Текст книги "История инженерной деятельности"
Автор книги: В. Морозов
Соавторы: В. Николаенко
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 9 (всего у книги 23 страниц)
Особенно интенсивно идет этот процесс в Петровские времена. Сотни русских, в том числе, горнозаводских водных колес и плотин стояли столетия и действовали еще в первой половине ХХ в. в Екатеринбурге, Нижнем Тагиле, Первоуральське, Ревде, Горной Колывани, Змеиногорске, Туле, Сестрорецке и в иных местах.
Проявили недюжинные инженерные таланты такие строители как Михаил Иванович Сердюков, который сделал то, что оказалось не по плечу амстердамским инженерам, создавших Вышневолоцкую систему шлюзов для соединения Волги с бассейном Балтики (1722 г.), Михаил Михайлович Самарин показал себя гениальным инженером-строителем при сооружении кронштадских доков и каналов, Григорий Скорняков – Писарев при работах на Ладожском канале.
Русский народ вынес на своих плечах огромный труд, сооружая плотины, которые требовали строгих инженерных расчетов, постройки для многочисленных предприятий, появляющихся в результате усилий Петра І по преображению России. Основным заводским двигателем было водяное колесо, для действия которого необходимо было сооружать заводскую плотину, требовавшую огромных затрат труда, уникальных расчетов, чем все собственно заводские сооружения.
Документы также повествуют о том, что на Руси издревле умели создавать «колокола дивны слышанием». Чтобы создавать колокола, необходимо обладать знаниями и навыками, соблюдать пропорции в сплавах, знать температурные режимы, технологию изготовления колоколов с определенными заданными свойствами. Кроме отливки колокола, решались сложнейшие механические задачи: поднятия на большую высоту отливки из цветного металла, крепление и т.д.
Еще при Борисе Годунове русские мастера отлили в Москве колокол, диаметр нижней части которого составлял около пяти с половиной метров при общем весе свыше 35 тонн. Более двадцати человек требовалось для обслуживания его во время торжественного благовеста. Во время одного из пожаров он упал и разбился. В 1654 году его успешно перелили, создав восьмитысячепудовый царь-колокол. После долгого хранения на земле (девять месяцев) его подняли и с 1668 по 1701 г. по Москве раздавался его благовестный звон. Для приведения в движение языка колокола требовалось, по свидетельству иностранцев, сто человек. После пожара в Кремле (19 июня 1701 г.), когда сгорели связи на которых держался колокол, он опять падает и разбивается. В 1731 г. было решение воссоздать царь-колокол весом девять тысяч пудов. Пригласили мастеров из-за границы, в частности известного парижского мастера Жермена, но он принял за шутку предложение изготовить такой гигант.
То, что казалось невозможным зарубежным техникам, выполнили русские мастера – отец и сын Иван Федорович и Михаил Иванович Моторины, которые, после нескольких неудач, 23 ноября 1735 г. отливают колокол весом 12327 пудов 19 фунтов, то есть 200 тонн – самый большой в мире колокол. Для сравнении – за рубежом колокола весили: в Бейпине – 55 т, японский в Киото – 63 т.
При кремлевском пожаре 1737 года когда колокол еще находился в яме, загорелось прикрывавшее его деревянное строение. Пылающие бревна падали в яму. Сбежавшийся народ, опасаясь, что колокол расплавится, начали заливать его водой. Видимо из-за неравномерного охлаждения откололся кусок в его нижней части. Столетие колокол пролежал в земле, а в 1836 г. его установили на место, где он теперь и стоит в Кремле (в качестве памятника выдающемуся мастеру и его мастерству).
Русские мастера не только отливали тяжелейшие колокола, но и успешно решали задачи их подъема и установки на место. Так, древние двухтысячепудовые колокола «Сысой», «Полиелейный», поднятые на колокольню ростовского собора, издавна известны своими голосами, четырехтысячепудовый колокол Успенского собора в Московском Кремле называют большим и он славится своим звоном.
Умело сочетая отечественный и зарубежный опыт, русские техники еще в древние времена ярко показали мастерство в подъеме огромных тяжестей, в сооружении различных механических установок, мельниц, а также в строительстве и артиллерийской механике. Опыт, навыки, знания, запечатленные в этих делах, столь своеобразны по своему существу и столь примечательны, что они дают право сказать: русская инженерная мысль была способна решить сложнейшие проблемы механики.
В XVI в. русское военно-инженерное искусство в некоторых направлениях обогнало западноевропейское. Так, в 1552 г. при третьем походе на Казань русские воины показали высокое мастерство инженерной атаки: «Здесь зарождался метод параллели, т.е. сближение средств осады с объектами атаки путем проведения траншейных работ и последовательного переноса огневых позиций артиллерии. Этот метод теоретически был обоснован С.Вобаном во второй половине XVII в…»[3]. Руководил осадой Казани талантливый русский розмысл дьяк Выродков.
Следует заметить, что в то время уже в Германии военные архитекторы начали называться инженерами, и этот термин для обозначения военной специальности был завезен, по-видиму, из Германии мастерами, у которых были дипломы инженеров. Но это слово утвердилось в русском языке не сразу. Еще долгое время их обозначали русскими названиями, являющимися переводами с иностранного «ingenier». В официальных документах той поры чаще встречаются названия «горододельцы», «городовые смышленники», «муроли». Только очень немногие иностранные специалисты сохранили в России звания «инженер», и именно они положили начало его распространению на Руси, в Московском государстве.
Официально так стали называться специалисты по военному строительству при царе Алексее Михайловиче. Причем это звание давалось только иностранцам. Фактически русских инженеров в истинном смысле этого слова не существовало вплоть до XVIII ст.
В период царствования Ивана Грозного военные строители начинают разделяться на разряды: 1) к высшему разряду принадлежали военные архитекторы – систематики, занимающиеся преимущественно усовершенствованием оборонительной части; 2) ко второму – собственно строители, руководившие сооружением укреплений; 3) к низшему разряду – все остальные строители: каменных, стенных, палатных дел мастера и муроли.
Коренные преобразования в инженерном деле произошли в связи нарастанием тенденций централизации и созданием единого Русского государства. С того времени все военное строительство и изготовление военной техники поступили в ведение Пушкарского приказа, основаного в царствование Ивана IV. Круг действия приказа по инженерной части состоял в объединении указов о постройке новых и исправлении старых оборонительных сооружений; составление инструкций воеводам, руководившим военным строительством; составлении инструкций воеводам, руководившим осадой или обороной крепостей; определении смет для сооружения укреплений; в проверке отчетов.
Следствием создания Пушкарского приказа постройка оборонительных сооружений сделалась менее произвольной, появились установленные стандарты: инструкции и чертежи, составленные в приказе. Начали распространяться и, так называемые, городские «строельные» книги, заключавшие в себе подробное описание оборонительных оград. При Пушкарском приказе числились: а) инженеры, или иноземные строители, которые выступали чаще всего экспертами или консультантами: они рассматривали проекты, присылавшиеся с места сооружения или сами их составляли. Кроме того, они выезжали на строительство с инспекционной комиссией; б) городовые мастера – большей частью русские строители, находящиеся постоянно в крупных городах. Они рассматривали сметы, которые присылались строителями в Пушкарский приказ, а также непосредственно руководили строительными работами; в) мастера и подмастерья были низшими разрядами строителей, помощниками городовых мастеров и осуществляли непосредственный надзор за производством работ; г) для осуществления чертежных работ была создана особая категория «чертежников».
Несмотря на значение, которое придавалось инженерному делу, Пушкарский приказ был единственной организацией, регулировавшей отправление инженерных функций. Идея специального образования для отечественных инженеров еще не являлась в ту пору распространенной и не рассматривалась всерьез. Хотя Иван Грозный сделал определенный шаг вперед в развитии инженерного дела, все же он, как и его предшественники, основным способом удовлетворения потребности в специалистах избрал их вывоз (приглашение) из европейских стран, главным образом из Германии, Голландии и Англии.
При Василии Шуйском (1552–1612) было положено начало некоторому теоретическому образованию русских инженеров: в 1607 г. был переведен на русский язык «Устав дел ратных», в котором, кроме правил образования и разделения войска, действий пехоты, рассматривались и правила сооружения крепостей, их осады и обороны. Своеобразную роль учителей инженерного дела в русской армии взяли на себя шведские офицеры. Инженерные работы производились, как правило, наемными людьми, набираемыми из дворян, боярских детей и дьяков. Все они получали денежное и натуральное жалование.
По социальному происхождению первые русские инженеры принадлежали чаще всего к служилому сословию. Высший инженерный состав – воеводы, полковники, головы и другие офицеры были выходцами из московских или городовых чинов «служилых по отечеству».
Иностранные инженеры, находящиеся на русской службе, как правило, имели чин полковника. Низшие разряды русских инженеров принадлежали к служилому сословию, к городским чинам, несущих «осадную службу» в провинциях. Кроме того, имелись ремесленники, знавшие инженерное дело, они относились к разряду служилых людей «по прибору», в котором выделялись разряды пушкарей и затинщиков (т.е. работников, обслуживающих осадные орудия – «затинные пишали»), а также другая артиллерийская прислуга.
Эпоха коренных преобразований в инженерном деле связана с именем Петра І. Почти непрерывные войны, сопровождавшие его царствование, сделали необходимым развитие как военного искусства вообще, так и инженерного, в частности. Недостаток просвещения теперь стал главным препятствием к успешной подготовке русских инженеров. Основной же целью преобразовательной деятельности Петра І было дать возможность России стать самостоятельной развитой державой и обходиться по возможности без иностранцев. Именно это и послужило причиной основания корпуса собственных, русских инженеров.
Многочисленные войны, проводимые Петром І, со всей отчетливостью показали все недочеты и прорехи в инженерном деле того времени. Боевая тактика осадной войны сводилась в основном к блокаде, при которой инженерные работы либо отсутствовали, либо велись в весьма ограниченных размерах.
Сложная осадная техника в XVII в. практически не использовалась. Основным инструментом завершающего приступа была лестница. Удача при осаде основывалась главным образом на мужестве и храбрости войска, а не на искусстве инженеров.
Командование шло на большие людские потери при штурме, так как не было ни хороших руководителей осад, ни эффективной осадной артиллерии. Сказывался и недостаток теоретических познаний по инженерной части. Несмотря на то, что к началу XVIII в. при русской армии служило множество иностранных инженеров, потребность в знающих специалистах не была удовлетворена. Иностранцы чаще всего использовались как инженеры-строители и администраторы, но ни один из них не приобрел известность как военный инженер. Нередко инженерные обязанности при осадах исполняли артиллерийские обер– или унтер-офицеры, а при армии – кто-либо из офицеров штаба, имевших познания в инженерном искусстве.
Первым шагом в распространении инженерных знаний среди русских было направление молодых дворян за границу с целью изучения там архитектуры, корабельного искусства и инженерного дела.
Петр І сразу по возвращении из своего первого путешествия по Европе приступил к учреждению учебного заведения, получившего название Школы математических и навигационных наук (1708 г.). В числе предметов, преподававшихся в школе, входили арифметика, геометрия, тригонометрия, а также их практическое применение в артиллерии, фортификации, геодезии, мореплавании.
В 1712 г. открывается первая, а в 1719 г. – вторая инженерные школы, куда начали поступать дети из знатных русских фамилий. В числе первых слушателей были князь Мещерский, граф Гендриков, князь Вяземский и другие. Московская и Петербургская школы находились в ведении немецких инженеров, преподавание велось, как правило, на немецком языке. Выпускникам школ присуждалось звание кондуктора, а в дальнейшем инженера-прапорщика.
В инженерных школах петровского времени курсы преподавания не утверждались сверху. Многое зависело от заведовавшего школой офицера. Если один из них по собственному усмотрению вводил в курс новый предмет, то другой, приходивший на смену, мог исключить его. К числу таких необязательных дисциплин относились архитектура, геодезия и другие предметы, необходимые для несения службы офицера инженерных войск.
Качество образования в этих первых инженерных школах не удовлетворяло даже тем скромным требованиям, которые предъявлял XVIII в.
Юноши, посвятившие себя военно-инженерному делу, получали в основном теоретическую, математическую подготовку, дальнейшее же образование по инженерной части им приходилось получать практическим путем, в ходе службы в звании кондукторов. И все же эти первые шаги инженерного образования дали свои плоды: во-первых, повышался образовательный уровень людей военного звания, а во-вторых, постепенно складывался круг образованных инженеров русского происхождения.
Кроме специализированной подготовки военных инженеров, Петр І в 1713 г. издал Указ о том, что все офицеры в свободное время должны обучаться инженерству. Таким образом число русских технических специальностей мало-помалу росло, что привело впоследствии к образованию инженерного корпуса. Датировать его возникновение довольно трудно. Но мы будем считать первым официальным доказательством существования инженерных чинов штатное положение о полевой артиллерии от 1712 г., согласно которому она имела структуру: 1) генеральный штаб, к нему принадлежали лица главного управления артиллерии и фортификационной части; 2) полк в составе двух команд инженеров и понтонеров.
Состав инженерной команды был следующим: два капитана, два капитан-поручика, два поручика, два подпоручика, 24 кондуктора, пять батарейных мастеров. Малочисленность инженерной команды и дефицит высших чинов, которым можно было бы вверить управление инженерной частью, были причинами первоначального присоединения инженеров к армии. Кроме того, некоторая часть инженеров состояла на службе при военной канцелярии. В 1722 г. вышло определение военной коллегии, в котором говорилось, что в каждом полку должны быть свои инженеры: один обер-офицер и два кондуктора. Инженерам выплачивалось жалование в размере 300 руб. в год, что равнялось жалованию обер-комиссара, но в два раза меньше жалования майора.
В 1723 г. инженерная и минерная роты были слиты, а в 1724 г. Петр І приступил к формированию инженерного полка, в котором инженеры были разделены на два разряда: полевых и гарнизонных. Эти факты свидетельствуют о том, что численность инженеров в то время была уже довольно значительной, а круг действий вполне определен. Именно с того времени можно считать, что военно-инженерная профессия перешла на свою институциональную стадию, опередив гражданскую специальность где-то на 100 лет. Следует заметить, что развитие профессии инженера в военной сфере России отставало примерно на 60 лет от европейских темпов. А как же обстояло дело с применением инженерного труда в гражданских областях?
Вплоть до петровского времени Русь была страной кустарной промышленности. Существовавшие заводы были чаще всего небольшими домашними заведениями. Найболее крупными в то время являлись оружейные, литейные и суконные предприятия (т.е. отрасли, которые обслуживали армию). Но в целом, если не считать единичных попыток иностранцев основать на Руси фабрики и заводы в XVI–XVII вв., до Петра І фабричной промышленности не было.
Инженерные функции на заводах и фабриках петровского времени вменялись в обязанности определенной категории работников. Гражданских инженеров в современном смысле слова не было. Основной рабочей массой были поссесионные крестьяне, приписываемые к фабрике, кроме того, на заводах работали под караулом преступники, солдаты, военнопленные. Такой контингент рабочей силы характеризовался низкой производительностью труда, отсутствием навыков для тщательной и тонкой работы, незаинтересованностью в результатах своего труда. Но кроме этой, часто недисциплинированной и неквалификацированной массы, на фабриках имелись мастера, знавшие технологию производства и, по существу дела, объединявшие в своем лице и инженера, и квалифицированного рабочего, и ремесленника.
К примеру, на Липецком металлургическом заводе, основанном в 1712 г., были такие мастера – руководители: плотинного и мехового дела; доменного, пушечного и сверляного дела; «ложного» дела мастера; «ружейные заварщики», руководившие выработкой стволов, «ружейные мастера», «ружейного дела замочные отделщики» и т.п.
Если судить о структуре фабричных работников по табеле «Генина»1, составленном в 1723 г., то можно сделать вывод, что на металлургическом заводе XVIII в. на одного обученного мастера приходилось 25–35 неквалифицированных или полуквалифицированных работников.
Простой надзор осуществляли «сторожа», а мастера контролировали технологию производства. Кроме того, при заводе имелось управление и канцелярия, причем численность конторских служащих состовляла везде примерно 10 % к общей численности промышленно-производственного персонала2. Самым крупным предприятием первой четверти XVIII в. был Сестрорецкий оружейный завод, на котором работало более 600 чел. (крупным в то время считалось предприятие со 100 работающими).
В XVIII в. состоялось окончательное прикрепление мастеровых к фабрикам, что тормозило рост производительности труда и улучшение качества товаров. Отсутствие необходимой для развития капитализма свободы предпринимательской деятельности сказывалось и на иновационной активности.
Изобретения делались по-преимуществу следующими группами лиц: самими фабрикантами, стимулируемые к усовершенствованиям погоней за прибылью, а также изобретателями-самородками, которые в силу своего природного дарования кустарным образом изготовляли «диковинки», различные автоматы и механические безделушки для придворных развлечений.
Первое время после смерти Петра внутренняя политика шла по той же колее: поощрялось устройство новых фабрик предоставлением фабрикантам привилегий, денежных ссуд, припиской к фабрикам крестьян и мастеровых. При Екатерине ІІ промышленная политика постепенно проникается духом предпринимательской свободы и поощрения частной инициативы. Многие привилегии уничтожаются, дается право открывать фабрики крестьянам (1762 г.), отменяется требование получения разрешения на их открытия (1775 г.), ликвидируется главный орган промышленной регламентации – Мануфактур-коллегия (1785 г.). Если в первой половине XVIII ст. крупное производство развивалось весьма медленными темпами, то начиная с 60-х годов это развитие происходило с нарастающим ускорением. За годы царствования Екатерины ІІ число фабрик и заводов увеличилось более чем вдвое. Все это обусловливало необходимость наличия людей, способных решать возникающие технические проблемы, знающих технологии, умеющих заниматься разработкой техники и создавать ее.
В Ы В О Д Ы
С глубокой древности на Руси решались оригинальные технические проблемы, связанные со строительством, развитием металлургических процессов (изготовление металлов, литье колоколов, пушек и т.д.), другими сложными технологиями.
На первом этапе – до конца XVIII века инженерное дело развивается в соответствии с потребностями становления хозяйственной деятельности. Первые шаги отечественного инженерного дела были весьма робкими по сравнению с Западной Европой.
Инженерное искусство получает мощный импульс вследствие реформирования российского государства Петром І. Однако этот процесс идет с помощью иностранных специалистов, западных идей, новшеств и некоторого развития собственных возможностей.
На этапе становления инженерной профессии в России возникает специальное высшее образование, появляется промышленное законодательство и его институты в виде мануфактур, коллегий и других учреждений, проводивших техническую политику и отчасти регулировавших деятельность инженеров; происходит выделение инженеров в особый род войск; появление гражданской инженерной специальности, связанной с развитием промышленного производства.
Происходит определенный перелом в развитии инженерного дела, возникает инженерная профессия и первые профессиональные учебные заведения, что ускоряет становление профессии инженера в России.
Тема VI. ВКЛАД ОТЕЧЕСТВЕННЫХ УЧЕНЫХ
В СТАНОВЛЕНИЕ И РАЗВИТИЕ ИНЖЕНЕРНЫХ НАУК
Инженерные науки вооружают инженеров, техников знанием и умением решать сложные задачи создания станков разного плана и назначения, возведения различных сооружений, позволяют рассчитывать силы водяных и газовых потоков, движущих турбин или обтекающих корабли и самолеты, летательные космические аппараты. Неcомненно, основой инженерных наук является механика. Знание механики как основы инженерных наук крайне необходимо строителям и зодчим. Они возводят наши жилища, корпуса заводов и фабрик, здания школ и больниц, театров и музеев, воздвигают башни и арки, строят мосты, метрополитены и многое другое.
В настоящей лекции идет речь о вкладе отечественных ученых, строителей, конструкторов в становление и развитие инженерных наук.
1. Cтановление отечественных инженерных наук.
2. Вклад отечественных ученых в инженерные науки.
Еще в глубокой древности Русь славилась своими умельцами – литейщиками, оружейниками, ювелирами, строителями ветряных и водяных мельниц. Материалы археологических раскопок показывают, что уже в VІІІ веке наши предки применяли токарную обработку. В период Киевской Руси еще совершеннее становится техника ремесел. Славилась, в частности, своей добротностью проволока, изготовленная мастерами искусно владевшими техникой волочения.
Средневековые русские мастера умели делать сложные механические устройства – часы, хитроумные замки, сверлильные и токарные станки, станки для чеканки монет, ткацкие станки, самопрялки, копры для забивания свай, подъемные сооружения, лесопильни. Русские мастера искусно поднимали на высокие башни огромные колокола.
Опыт, накопленный русскими ремесленниками, создал благодатную почву для развития теории, накопления практических знаний.
Отечественные ученые внесли много ценного в разработку теории машин, механизмов, строительных конструкций. В отечественных древних книгах на эту тему излагались знания, накопленные русскими и иностранными мастерами в практической деятельности. Можно упомянуть, например, вышедшее на рубеже XVI–XVII веков руководство по бурильной технике «Роспись, как зачат делат новая труба на новом месте» (1620 г.) Много ученых сведений по технике содержал знаменитый «Устав ратных, пушечных и других дел, касающихся воинской науки». Автором этой книги был выдающийся деятель русской техники XVII века Онисим Михайлов (предшественницей «Устава» была «Воинская книга», напечатанная Михаилом Юрьевым и Иваном Фоминым). Большая часть книги посвящена артиллерии и фортификации. Однако в «Уставе» разбирается и много общетехнических вопросов. Замечательно, что в книге изложение технических вопросов основано на данных математики. Много сочинений, посвященных технике, появилось во второй половине XVII века.
В начале XVIII века в России стали появляться сочинения, написанные уже специалистами-учеными. Одним из таких ученых был Г.Г.Скорняков-Писарев, выпустивший в 1722 г. книгу «Наука статическая, или механика» – первый русский труд, посвященный специально механике. В 1738 г. вышла в свет книга «Краткое руководство к подписанию простых и сложных машин, сочинение для употребления российского юношества». То был перевод с латинского языка (на котором в те времена писались научные труды) сочинения петербургского академика Крафта. Перевод был сделан адъюнктом Академии наук В.Е. Адодуровым. Книга эта послужила источником знаний для нескольких поколений русских механиков. Примечательна эта книга еще тем, что в ней впервые шла речь о машиноведении как об отдельной науке, а не только как о разделе физики.
Во второй половине XVIII в. появляется новый оригинальный учебник механики, написанный русским автором. Эта книга, изданная в 1764 г. Яковом Козельским, называлась «Механические предложения для употребления обучающегося при Артиллерийском и Инженерном шляхетном кадетском корпусе благородного юношества». Ценные учебники по механике и сопрадельным научным дисциплинам написали Д. С. Аничков, Н. Г.Курганов, Е. Д. Войтяховский.
Русскими учеными и исследователями были решены важные вопросы машиностроения. Так, Леонард Эйлер выводит знаменитую формулу (1765 г.), которая дает возможность по коэффициенту трения определить основные конструктивные элементы механизма с гибкими звеньями. Эта формула является только составным звеном общей теории трения. Эйлер занимался изучением трения в течение многих лет, продолжая исследования трения в машинах и механизмах. Первый труд, посвященный трению в машинах и механизмах был издан в Петербурге в 1727 году. Л.Эйлер необычайно углубил теорию трения и придал ей математически совершенный вид. В своем классическом сочинении «Механика» он успешно решил вопросы механики методом математического анализа. От этой книги идут, как признают ученые, пути дальнейших поисков в области аналитической механики.
В 1760 году Эйлер выпустил в свет труд «О движении твердого тела». В этом сочинении, как писал академик А.Н.Крылов, «вопрос о составлении дифференциональных уравнений получил полное и окончательное решение, которым пользуются и до сих пор».
Следует еще раз сказать, что в богатом наследии Эйлера – им оставлено 865 трудов – многое посвящено механике. Эйлер был не только ученым-теоретиком, но занимался и чисто инженерными делами, проверкой качеств насосов и чувствительности весов для взвешивания монет, принимал участие в экзаменах «машинных дел подмастеров».
Говоря о вкладе отечественных ученых в развитие и становление механики, инженерного дела нельзя не остановиться на вкладе М.В.Ломоносова в решение названных выше проблем. Исходим мы здесь не из традиционного подхода оценки Ломоносова как величайшего русского ученого, а из его конкретного вклада в механику, в инженерное дело.
Понимая огромную важность «приборного искусства» для создания машин и механизмов, Ломоносов изобрел ряд специальных устройств и приборов: машины для испытания материалов на твердость, инструмент «для раздавливания и сжимания тел», с помощью которых он исследовал прочность различных материалов. В лаборатории Ломоносова родился первый вискозиметр – прибор для определения вязкости жидкостей. Такими приборами пользуются машиностроители для правильного подбора смазочных материалов.
Ломоносов оставил ряд интереснейших исследований часовых механизмов, высказал мысль об использовании в часах хрусталя и стекла для уменьшения трения. Ученый выступал не только как теоретик, но и как конструктор. Им были построены токарный и лобовые станки, созданы проекты коленчатых валов, водяных помп, лесопильных мельниц.
Заслуга М.В.Ломоносова перед механикой состоит и в том, что под его руководством работали мастерские Академии наук, ставшие одним из центров русской технической мысли. После смерти М.В.Ломоносова они пришли в упадок и только после того как в 1769 г. во главе мастерских становится Иван Петрович Кулибин, они занимают то место, которое занимали при Ломоносове.
Многочисленные изобретения Кулибина свидетельствуют, что он был инженером в современном смысле слова. Об этом говорят факты. Он строил свои творческие замыслы на прочной основе строгих расчетов и тщательных исследований. В частности, задумав мост через Неву, Кулибин воплотил его в точные и подробные чертежи. К 1776 г. изобретатель закончил проект, доныне удивляющий нас замечательной глубиной инженерного решения, красотой и изяществом конструкций. Интересен метод, при помощи которого Кулибин провел предварительную проверку возможностей сооружения. Натянув веревку и подвешивая к ней в определенных местах грузики, изобретатель воспроизвел как бы подобие своего моста и сил, действующих на мост. Построил Кулибин и специальную испытательную машину, с помощью которой он проверял свои расчеты.
Создав подобие моста и определив нагрузки, которые способна выдержать модель, Кулибин мог совершенно точно установить и наибольшую нагрузку, которую сможет вынести его мост-гигант. Таким образом, знаменитый российский механик внес важное решение: как в модели воспроизвести точное механическое, а не только геометрическое, внешнее подобие крупного сооружения.
Следует заметить, что Эйлер тщательно проверил расчеты Кулибина и, убедившись в их абсолютной правильности, дал о них восторженный отзыв. Эйлер облек теоретическое открытие Кулибина в математическую форму. Метод подобия вошел в технику как одно из мощнейших ее средств. В практике ни одно ответственное сооружение не строится, прежде чем его маленькое подобие – модель – не пройдет всесторонних испытаний.
Неустанно работала отечественная мысль над развитием теории механики. Так, продолжая дело Ломоносова и Эйлера, академик С. Котельников в 1774 г. выпустил книгу, содержащую учение о равновесии и движении тел. Особенно активизировались поиски решения технических проблем после открытия в 1755 г. Московского университета. В начале ХІХ века академик С. Е. Гурьев опубликовал несколько работ по теории машин и механизмов, в том числе «Основы механики» и «Главные основания динамики». С особенно пристальным вниманием ученый разбирал «общее правило равновесия с приложением оного к «махинам».
Вопросы механики занимают большое место в «Начальных основаниях общей физики», выпущенных в 1801 г. профессором Московского университета П. И. Страховым.
Трудно перечислить все имена выдающихся деятелей российской науки и техники. Имена многих из них стали гордостью всего передового человечества. Одним из таких людей был гениальный математик и механик Михаил Васильевич Остроградский (1801–1862), который был учеником известного математика Огюстена Коши (преподавал в Политехнической школе и Сорбонне). Принцип Остроградского–Гамильтона – жемчужина теоретической механики. Все механические системы подчиняются этому принципу. Руководствуясь им, можно в математических уравнениях отобразить механические процессы. Уравнения, основанные на принципе Остроградского-Гамильтона подсказывают инженерам пути наилучшего разрешения стоящих перед ними задач.







