355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Пушкин » Информатика, кибернетика, интеллект » Текст книги (страница 16)
Информатика, кибернетика, интеллект
  • Текст добавлен: 24 сентября 2016, 01:40

Текст книги "Информатика, кибернетика, интеллект"


Автор книги: В. Пушкин


Соавторы: А Урсул

Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 16 (всего у книги 27 страниц)

Таким образом, обучающая машина представляется принципиально новым элементом образования. Она выступает как инструмент для объективного исследования проблем в этой области Она предназначается не для замены и устранения учителя, а скорее для помощи в осуществлении его идей и указаний и повышает их эффективность. Машина берет на себя часть утомительной черновой работы, учитель же, по-прежнему сохраняя ответственность за планирование всего процесса обучения, не тратит время на "натаскивание", проверку заданий и т.д. Машина позволит учителю лучше определять и учитывать индивидуальные потребности его учеников. Ученик же из пассивного приемника информации превращается в активного участника процесса обучения, причем его постоянный контакт с учителем обеспечивается машиной [61].

171

Обучающая машина – устройство, предназначенное для реализации обучающих программ – выполняет следующие функции: предъявляет обучаемому порции учебного материала, контрольные задания, вопросы; требует, чтобы обучаемый ответил на предъявленные вопросы, выполнил задания и ввел ответ в машину; сообщает обучаемому, правильно ли он ответил, а в ряде случаев указывает и тип допущенной ошибки; обеспечивает индивидуальную работу в удобном для обучаемого (либо в контролируемом) темпе, а зачастую – и ту или иную степень адаптации к индивидуальным особенностям обучаемого [62]. Особого внимания заслуживает свойство адаптивности обучающей машины. Адаптивными называют такие обучающие машины, которые на основе обработки последовательности ответов обучаемого могут изменять способы изложения учебного материала с сохранением качества обучения при произвольных внешних и внутренних условиях обучения. По имеющимся данным, применение адаптивных обучающих машин сократит время обучения в среднем на 30% при сохранении качества обучения, достигаемого по разветвленной обучающей программе [63]. Адаптивная обучающая машина выбирает вариант обучающей программы, дающий возможность оптимизировать процесс обучения.

Внедрение в обучение достаточно гибких и эффективных способов управления познавательной деятельностью обучаемых в последние годы идет по пути использования ЭВМ в качестве обучающей машины. Это способствует не только высокой степени адаптации к каждому обучаемому, но и обучению методам решения сложных задач. Вычислительная машина обеспечивает такое управление, при котором обучаемый от исходной ситуации может двигаться различными путями, причем одни из них неверные, а другие – верные. Возможности ЭВМ особенно ярко раскрываются в тех случаях, когда вычислительная машина является не только средством обучения, но и объектом изучения [64].

Использование вычислительных машин в качестве обучающих машин позволяет решить задачу комплексной автоматизации учебного процесса. Вместе с тем, как отмечает Л. И. Ноткин, "сам факт возможности выполнения некоторого класса интеллектуальных операций машиной не может еще служить полноценным критерием для включения или невключения этого класса операций в программу обучения человека. Несомненно также и то, что творческое и рутинное представлено в мышлении человека нераздельно. Поэтому распределение функций между человеком и ЭВМ не следует понимать как прямую "экстериоризацию" нетворческих компонентов мышления человека" [65].

Обучающая машина уже в силу того, что она должна быть адаптивной, необходимо приводит к идее обучающейся машины. Ее свойства описывает Ст. Бир [66] на примере обучающейся машины Паска. Последняя рассматривает ученика как "черный ящик". Она может управлять входами и измерять выходы, но не прини

172

мает во внимание характера внутренних связей ученика. Она просто манипулирует входами на основе вероятностных характеристик, которые она сама обнаруживает. Машина также есть "черный ящик". Ее входы (реакции ученика) влияют на ее выходы. Система, включающая ученика и машину, представляет собой один из видов гомеостата, так как один "черный ящик" постоянно предлагает новые состояния другому, изменяя свое поведение под влиянием реакций партнера. Вся система стремится к устойчивому состоянию, критериями которого являются быстрота и точность работы. Более того, состояние равновесия будет ультраустойчивым, ибо эта система обладает способностью находить устойчивое состояние, подстраиваясь при непредвиденных возмущениях, поступающих из окружающей среды. Наконец, система Паска, включающая обучающуюся и обучающую машины, наглядно иллюстрирует само понятие кибернетического управления. Система постепенно приходит в уравновешенное состояние, хотя к ней не прикладывают резких и радикальных воздействий, в ней не фигурируют категорические приказы и наказания. Мы наблюдаем только эволюцию – развитие к зрелости. Следовательно, отличительная особенность таких машин – способность к обучению и приспособлению к окружающей среде [67].

Решение проблемы эффективного обучения людей приводит к необходимости создания самообучающейся кибернетической системы с элементами самоорганизации. Нередко этот вопрос освещается следующим образом: "Кибернетические системы способны к обучению (с "учителем"), но элементы активности при этом остаются за "учителем", то есть человеком, а на долю устройства остается выполнение лишь алгоритмических предписаний. К самообучению и самоадаптации современные технические системы, строго говоря, не способны, не будучи самоорганизующимися системами" [68]. Такой акцент на техническую сторону проблемы не выражает, однако, сути дела.

В рамках технической кибернетики самоорганизующиеся системы включаются в более широкий класс адаптивных систем. Адаптивными называют системы, в которых способ (алгоритм) функционирования управляющего устройства автоматически изменяется целенаправленным образом для осуществления успешного или в каком-либо смысле наилучшего управления объектом. Характеристики последнего или воздействия внешней среды могут изменяться заранее непредвиденным образом. Благодаря успехам кибернетического моделирования созданы простейшие модели самоорганизующихся систем. Так, гомеостат Эшби представляет собой систему, цель деятельности которой предопределена, но поведение, при помощи которого эта цель достигается, не фиксировано. Важным этапом на пути к созданию более совершенных устройств являются самонастраивающиеся автоматы (типа автопилота). Задача последних приспосабливаться к варьированию свойств среды, изменяя свою структуру, и стремиться выйти на

173

оптимальный режим работы. Принцип самонастройки отличается от принципа самоорганизации тем, что на его основе изменяются лишь некоторые параметры алгоритма управления, в то время как самоорганизация связана с изменением структуры самого алгоритма.

Необходимо выяснить смысл таких понятий, как "адаптация", "обучение" и "самообучение", так как они включаются в "самоорганизацию", образуя ее необходимую основу. Вышеперечисленные понятия наиболее модны в теории автоматического управления. Поскольку эти термины, как правило, не имеют однозначного толкования, мода на них нередко превышает функцию, что выражается в фантастических рассуждениях, встречающихся подчас в популярной литературе по кибернетике. Научная интерпретация этих понятий может быть достигнута при обеспечении двух условий: наличия содержательных понятий адаптации, обучения и самообучения и создания математического аппарата, адекватного этим понятиям. Обсуждение указанных понятий на содержательном уровне правомерно с единой точки зрения. В этом плане заслуживает внимания подход Я. 3. Цыпкина [69]. Под обучением понимается процесс выработки в системе той или иной реакции на внешние сигналы путем многократных воздействий и внешней корректировки. Предполагается, что система потенциально способна к обучению. Внешняя корректировка, то есть "поощрение" или "наказание", осуществляется "учителем", которому известна желаемая реакция на определенные внешние воздействия. "Учитель" сообщает системе дополнительную информацию о том, верна или не верна ее реакция.

Самообучение отличается отсутствием внешней корректировки; это обучение без поощрения или наказания. Дополнительная информация о верности реакции системе не сообщается. Адаптацией называется процесс изменения параметров и структуры системы, а возможно и управляющих воздействий на основе текущей информации с целью достижения определенного, обычно оптимального состояния системы при начальной неопределенности и изменяющихся условиях работы. Наиболее характерная черта адаптации – накопление и немедленное использование текущей информации для устранения неопределенности, вызванной недостаточной априорной информацией с целью оптимизации избранного показателя качества.

Что же касается второго условия интерпретации данных понятий – создания адекватной математической теории, то выполнить его труднее. Но такой математический аппарат (хотя и в зародышевой форме) существует. Он содержится, с одной стороны, в сформировавшейся к настоящему времени математической статистике, а с другой – в интенсивно развивающейся новой дисциплине, известной под названием математического программирования.

174

Как видим, понятие самоорганизации уточняется в терминах даптации (оптимизации), обучения и самообучения, в частности, в теории математического программирования.

Наряду с понятием самоорганизации в теории автоматов пользуются понятиями самоизменения и самосовершенствования. Важно определить их субординацию. В первом приближении понятия самоорганизации и самосовершенствования отождествляются. Основное содержание и того, и другого – самообучение. Так, В. М. Глушков пишет: "Автомат естественно называть самосовершенствующимся, или самообучающимся, если по мере удлинения истории обучения он улучшает свои ответы" [70]. Различают самосовершенствование, заранее предопределенное конструктором автомата, и самопроизвольное самосовершенствование, детерминированное фактически имевшей место историей обучения и потому не планируемое заранее. Очевидно, лишь второй тип самосовершенствования заслуживает такого названия.

Понятие самоорганизации, тем не менее, является более общим, чем понятие самосовершенствования. Это вытекает из интерпретации, предложенной У. Р. Эшби, относительно любой кибернетической (самоорганизующейся) системы [71]. Применительно к обучающимся автоматам при самосовершенствовании должно улучшаться качество ответов. При самоорганизации качество ответов может вовсе не определяться; необходимо лишь, чтобы автомат по мере обучения увеличивал в среднем их определенность. Что касается понятия самоизменения, то оно оказывается еще более широким. Автомат называют самоизменяющимся, если он меняет с течением времени ответы на задаваемые ему вопросы. Ясно, что не всякое самоизменение следует отождествлять с самоорганизацией. Опираясь на интуитивное представление о самоорганизации, естественно называть самоорганизующимся автомат, который улучшает организацию своих ответов при улучшении организации возможных его историй обучения.

Итак, понятие самоорганизации, обобщенное в случае кибернетической системы, оказывается более общим, чем понятие самосовершенствования, и менее общим, чем понятие самоизменения. Самоорганизация, будучи кибернетической категорией, не ограничивается техническим уровнем. Особый интерес представляет рассмотрение самоорганизующихся систем в живой природе и в обществе. Самоорганизация – это тот механизм, который лежит в основе эволюции биологических форм и определяет ряд важных закономерностей развития экономических и социальных систем. Механизм самоорганизации, что нетрудно заметить, является необходимым условием эффективного функционирования систем обучения.

Доминирующее значение в этом плане имеет концепция совершенствования внутренней модели внешнего мира, общая для всех обучающихся систем и выражающая факт обучения машин в зависимости от ситуаций внешней среды [72]. Сбор, обработка и запоминание информации в процессе создания моделей окружения

175

представляют собой одну из основных и простых форм обучения. К. Штейнбух относит к обучающимся автоматам такие автоматы, функционирование которых улучшается в желаемом направлении [73] на основе информации о внешнем мире. Система обладает способностью к моделированию, если она, прежде чем совершить какое-либо действие, направленное во вне, определяет с помощью заключенной в ней модели внешнего мира предполагаемые его реакции на различные ее действия и совершает только действия, вызывающие желаемую реакцию. Обучение системы заключается в том, что она в соответствии с прежними успехами или неудачами улучшает внутреннюю модель внешнего мира.

Взаимодействие между внешним миром и обучающейся системой соответствует тому, что обычно называют методом проб и ошибок. Здесь имеется определенное сходство с мутацией и естественным отбором в биологии. Ошибаясь, система накапливает опыт. Успешность обучения зависит, таким образом, от степени сложности внешней среды, от ее устойчивости или изменчивости. Так как под обучением понимается улучшение поведения на основе информации о внешнем мире, то поведение внешнего мира существенно влияет на процесс обучения. Последний предусматривает, по крайней мере частично, постоянство функционирования внешнего мира [74]. Вместе с тем продолжительность обучения системы (пока поведение ее не станет оптимальным), естественно, сильно зависит от объема сообщенных ей сведений о внешнем мире.

Иногда утверждают, что автомат может научиться выполнять лишь то, для чего он создан. По замечанию К. Штейнбуха, это правильно в том смысле, что автомат, так же, как и человек, может делать только то, что физически возможно при его конструктивных элементах и структуре. Когда же эти ограничения отпадут, не будет и причин, по которым автоматы должны сдерживаться в своем развитии интеллектуальным уровнем человека. "Они должны, – пишет К. Штейнбух, – развиваться подобно живым организмам, а именно: встать на путь мутаций и естественного отбора. При этом продолжительность их эволюции можно значительно сократить за счет того, что в качестве исходных данных в самоорганизующиеся автоматы "вкладывается" человеческий интеллект" [75]. Весьма существенно то, что автомат совершенствует свой интеллект в непосредственной связи с внешним миром. Пока автомату навязывают человеческие "предрассудки", его интеллект ограничен. Независимость от заранее предписанных правил поведения является для автоматов предпосылкой более высокой ступени развития их интеллекта. Достижение этого облегчает то обстоятельство, что автоматы свободны от биологических ограничений, которые связывают человека (усталость, старость и т.д.).

Кибернетический аспект проблемы обучения включает в себя введенное К. Штейнбухом понятие обучающейся матрицы. Структура обучающейся матрицы создается двумя наборами проводни

176

ков, в местах пересечения которых формируются условные связи [76]. Представляя собой новый принцип переключения в технике связи, подобные устройства выполняют нечто функционально близкое к процессахМ абстрагирования. Обучающаяся матрица как техническая модель обучающейся системы имитирует сложные процессы обучения, проявляя некоторые свойства нейрофизиологической структуры человеческого мозга. Обучающиеся матрицы как системы с внутренней моделью внешнего мира обеспечивают возможность технической имитации более высоких ступеней абстракции и, значит, сложных теоретико-познавательных проблем [77]. Между структурой человеческого аппарата познания и структурой обучающейся матрицы устанавливается, по меньшей мере, отношение гомоморфизма. Оно обнаруживается в понимании обучения как способности улучшить (оптимизировать) внутреннюю модель внешнего мира на основе опыта. В этом плане неубедительно утверждение о том, что "существующие системы искусственного интеллекта и перспективные программы их совершенствования возможно рассматривать в качестве теории только таких "умственных функций человека", к формированию которых не следует стремиться при обучении" [78]. Выходит, что такие неотъемлемые характеристики искусственного интеллекта, как абстрагирование, логическая глубина, точность и тому подобное не следует формировать у человека.

Способность обучаться является элементом поведения, возникающим в результате специфического рода взаимодействия между двумя или более связанными друг с другом контурами оптимальных величин. Система, чтобы быть способной обучаться (то есть улучшать свою внутреннюю модель внешнего мира) нуждается по крайней мере в одном двумерном контуре оптимальных величин. Образование многомерных контуров оптимальных величин в системах органической природы и в обществе является продуктом самоорганизации и способности обучаться. Как отмечает Г. Клаус, "способность обучаться делает возможным приспособление частичных систем, в ходе которого поведение всей системы обнаруживает прогрессирующую тенденцию оптимизироваться. Она ведет, по крайней мере в своей тенденции, к тому, что из множества возможных стратегий в каждом конкретном случае без долгих поисков может быть выбрана и использована оптимальная стратегия. Если в определенной области можно было бы фактически достичь этой ступени, то там возможности обучения были бы исчерпаны [79]. Факт, что подобные области существуют, доказывают, например, так называемые автоматизмы человеческого поведения, не требующие уже больше мыслительной работы или особой сосредоточенности.

Следовательно, обучающие матрицы как модели поведения имеют большое эвристическое значение. Они подтверждают положение о том, что функции обучения и познания человека можно имитировать, воспроизводить с помощью машины. Это развитие

177

выражает внутренние закономерности современного естествознания и техники, ориентацию их на решение комплексной проблемы симбиоза человека и машины.

Обучение как важнейшая форма деятельности интеллекта может служить одним из критериев интеллектуальности поведения системы. В этом плане выделяют два типа разума, сходных в том смысле, что оба они требуют обучения, и различных по их отношению к процессу обучения [80]. Первый тип, адаптивный разум, присущ, например, студенту, который обучается только тому, чему его учат преподаватели и на что его наталкивает опыт. Второй тип, творческий разум, присущ студенту, который идет дальше и находит свой собственный путь. Таким образом, умственные способности человека проявляются в том, что он должен: а) уметь обучаться, то есть в непосредственном взаимодействии с внешним миром приобретать информацию и интегрировать ее во внутренней модели, добиваться понимания, то есть уметь связывать приобретенные знания с фактами и явлениями действительности; б) обладать способностью умственной приспособляемости, то есть способностью отказываться от привычных шаблонов и находить новые конкретные взаимосвязи; в) обладать умственной зрелостью, передавать сообщения другим интеллектуальным людям и с этой целью создавать систему знаков, то есть кодировать сообщения. Это предполагает способность конструирования и идентификации знаков.

Машина также может обучаться. При наличии достаточно сложной программы она может реагировать на новую ситуацию. Она способна решать задачи. Она может руководить действиями [81]. Во всех этих случаях, как отмечает Д. Финк [82], поведение машин и людей отличается не по типу, а по уровню. Это характеризует искусственный разум – разум машины с поведением, которое, если бы оно наблюдалось у человека, могло бы быть названо разумным. Искусственный разум обладает такими важными чертами, как способность организовывать информацию в значимые информационные комплексы, распознавать, запоминать, вспоминать эти комплексы и оперировать ими в процессе игры, решения задач, ответа на вопросы и управления другими механизмами, а также способность адаптироваться в изменяющихся внешних условиях, и, в частности, реагировать на комплексы входных сигналов, не предусмотренные явным образом при конструировании.

Обычно предполагают, что решение современных проблем управления в социальной, экономической и промышленной сферах (так называемых глобальных проблем) лежат в пределах человеческих возможностей или что существующие способности человека могут быть развиты до необходимого уровня путем образования и обучения. Однако кибернетический подход – это подход, на основе которого становится очевидным, что человек не в состоянии решать стоящие перед ним в настоящее время проблемы управления, полагаясь только на свой собственный разум и не

178

прибегая к помощи технических (искусственных) средств. Ограниченность человеческого (безоружного) интеллекта, связанная с самой структурой мозга и аппарата познания, ставит проблему искусственного интеллекта как усилителя умственных способностей, возможность построения которого обоснована, в частности, теоремами Тьюринга – фон Неймана.

Понятие усиления интеллекта выводится из понятия усиления в кибернетическом контуре регулирования. Принцип усиления интеллекта имеет техническое соответствие в обучающихся автоматах, которые на основе первоначальной информации, полученной от человека, достигают интеллектуальной ступени и затем путем самостоятельного обмена информацией с окружающим миром в процессе обучения постоянно повышают свои интеллектуальные способности.

Обычно против положения об ограниченности мышления человека приводится аргумент, согласно которому человеческое мышление – это процесс коллективный. Разумеется, все существенные функциональные системы, удостоверяющие индивидуум как обучающуюся систему, оказываются отнесенными к общему как к целому. Само общество предстает в качестве системы обучающейся. В этом плане способность человека обучаться значительно возрастает именно потому, что в его распоряжении находится уже не только одно внутреннее накопление – собственный опыт, но и некоторое внешнее накопление – опыт всего общества. Уместно в этой связи упомянуть и другой аспект. "Положение о том, – пишет Г. Клаус, – что человек имеет общественную сущность, что знание и познание имеют общественный характер, – очень старо. На уровне современной кибернетики, при переносе ее результатов в область теории познания эти старые положения получают новые аспекты и новые перспективы" [83].

Кибернетический аспект обучения чаще всего ассоциируется с информационным подходом к обучению, который, в свою очередь, нередко сводится к способности вырабатывать максимальный объем информации, то есть к количественному показателю. Однако в действительности сокращение объема информации, отбор ее требуют намного более высоких способностей. Не случайно поэтому усиление умственных способностей неразрывно с усилением избирательности. "Решающим, – пишет Г. Клаус, – является именно отбор и ассоциативная способность человеческой информационной системы. Отбор информации, ассоциирование и накопление важной информации составляют в совокупности сознание" [84]. Прием и обработка информации не раскрывают еще сущности кибернетической системы. Через них можно лишь изменять внутреннюю модель внешнего мира, однако важнейшим компонентом обучения служит оптимизация этой модели.

Таким образом, склонность к обучению связана со стремлением системы постоянно совершенствовать внутреннюю модель внешнего мира. Последняя есть концентрированное отражение

179

определенных сторон и черт действительности, которое подчеркивает преимущество высших кибернетических систем по отношению к примитивным. Самообучающиеся кибернетические системы с признаками самоорганизации качественно обогащают процесс обучения, а человеко-машинные комплексы в обучении свидетельствуют о большой эвристической силе кибернетических методов, которая обеспечивает эффективность кибернетического направления в педагогике.

Однако наряду с интенсификацией и кибернетизацией процесса обучения важно не упустить из виду и другую сторону его. Кибернетическое направление в педагогике призвано изменить характер труда педагога и учащихся, наполнить его творческим содержанием. Оптимизация процесса обучения, придание ему научно обоснованных критериев, осуществление сотрудничества педагога и учащихся с помощью эффективных интеллектуальных средств социальной информатики должны сообщить процессу обучения и воспитания субъективно-гуманистическую направленность. Необходимо подчеркнуть, что все более широкое использование автоматизированных обучающих систем не изменяет центрального принципа педагогической науки, согласно которому преподаватель был и остается главным организатором педагогического процесса, а учащиеся при этом становятся подлинными субъектами своего собственного обучения.

Итак, две важнейших стороны педагогического процесса – гуманность и эффективность – приобретают на основе системно-кибернетического подхода характерные черты цельности, достигая уровня диалектического единства. Это конкретное единство выражено в формируемой здесь антропокибернетической концепции.

ГЛАВА VI

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И СОЗНАНИЕ

1. Проблема сознания и кибернетика

Степень философской разработки проблематики сознания достигла к настоящему моменту уровня, обусловливающего необходимость перехода от общей характеристики данного сложнейшего феномена к рассмотрению более конкретных, структурных и экспериментальных методов его исследования. В этом плане значительный интерес представляют естественнонаучный и кибернетический подходы к анализу сознания. Они открывают широкие возможности естественнонаучного и количественного уточнения этого понятия, помогая тем самым преодолеть отчасти сохраняющийся мистический момент в понимании психического.

Кибернетический подход к проблеме сознания предполагает прежде всего использование для описания и объяснения глубинных структур сознания понятийного аппарата кибернетики, а также принципиальных и действительных возможностей кибернетического моделирования определенных сторон (функций) сознания. Вместе с тем информационно-кибернетический анализ сознания переводит узкую специфичность психологического понятийного аппарата на уровень системного подхода с привлечением интегративных общенаучных категорий. Философское рассмотрение этих исследовательских тенденций призвано способствовать выработке аналитико-синтетического понимания природы сознания. Кибернетическое исследование проблемы сознания (психо-физической проблемы [1]) проливает новый свет на решение основного вопроса философии, показывает в общенаучном плане неправомерность идеалистических и агностических его решений.

Под сознанием обычно понимают специфически человеческое идеальное отражение объективной реальности посредством центральной нервной системы. Оно включает в себя единство чувственных и рациональных форм отражения, а также область человеческих эмоций и воли. Основной вопрос, относящийся к природе сознания в его первоначальной постановке, еще в древности звучал так: является ли сознание естественной деятельностью материального человеческого тела, его мозга или же оно произ-водно от нематериальной души [2]. Данный вопрос, будучи предметом обсуждения во многих различных философских системах, претерпел существенную эволюцию. При этом необходимо отметить тот интересный и немаловажный факт, что сознание находилось в центре внимания философии, можно сказать, с момента ее зарож

181

дения. Естествознание же в силу неразвитости своих методов начало заниматься изучением сознания (его нейрофизиологической основы) лишь в конце XIX в.

Диалектико-материалистическое учение о сознании основывается на обобщении соответствующих естественнонаучных результатов, практического опыта людей и критического освоения истории философской мысли. Если попытаться "просуммировать" основные моменты диалектико-материалистического учения о сознании, то можно выделить следующие положения:

1. Сознание возникло в результате длительной предыстории как функция человеческого мозга. Деятельность человеческого сознания есть деятельность материального тела, появившегося с образованием Земли 4,5 млрд. лет назад, развивавшегося и превратившегося в живую материю 3,5 млрд. лет назад, в форму млекопитающих животных – 200 млн. лет назад, в приматов – 60 млн. лет назад, в прямоходящую человекообразную обезьяну 30 млн. лет и в человека примерно 2 млн. лет назад или несколько более [3].

2. Со стороны своей нейрофизиологической основы сознание условно-рефлекторный процесс. Психические процессы, состояния, события осуществляются по законам высшей нервной деятельности. Морфологической основой всех сознательных процессов служит центральная нервная система человека, в особенности нейродинамические структуры первой и второй сигнальной системы в коре головного мозга. Однако мозг выступает не источником сознания, а лишь его органом. Сознание детерминировано материальным миром.

3. Сознание невозможно без нервной деятельности мозга, но не тождественно ей. Нервные процессы мозга суть объективные, материальные процессы природы. Сознание же представляет собой идеальную сторону этих процессов, продукт переработки мозгом воздействий материального мира. В результате последней возникают субъективные образы объективного мира. Психическое (сознание, мышление) есть вторичное по отношению к физиологическому, материальному. Поэтому нервные процессы и психические явления не тождественны друг другу, и положение об абсолютном слиянии психического и физиологического, с точки зрения диалектического материализма, не может быть признано правильным. Отождествление психического и физиологического так же ошибочно, как и отрыв психического от физиологического.

4. Хотя сознание есть продукт развития материи и может существовать лишь в неразрывной связи со своим материальным субстратом, само оно не является материей в смысле некоторого органического выделения, а представляет собой сложную деятельность, специфика которой состоит в способности отражать объективную реальность в идеальных формах, переводить материальное в идеальное. Сознание – это идеальное отражение материального мира и поэтому не может обладать самостоятельным содержанием.

182

5. Сознание имеет определенную структуру и организуется по своим специфическим законам. Конкретное содержание сознания – образы материального мира – представлено всегда в определенных формах. Эти формы субъективного отражения (ощущение, восприятие, понятие, суждение), а также законы чувственного опыта и мышления не даны в сознании априори. Они также являются, в филогенетическом рассмотрении, образами материального мира.


    Ваша оценка произведения:

Популярные книги за неделю