского инженера Иоганна Радингера (1842–1901) «О паровых машинах с высокой скоростью поршня», в которой был приведен графический расчет действия сил в этом механизме. Интересны и работы Эрнеста Отто Шлика (1840–1913) – немецкого корабельного инженера, опубликовавшего исследование об уравновешивании поступательно движущихся масс.

60-е гг. ХIХ в. характеризуются активизацией интереса к теоретической кинематике. Среди работ на эту тему необходимо отметить «Трактат чистой кинематики» (1862 г.) профессора Политехнической школы Анри Резаля (1828–1896). Важнейший вклад в развитие данного направления внесли русский ученый П. Л. Чебышев, который ввел в теорию механизмов математические методы; англичанин Джеймс Джозеф Сильвестр и другие ученые, которые работали над воспроизведением математических зависимостей при помощи механических средств.

Значительных результатов в области прикладной кинематике удалось достичь выдающемуся немецкому машиностроителю Францу Рело (1829–1905). Он сформулировал задачи кинематики и указал на важнейшую структурную особенность механизмов – существование кинематических пар, т.е. сочетаний звеньев и кинематических цепей, соединений звеньев с помощью кинематических пар.

П. Л. Чебышев «разрабатывал» аналитическое направление в решении задач теории механизмов, Франц Рело рассмотрел эти задачи как машиновед, а затем геометры Амедье Маннгейм (1831–1905), Зигфрид Аронгольд (1819–1884) и Людвиг Бурместер (1840–1927) создали новое направление – кинематическую геометрию, на базе которой Бурместер сформулировал геометрический метод синтеза механизмов. Почти одновременно тремя учеными: Отто Мором в 1879–1887 гг., Робертом Смитом в 1885 г. и Бурместером – был создан учебник кинематики, опубликованный в 1888 г. Главным в этих работах было решение задач кинематики методом планов скоростей и ускорений.

Развитие машиностроения, строительство зданий и путей сообщения способствовало в конце ХIХ в. появлению интереса к задачам механики сложной среды: на основе применения математических методов были поставлены и решены новые задачи теории упругости, сопротивления материалов, гидродинамики; начиналась интенсивная исследовательская работа в области теории колебаний, теории устойчивости, аэродинамики.

Среди представителей научной мысли конца ХIХ в. следует назвать ученика Сен-Венана – Буссинеска, который изучал деформацию тел. Его работы охватывали большой диапазон проблем механики сплошной среды. Он занимался, в частности, теорией колебаний стержней, теорией удара, теорией пластинок. Буссинеск является одним из основоположников механики сыпучих тел. Ему также удалось решить ряд задач по расчету подпорных стенок.

Значителен вклад в механику Джона Уильяма Стретта, лорда Рэлея (1842–1919), который еще в 1877 году опубликовал монографию в двух томах «Теория звука». Первый том посвящен колебаниям струн, стержней, мембран, пластинок и оболочек. Рэлей в своем исследовании пользовался методом обобщенных сил и обобщенных координат, в частности, он показал, что экспериментальным путем можно получить решения для статических и статически неопределенных систем. Метод Рэлея заключался в сведении задачи о колебании сложной системы к исследованию колебаний с одной степенью свободы. Естественно, что решение получилось приближенным. Немецкий физик Вальтер Ритц (1878–1909) усовершенствовал метод Рэлея, предложив определять частоты колебаний непосредственно из энергетического условия, без решения дифференциальных уравнений. Метод Рэлея – Ритца широко применяется для решения задач теории колебаний, теории упругости, теории сооружений и в других областях механики.

Труд Рэлея вместе с монографией Томсона и Тейта «Курс натуральной философии» (1867 г.) составили почти полную энциклопедию «прикладной механики» ХIХ в.

Дальнейшее развитие железнодорожного строительства стало одним из важнейших факторов повышения спроса на сталь, стальные конструкции (мосты и др.). К числу сооружений, в которых использовались металлические конструкции, относится башня в Париже (Эйфелева башня). Построил ее инженер и механик Александр Гюстав Эйфель (1832–1923). В итоге высота башни вместе с флагштопом достигала 312,275 м. Строительство продолжалось с января 1887 и до 30 марта 1889 г.

Возведение подобных сооружений поставило перед механикой целый ряд новых вопросов, в частности, касающихся устойчивости. Существенный вклад в решение проблем устойчивости сделал профессор Петербургского института путей сообщения Ф. С. Ясинский (1856–1899) и профессор Политехнического института в Карлсруэ Фридрих Энгессер (1848–1931). На основе их работ, а также трудово других ученых появилась теория сооружений. Позже как самостоятельная ветвь механики, выделилась аэродинамика, создание которой в значительной степени связано с именем Н. Е. Жуковского.

Факты вполне достоверно свидетельствуют, что на протяжении ХIХ в. как в теоретической, так и прикладной механике были достигнуты большие успехи. Математизация механики, которая началась в XVIII в. и оказалась чрезвычайно плодотворной и для развития самой математики, продолжается и в ХIХ в. Кстати, математизируются и многие направления физики. В течение ХІХ в. были созданы или заново прочитаны такие главы физики, как оптика, учения о теплоте, электричестве и магнетизме. Подобно механике, физика содействует развитию новых математических теорий и разработке нового математического аппарата.

В конце ХIХ и начале ХХ вв. в физике, механике, математике стали обнаруживаться факты, которые не укладывались в стройную систему классической науки. В первую очередь, это неевклидова геометрия Н. И. Лобачевского, которая была изложена в его труде «О началах геометрии» (1829 г.). Вначале она не была понята даже некоторыми учеными, в том числе и М. В. Остроградским. Общее признание геометрия Лобачевского получила лишь после его смерти, когда в 1868 г. итальянский геометр Эудженио Бельтрами (1835–1900) доказал ее непротиворечивость. Независимо от Лобачевского к его идеям пришел также венгерский геометр Янош Бояци (1802–1860). На рубеже ХIХ–ХХ вв. появляется новый подход к решению задач механики – с использующий аппарата теории вероятностей и математической статистики.

Это все повлекло за собой и некоторые философские выводы: если законы Ньютона допускают широкое толкование и к ним можно применять коррективы, то не значит ли это, что описание явления не отражает его действительной сущности, а есть лишь некоторой условностью, не имеющей отношения к реальности? Формализация вопроса об описании явления приводила в конце концов к отрицанию объективной реальности вообще: к такому выводу пришел, в частности профессор Пражского университета Эрнст Мах (1838–1916) – физик-экспериментатор, философ-идеалист.

Как ни парадоксально, к концу ХIХ в. интенсивная работа над решением вопросов теоретического естествознания привела к тому, что количество накопленных фактов увеличилось; они появлялись и в физике, и в механике, и в математике. Кроме того, оказалось, что аппарат, который математики предоставляли в распоряжение физиков и механиков, не всегда удовлетворял последних, и им приходилось разрабатывать свой собственный. Так, во второй половине ХIХ в. совместными усилиями физиков, механиков, математиков было создано векторное исчисление, а физиком и инженером Хевисайдом – операционное исчисление. Нужно сказать, что операционное исчисление стало одним из первых направлений прикладной математики конца ХIХ в. Если в XVIII в. под прикладной математикой понималась чуть ли не вся физика и механика с добавлением целого ряда технических направлений, а в ХIХ в. прикладной математикой обычно называли аналитическую механику, то в самом конце ХIХ в. так называют уже различные теории не всегда строго обоснованные, но всегда имевшие практическое применение и несколько позднее изменившие содержание прикладной математики.

Все эти поиски и открытия предопределили начало революции в естествознании, которая произошла на рубеже ХIХ–ХХ вв. В это время были обнаружены явления, объяснить которые тогдашняя наука не могла.

На 1895–1897 гг. пришлось крушение понятия об атоме как неизменной первичной и неделимой частице. Ряд открытий показал, что атом имеет сложное строение, а его структурным элементом является электрон, который был открыт в 1897 г. В 1895 г. Рентген выявил особого рода излучения, в 1896 г. Беккерель обнаружил явление радиоактивности урана. Попытки объяснить эти факты с помощью старых физических теорий не увенчались успехом. Вскоре ученые пришли к мысли: при объяснении новых явлений отказаться от общепринятых классических положений. Открытие радия, сделаное М. Склодовской и П. Кюри в 1898 г., не только констатировало научный факт, но и содержало в себе и частично его объясняло. В 1899 г. П. Н. Лебедев измерил давление света. В 1900 г. М. Планк (1879–1955) предложил квантовую теорию излучения. В 1909 г. Э.Резерфорд и Ф.Содди создали теорию радиоактивного распада – возникла новая идея о возможности превращения элементов. В 1905 г. А. Эйнштейн (1858–1947) выступил со специальной теорией относительности, а затем установил соотношение между массой и энергией, что было невозможно в системе «старой» классической механики Ньютона.

В результате открытий периода «новейшей революции» в физике проявляются определенные идеологические шатания, которые приводят к созданию новой картины мира в связи с появлением теории относительности.

Важную роль в становлении теории относительности сыграли работы профессора Лейденского университета Гендрика Антона Лоренца (1853–1928). Им было найдено преобразование (так называемое преобразование Лоренца), в котором время играет роль четвертой координаты. Это преобразование позволило объяснить некоторые результаты, полученные при наблюдении оптических и электродинамических явлений. Наряду с теоретическими исследованиями Лоренца, для развития новой физики немаловажное значение имели роль опыты Альберта Майкельсона (1852–1931). Они показали, что скорость света в вакууме является универсальной постоянной. Приблизительно к этому же времени (80-е гг. ХІХ в.) относится критика Эрнестом Махом Ньютоновых понятий абсолютного пространства и абсолютного времени. Все это в совокупности, как и работы французского математика и механика Анри Пуанкаре (1854–1912), объективно послужило основой для создания новой области физики – теории относительности.

В 1905 г. Альберт Эйнштейн публикует свой знаменитый труд «К электродинамике движущихся тел». Он порывает с ньютоновской концепцией абсолютного пространства и времени. В его формулировке принципы относительности и постоянства скорости света гласили:

1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, движущихся равномерно и прямолинейно относительно друг друга, относятся эти изменения состояния.

2. Каждый луч света движется в покоящейся системе координат с определенной скоростью, независимо от того, испускается ли луч света покоящимся или движущимся телом.

В 1906 г. Макс Планк (1858–1947) применил принцип относительности к уравнениям динамики. Тогда же Эйнштейн опубликовал статью «Принцип сохранения движения центра тяжести и инерция энергии», в которой описал мысленный эксперимент, устанавливающий связь между энергией светового импульса и силой света. В 1908 г. Герман Минковский (1864–1909) предложил геометрическую инженерную теории относительности: мир есть многообразие всех мыслимых значений трех измерений пространства совместно с четвертым измерением – временем.

Следующим шагом в разработке теории относительности стала работа Эйнштейна «Основы общей теории относительности», в которой он сформулировал постулат относительности: законы физики должны быть составлены так, чтобы они были справедливы для произвольно движущейся системы. Общая теория относительности Эйнштейна была опубликована в 1916 г. Ее основные понятия были тесно связаны с проблемой гравитации. В сущности, Эйнштейн пришел к своей общей теории от изучения гравитации. И вот здесь оказалось, что геометрией этой теории является неевклидова геометрия, которую, как известно, первым начал разрабатывать Н. И. Лобачевский. В ее создании принимали участие не только Лобачевский, Бойяи, Бельтрами, но и другие ученые, в том числе Бернгард Риман, Уильям Клиффорд.

Следует заметить, что теория относительности не сразу получила признание. Уж слишком необычным было новое миропонимание: теория относительности заставила по-новому взглянуть на движение электронов, планет и галактик в космическом пространстве.

Начало ХХ в. характеризуется тем, что земная механика продолжает оставаться в рамках, предписанных ей Ньютоном. На протяжении всего 25-летия (1890–1915 гг.) в технике решается ряд очень сложных задач эпохального значения. Был создан двигатель Дизеля, разработана удобная в эксплуатации форма паровых турбин, сконструирован автомобиль и найден способ использования электроэнергии для нужд транспорта. Было изобретено радио, человек поднялся в воздух на аппарате тяжелее воздуха, и началось быстрое развитие авиации. Машиностроение поставляло на рынок все новые и новые модели, усовершенствовались и изобретались новые машины для обработки металлов. Все это определяло направления исследований в прикладной математике и прикладной механике.

Интересны работы в области аэромеханики Н. Е. Жуковского, С. А. Чаплыгина, которые, в частности, развили теоретическую аэродинамику, в том числе теорию профиля крыла самолета. Эти ученые работали также в областях гидродинамики и газовой динамики, в которых им удалось создать основополагающие труды. В аэродинамике существенные результаты были получены Фредериком Ланчестером (1878–1946) и Вильгельмом Кутта (1867–1944), а также Людвигом Прандтлем (1875–1953). Именно последний развил учение о турбулентном течении и теорию пограничного слоя.

Одним из направлений научной деятельности Н.Е.Жуковского была механика машин, где его теорема о жестком рычаге является одним из самых элегантных методов кинетостатики. Ученик Жуковского – Н. И. Мерцалов (1866–1948) написал курс прикладной механики, в котором впервые с исчерпывающей полнотой были освещены вопросы динамики машин. Курс этот был издан в 1904 г. и переиздан 1914–1916 гг.

Основы динамики тела переменной массы заложил чешский ученый Георг фон Бюкуа еще в 1812–1814 гг. Однако в то время исследования его не получили дальнейшего развития. Позже некоторые задачи в этом направлении были решены английскими учеными Кэйли, Раусом и др.

Существенный вклад в развитие теории механики тела с переменной массой сделали русские ученые К. Э. Циолковский и И. В. Мещерский. Мещерским и коллективом преподавателей механики Петербургского политехнического института был написан «Задачник по курсу теоретической механики», который был переведен на несколько языков и который использовался вплоть до настоящего времени. Этот задачник считается лучшим пособием в мировой учебной литературе и механике.

Период, охватывающий начало ХХ в., оказался чрезвычайно плодотворным в истории теоретической и прикладной механики. Именно в эти годы были высказаны многие идеи, развитые впоследствии в целые научные направления. Некоторые из этих идей и открытий не укладывались в рамки классической науки и стали теми «катализаторами», с которых началась коренная перестройка в естествознании.

Для механики первых двух десятилетий ХХ в. характерен повышенный интерес к сравнительно небольшому числу проблем: аэродинамике, гидродинамике, теории рабочих машин, неголономной механике. Объясняется это, особенно для России, тем, что было необходимо быстрое решение технических проблем, прикладная же наука требовала капиталовложений, которые были весьма ограничены, а вот теоретическая наука могла развиваться и при минимальных затратах. Между тем большинство направлений механики в первой половине ХХ в. уже достигло в своем развитии такого состояния, когда нужны были не только идеи, но и материальная база для их претворения. В частности, так обстояло дело с авиацией, на которую не жалели средств, ибо польза от такого капиталовложения была очевидной.


    Ваша оценка произведения:

Популярные книги за неделю