355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Азерников » Неслучайные случайности » Текст книги (страница 12)
Неслучайные случайности
  • Текст добавлен: 7 сентября 2016, 18:10

Текст книги "Неслучайные случайности"


Автор книги: В. Азерников



сообщить о нарушении

Текущая страница: 12 (всего у книги 20 страниц)

Правда, поначалу, как ни странно, его заслуга перед человечеством, перед наукой, перед Францией, наконец, не была оценена по достоинству на его родине. 21 декабря 1896 года президент Академии наук на годичном заседании, подводя итоги прошедшего года, умудрился почти ничего не сказать об открытии Беккереля. В то же время он всячески подчеркивал величие открытия Рентгена. Один из основных французских научных журналов поместил годовой обзор работ 1896 года, и в нем о Беккереле – всего несколько слов. И только Пуанкаре по достоинству оценил вклад Беккереля, не без поэтического изящества сказав, что тот добавил «новые лучи к славе своей династии». Хотя как раз Пуанкаре и мог бы быть менее объективным или, во всяком случае, более сдержанным – открытие Беккереля зачеркивало его гипотезу.

Конечно, ситуация, сложившаяся в конце 1896 года, явно несправедлива по отношению к Беккерелю, но тому есть объективные причины. Прежде всего: чтобы оценить открытие радиоактивности, надо его суметь понять, а понять ученые тогда еще не могли, понадобилось несколько лет и несколько новых открытий на базе открытия Беккереля, чтобы все стало на свои места. Открытие Рентгена, напротив, в какой-то мере было понятным с самого начала, во всяком случае в том отношении, что оно имеет огромное значение для медицины. А что мог предложить Беккерель со своими лучами – куда их пристроить, где использовать? Он этого пока сам не знал, более того – он не мог даже правильно истолковать их природу. Не по своей вине, конечно: уровень науки не позволял этого сделать еще по крайней мере два года; только в следующем году был открыт электрон, только через два года – радий и другие радиоактивные элементы. Даже такие корифеи физики, как англичане лорд Кельвин, Рамзай, Стокс, посетившие Беккереля в конце 1896 года, и те не могли взять в толк, откуда в уране берется энергия для излучения и почему она никак не иссякнет. Лорд Кельвин даже склонен был поддержать точку зрения французского коллеги, который полагал, что уран получает энергию откуда-то извне, аккумулирует ее в себе, а потом уж выдает обратно в виде лучей. Через несколько лет, когда были открыты радиоактивные элементы, ошибочность этого предположения стала ясна всем и самому автору в том числе. Но до тех пор он не мог предложить ничего лучшего. Отсюда и неясность, как использовать его открытие.

Еще одно обстоятельство сдерживало ученых от восторгов: существовала некоторая настороженность по отношению к открытиям новых лучей – я уж говорил об этом в связи с Рентгеном. Вероятно, этот же тормоз и здесь сыграл свою роль.

И, наконец, последняя причина, которую можно было бы привести в качестве объяснения некоторой прохлады по отношению к Беккерелю и его лучам, заключалась в том, что открытие его, как тут же все вспомнили, собственно, не было таким уж новым открытием. Повторилась старая история, печально знакомая и Вольте, и Эрстеду, и Рентгену: у Беккереля нашлись предшественники. Не один и не два – целых три.

Первый был его соотечественником. Имя: Ньепс де Сен-Виктор. Время работы: тридцать лет назад. Должность: лейтенант муниципальной гвардии в Париже. В то время естествознанием можно было заниматься между делом, если дел особых по службе нет. И молодой лейтенант время от времени экспериментировал с фотопластинками, пытаясь установить, влияет ли свет на способность некоторых химических веществ восстанавливать серебро. Он даже иногда выступал в академии с сообщениями на эту тему. Но его опыты мало кого интересовали, их слушали-то, наверное, только из вежливости. Однажды, получив в очередной раз милостивое разрешение поведать почтенным академикам о своих скромных опытах, Ньепс сообщил нечто удивительное: листок картона, пропитанный раствором уранила – того самого! – и полежавший несколько месяцев в закрытом футляре вместе с фотопластинкой, засветил ее, словно она лежала на ярком свету. Но удивился этому удивительному феномену только он сам, академики не прореагировали должным образом, то ли посчитав, что опыт поставлен небрежно, то ли не поняв, что он значит. Да и сам Ньепс, смущаясь, пробормотал что-то насчет химической природы испускаемых урановой солью лучей. Лучевой лихорадки тогда еще не было, и этому сообщению не придали никакого значения.

Но вскоре наблюдение Ньепса де Сен-Виктора подтвердил итальянский химик Артодон, работавший в Турине. Казалось, теперь уж следует насторожиться: два человека, работающие в разных странах, не сговариваясь, сообщают о каких-то таинственных явлениях, и долг академии всерьез заняться проверкой таких странных фактов. Но академия по-прежнему безмолвствует.

Третий ученый, кто был близок к открытию радиоактивности, – Сильванус Томпсон. В отличие от первых двух, он работал не на континенте, а в Англии, и не за тридцать лет до Беккереля, а почти в одно время с ним. Метод его работы был близок методу Беккереля: он также брал пластинки, заворачивал их в черную бумагу, на бумагу клал металлические фигурки, на них – образцы исследуемых веществ. Никакой генеральной идеи у него, судя по всему, не было, потому что исследовал он самые разнообразные вещества: полевой шпат, сульфиды металлов, нитрат уранила, урановое стекло и т. д. – без всякой системы. Потом он проявлял пластинки и смотрел, отпечатывается ли на них что-нибудь. И заметил, что на одних ничего не отпечатывалось, на других появляются какие-то следы. Причем каждый раз это были пластинки, на которых лежало какое-нибудь урановое соединение. Поразмыслив над этим казусом, Томпсон весьма здраво решил, что дело здесь, вероятно, в том, что данные вещества выделяют какое-то проникающее излучение. Но, так же как и Беккерель, он подумал, что здесь не обходится без фосфоресценции – она источник этого излучения. Беккерелю, правда, это заблуждение не помешало вплотную заняться ураном, а Томпсона увлекла совсем другая идея; ему показалось непонятным, как это фосфоресценция, вызываемая светом, может порождать излучение. Это явно противоречило закону Стокса, по которому все должно было быть как раз наоборот – длине волны излучения следовало быть больше длины волны света. Ничего не зная о работах Беккереля, Томпсон написал о своих опытах Джорджу Стоксу, тот попытался объяснить ему, что здесь главное и мимо чего он прошел, но кончил письмо весьма пессимистически: «Я опасаюсь, что вы уже опережены Беккерелем».

Можно представить себе состояние Томпсона, который вдруг понял, что он упустил интересное открытие. Он, конечно, бросился сообщать о нем, но оказалось, что он и впрямь уже опоздал. Всего на три дня, правда, но опоздал. Но, если мерить не по календарю, а по сути дела, он отстал от Беккереля значительно больше, поскольку он не обладал такой научной подготовкой, как Анри, не занимался столько лет фосфоресценцией и фотографией и, главное, не имел такого солидного фундамента, на который опирался в своих работах Беккерель.

Вероятно, совокупность всех этих обстоятельств и помешала вначале ученым, и французским в первую очередь, оценить в полной мере достижение Анри Беккереля. И, быть может, сдержанность коллег несколько охладила и самого открывателя. Во всяком случае, известно, что в конце 1896 года он, вместо того чтобы продолжить исследование радиоактивности, неожиданно занялся совершенно другой темой.

Что он хотел этим доказать? Себе – что он не раб одного открытия? Другим – что интересы науки выше самолюбия? Не знаю. Знаю только, что в конце года, узнав об открытии голландского физика Питера Зеемана, бросил свои опыты по радиоактивности и принялся повторять эксперименты амстердамского ученого.

Сей неожиданный поворот можно в какой-то мере объяснить еще и тем, что Беккерелю, больше чем какому другому ученому, было интересно и близко то, что сделал Зееман. Анри сам потом признался, что мог бы открыть «эффект Зеемана» еще за восемь лет до Зеемана, когда занимался этой же темой, если бы у него в то время были достаточно чувствительные приборы. Я ведь говорил раньше, что один из главных научных интересов Беккереля – магнитооптика, а открытие голландского физика было сделано именно в этой области: он обнаружил расщепление спектральных линии под действием магнитного поля. Подобные опыты Беккерель ставил еще в 1888 году, когда никакой радиоактивности еще не было и в помине, когда он тщательно изучал действие магнитного поля на излучение. И поэтому теперь, естественно, узнав, что другому удалось увидеть то, мимо чего прошел в свое время он сам, Беккерель поворачивает руль на 180Ї и устремляется назад, в 1888 год, проверяя себя, а потом вновь в 1896 год, проверяя Зеемана. Он подтвердил его эффект, даже несколько развил его эксперименты, о чем сообщил в печати, не обмолвившись при этом ни словом о своей собственной досаде: слишком свежи еще были впечатления о работах Ньепса и Томпсона.

Наступил новый, 1897 год. Можно было подвести итоги прошедшего года; не так, как это сделал господин президент, а более объективно. Вроде бы Беккерель мог быть доволен собой: в этом году он открыл новое излучение и получил подтверждение прежней проницательности; но вместе с тем он должен был чувствовать осадок на душе: одно открытие упустил, другому не придают особого значения. Что ж, жизнь каждого человека полна противоречий, главное – не поддаться плохому настроению, не махнуть на все рукой, а продолжать начатое дело, каким бы – перспективным или неперспективным – ни видели его окружающие.

И Беккерель в конечном счете так и поступил. Повозившись немного с былым своим увлечением – магнитооптикой, он все же возвращается к радиоактивности. И предпринимает один шаг, который оказался решающим для торжества его открытия и для рождения атомной физики.

Внешне это выглядело совершенно неприметно: он взял да и спросил как-то раз одного своего гостя, которому демонстрировал излучение урановых образцов: «Ведь вы физик и химик одновременно, проверьте, не имеется ли в этих излучающих телах примесей, которые могли бы играть особенную роль?» Ну мало ли какие вопросы задает хозяин гостю, это ведь даже не просьба; совершенно не обязательно, что они должны иметь последствия; гостя может и не заинтересовать, в общем-то, мелкая частность, о которой говорит Беккерель.

И, может, так и случилось бы, если бы этот гость не был Пьером Кюри и если бы у него не было жены Мари Кюри, урожденной Складовской.

Маня Складовская родилась в 1867 году в Варшаве, в семье преподавателя физики и математики. Училась она в русской гимназии и шестнадцати лет окончила ее с золотой медалью. Продолжения учения, однако, не последовало – семья нуждалась, и Маня, чтобы заработать, решила наняться репетитором в одну семью. Начало не самое удачное для будущей ученой с мировым именем, но и оно приносит какую-то пользу, помимо материальной, – молодая девушка проходит школу жизни. «Здесь мне удалось несколько лучше познать человеческую природу, – пишет она своей подруге. – Я узнала, что персонажи, с которыми я ранее встречалась только в романах, существуют в действительности и что не следует находиться в обществе людей, которых испортило богатство».

В двадцать лет положение не меняется, хотя меняется семья, где она учит детей; по-прежнему в ее письмах чувствуется тоска: «Мои планы на будущее – самые скромные: я мечтаю иметь собственный угол… Чтобы получить независимость, я отдала бы полжизни».

В двадцать три года мечта сбывается: сестра вышла замуж в Париже за студента и пригласила ее жить у себя. А это значит, что появляется возможность учиться в Сорбонне, знаменитом парижском университете. Вскоре, чтобы обрести еще большую независимость и спокойствие, Маня покидает сестру, поселяется одна в Латинском квартале, исконном прибежище студентов и художников. Отсутствие удобств, нередко холодная печь, крайняя нужда не мешают ей отлично учиться. В двадцать шесть лет она оканчивает физический факультет и признается лучшей в выпуске; через год получает второй диплом – математика. На этот раз она вторая на факультете.

В этот долгожданный и радостный момент в ее жизни происходит еще одно событие, которое оказалось счастливым не только для нее лично, но и для всей науки, – она познакомилась с Пьером Кюри, тридцатипятилетним французским физиком.

Пьер был парижанин, сын врача. Он получил дома хорошее образование: уже в четырнадцать лет владел математикой, в шестнадцать кончил лицей, а в восемнадцать – университет. На талантливого студента обратил внимание его профессор и, когда Кюри закончил университетский курс, сразу же пригласил его на работу в Сорбонну. Место поначалу было скромное, всего лишь лаборанта, но – в Сорбонне, но – лично у профессора. И уже в девятнадцать лет, когда подавляющее большинство его сверстников еще учились, Пьер написал свою первую научную работу.

Вскоре он вместе со своим братом Жаком Кюри делает первое открытие: обнаруживает пьезоэлектрический эффект – явление, теперь знакомое каждому, кто проигрывает на радиоле пластинку; под влиянием деформаций в пьезокристалле возникает электрический сигнал: так вот это и есть тот самый эффект.

В двадцать три года, став известным ученым, Пьер получает место преподавателя в парижском городском Институте физики и химии. Он с увлечением ведет практические занятия со студентами, много экспериментирует, но совершенно не думает о том, чтобы как-то добиться официального признания. Пьер остался таким же романтиком, каким был в детстве, и даже в то время, когда он познакомился с польской студенткой из Сорбонны, он еще не имел докторской степени, хотя давно должен был защитить диссертацию.

А дальше все было как в романах. Мария и Пьер полюбили друг друга, как говорится, с первого взгляда. 25 июля 1895 года они поженились, образовав союз, редкостный по общности интересов – жизненных, культурных, научных.

Первые два года после замужества Мари мало работает; сначала заботы по налаживанию быта, потом рождается дочь. Когда 12 сентября 1897 года крошка Ирен появилась на свет, родители, счастливейшие родители не подозревали, что их единственная дочь станет продолжательницей их дела, что, как и родители, она будет заниматься и физикой и радиоактивностью, что, как и родители, делать это она будет вместе с мужем – Фредериком Жолио-Кюри, и что, как и родители, она вместе с ним получит Нобелевскую премию.

Естественно, никто об этом не думал и не гадал осенью 1897 года. У Мари и Пьера были иные заботы: как обеспечить уход за ребенком, как совместить материнство с научной деятельностью. Мари не могла больше терять времени, она решила заняться докторской диссертацией. Надо только выбрать для нее подходящую тему.

И вот тут-то в дело снова вступает господин случай: Пьер вспоминает о своем разговоре с Беккерелем, который вначале как-то пропустил мимо ушей, поскольку сам урановыми лучами не интересовался и, честно говоря, не думал, что когда-нибудь займется ими.

Он советует Мари познакомиться с открытием Беккереля. Оно сулило диссертанту прекрасные возможности: полное отсутствие ажиотажа вокруг – следовательно, никаких конкурентов, отсутствие спешки, – что и требуется для диссертационной работы.

На этом, правда, преимущества и кончаются. Как только Мари переходит к конкретным шагам, оказывается, что работать негде и нечем.

Сначала возникают трудности с помещением. Пьер пытался получить что-нибудь у своего директора, но единственное, чего смог добиться, – застекленной мастерской на первом этаже, служившей до этого машинным отделением и складом. Трудно было найти в Париже комнату, менее приспособленную для научной работы: сырость, теснота, холод, никакого оборудования и никаких удобств. Климат мало подходит не только для ученой, но даже для приборов: в некоторые дни температура падает до 6 С. Но Мари мало смущает это; максимум, чем она выражает свое недовольство, – ставит в своей записной книжке после регистрации данной температуры два восклицательных знака, и все. Никаких жалоб, никаких скандалов, работа продолжается. И продолжается успешно. Отсутствие элементарных условий не помешало ей уже через несколько месяцев открыть, что, кроме урана, радиоактивностью обладает и еще один элемент – торий.

Работая с образцами урана и тория. Мари несколько раз заметила, что их радиоактивность явно выше, чем можно было бы ожидать, исходя из их количества. Первый раз она подумала, что это ошибка прибора: в таких условиях мог соврать любой из них. Она повторяет опыты со «странными» образцами; нет, ошибка исключается, прибор действительно регистрирует повышенную интенсивность излучения. Но откуда она может взяться? Уран и торий на такое неспособны, это известно; другие элементы Менделеевской таблицы вообще не радиоактивны; что же остается? Остается одно: предположить, что усиление излучения вызвано примесью какого-то нового неизвестного элемента.

Но легко сказать – предположить. Кто поверит зыбкой гипотезе, высказанной к тому же никому не известной молодой диссертанткой, физиком без году неделя. Вскоре выясняется, что и вправду никто не верит. Ученые считают, что налицо элементарная ошибка в постановке опыта и не стоит поэтому спешить и ставить себя в смешное положение. Только один человек верит ей, ее интуиции – Пьер. Не как муж, нет, как физик. Он тоже убежден, что в урановых и ториевых минералах притаилась примесь какого-то неизвестного вещества.

Ради того, чтобы доказать справедливость их гипотезы – нет, впрочем, не их, а гипотезы Мари, – он бросает собственные исследования и присоединяется к жене. И с этого момента начинается их совместная работа, которую прервет только его скоропостижная смерть. И дальше все время – в публикациях, в докладах – будет стоять местоимение «мы»; только один раз, 18 июля 1898 года, в докладах Французской Академии наук, в статье, подписанной ими обоими, появится фраза: «…В предшествующей работе один из нас обнаружил…» И это была правда: радиоактивность неизвестного вещества обнаружила Мари одна.

Не будучи членом академии и не имея возможности выступить на ее заседании, она огласила свое открытие через профессора Липпмана, ее учителя и их большого друга. 12 апреля 1898 года он сказал с трибуны: «Мари Складовская-Кюри заявляет о том, что в минералах с окисью урана, вероятно, содержится новый химический элемент, обладающий высокой радиоактивностью».

Вероятно… Это вводное слово имеет для Мари, да и для других ученых большой смысл. Оно означает, что поиск не кончен, что само вещество не найдено, найден лишь его след, а еще надо найти его само, и выделить, и дать имя, и преподнести ученым – вот, пожалуйста, тот элемент, о котором я говорила, что он, вероятно, существует. А не сделаешь этого, вероятность твоего открытия приблизится к нулю: наука словам не верит.

И начинается новый этап совместной работы. Пьер понимает, что одной Мари не справиться, а если и справится, то ценой слишком больших затрат сил и времени, а и того, и другого не так уж много: ведь еще есть дом и семья, и маленькая дочь, которая не засыпает без мамы, и еще есть другие ученые, которые теперь, после их заявления, могут получить доказательства их гипотезы быстрее, чем они сами. Словом, начинается совместная работа.

Начинается она, правда, с конца: еще не выделив элемент, Кюри решают дать ему имя. Здесь приоритет за Мари – ее находка, ей и окрестить ее. Она долго раздумывает; вспоминает детство, отца, нелегкую юность, вспоминает свое намерение, окончив Сорбонну, вернуться в Варшаву, чтобы стать польским физиком; но мечта ее не сбылась, да и Польши теперь уж нет – она поделена между Австрией, Пруссией и царской Россией. И, вспомнив все это, Мари предлагает мужу назвать новый элемент полонием – в честь ее родины.

И когда Анри Беккерель летом 1898 года зачитывал за них очередное сообщение в Парижской Академии наук, в нем говорилось: «Если существование этого металла подтвердится, мы предлагаем назвать его полонием – по имени страны, откуда происходит один из нас».

Любовь к своей родине подсказала Мари и еще один шаг: статья «О новом радиоактивном веществе в составе уранинита» была послана не только в «Доклады Парижской Академии наук», но и в Варшаву, и оба сообщения увидели свет одновременно – на французском и на польском языках. Так Мари Складовская-Кюри доказала, что, став французским физиком, она не перестала быть полькой.

Читая ее записи, письма, относящиеся к 1898 году – великому году в ее жизни, поражаешься необычному сплаву женственности с, казалось бы, мужскими качествами: настойчивостью, упорством, физической выносливостью, которые демонстрирует Мари в научной сфере. В июле она публикует сообщение о полонии. Казалось бы, она должна забыть все на свете, отключиться от всего, что мешает работе, а ничто так не мешает ей, как быт; но вот 20 июля, через неделю, в ее дневнике – скромной школьной тетрадке – появляется запись совсем иного, чем можно было ожидать, свойства: "Ирен делает ручонкой «спасибо», хорошо двигается на четвереньках. Говорит «гольи, гольи, го…» На полях поваренной книги Мари записывает рецепт варенья из крыжовника. Через месяц, 15 августа: «У Ирен прорезался седьмой зуб, внизу, слева». 17 октября: «Ирен ходит очень хорошо и уже не ползает на четвереньках». 5 января: «У Ирен пятнадцатый зубок».

И вместе с тем в это же самое время, между записями о походке дочери и ее зубках, она пишет знаменитый доклад в академию, где сообщает, что, по их предположениям, должен существовать еще один радиоактивный элемент, который они предлагают назвать радием. «Мы получили хлористые соли этого вещества, – сообщают Кюри, – они в 900 раз активнее чистого урана».

Когда успевает она все делать – следить за домом, за дочкой, за хозяйством, за новыми научными публикациями и одновременно работать, очень много, очень интенсивно, очень плодотворно? Секрет прост, она сама раскрывает его в одном из писем: «В течение всего года мы ни разу не были ни в театре, ни на концерте, мы ни к кому ни разу не сходили в гости».

Пока не было произнесено слово «радий», еще могли быть надежды на более или менее спокойную жизнь, но, высказав великую догадку. Мари и Пьер как бы выпустили из бутылки джинна. Ибо все их гипотезы, какими блестящими они ни казались, оставались недоказанными до тех пор, пока полоний и радий не станут реальностью – чтобы можно было не то что потрогать их рукой, но хотя бы определить их атомный вес.

Вы утверждаете, что радиоактивные элементы существуют – добудьте их, покажите их нам, говорят химики, а мы скажем тогда, что вы правы, только тогда.

В своем сообщении об открытии радия Кюри ссылаются на своего коллегу – химика Эжена Дэмарсе, который исследовал образец вещества, где, по их мнению, находился радий, и действительно обнаружил в нем с помощью спектрального анализа новую линию, не принадлежащую ни одному из известных элементов. И это было серьезным аргументом в пользу существования радия; можно даже сказать, что он, аргумент этот, убедил почти всех физиков, но самолюбие исследователя, гордость первооткрывателя не позволили Мари остановиться на полдороге, опереться только на косвенные доказательства. Она решила принять вызов химиков.

Я говорю именно о Мари, а не о Пьере, потому что его, как физика, более занимал вопрос о свойствах нового излучения; а желание химиков увидеть радий в пробирке его не очень волновало – хотите, добывайте сами. Но Мари уговорила мужа не поддаваться искушению пойти легким путем и не оставлять другим исследователям доделывать за них работу; они, только они должны пройти весь путь от начала до конца. Она, правда, не знала, где он, этот конец; и если б знала, что наступит он только через четыре года, может, и не начала бы ту титаническую работу, которая подсказала Маяковскому его известные строки:

 
Поэзия —
та же добыча радия.
В грамм добыча,-
в год труды.
Изводишь,
единого слова ради,
тысячи тонн
словесной руды.
 

В предстоящей работе все было проблемой: сырье, помещение, средства. Мари отдавала себе отчет в том, что выделение ничтожной примеси потребует переработки больших количеств урановой руды; она знала, что минерал урановая смолка, где они впервые обнаружили радий, очень ценный минерал, он идет на изготовление дорогого богемского стекла, добывают его на очистительных заводах в Богемии, и купить необходимое количество этого минерала просто невозможно, у них нет на это денег. У них, кстати, вообще не было денег ни на что – ни на подсобных рабочих, ни на аренду помещения, ни на аппаратуру; весь их бюджет – зарплата Пьера, а она невелика, всего 500 франков в месяц, их едва хватало на жизнь.

В этой почти безвыходной ситуации супруги Кюри проявляют поистине великую изобретательность и находят все же выход. Как все великое, решение оказалось очень простым: они сообразили, что интересующий их элемент радий может находиться не только в урановой смолке, которая идет в стекольное производство, но и в отходах руды, оставшихся после извлечения урана, которые просто выбрасывают на пустырь за ненадобностью. Так появилась надежда обойтись небольшими затратами. Обратиться прямо к дирекции рудников они не решились, а написали письмо своему австрийскому коллеге профессору Зюссу, чтобы он, если ему не трудно, походатайствовал перед Венской Академией наук, а она, если сумеет, обратилась бы с просьбой к австрийскому правительству, чтобы то, если ему не жалко, дало указание дирекции рудников отдавать ненужные Австрии отходы.

Пока письмо шло в Вену, пока профессор Зюсс ходил по инстанциям, Кюри занялись поисками второго необходимого компонента – помещения. Здесь на французское правительство надежды не было никакой, хоть оно было не иностранное, а свое. Они прекрасно знали, чем кончаются подобные ходатайства: в лучшем случае, бумага с прошением затерялась бы в столах канцелярий, но притом они потеряли бы время на ожидание. Сорбонна? Кюри пошел хлопотать в дирекцию университета, но ему дали понять, что он и здесь напрасно теряет время. И что же осталось? Все тот же институт, где Пьер преподает и где однажды Мари предоставили комнату для ее первой работы, если то, что ей предоставили, можно назвать комнатой.

Пьер, смирив гордыню, снова идет к своему директору, и повторяется прошлый диалог. Я бы рад, отвечает директор, я с большим уважением отношусь к вам лично и к вашей супруге, я уверен в успехе вашей совместной работы, но что я могу для вас сделать, если у меня нет ни одного свободного подходящего помещения. Не могу же я предложить вам сарай во дворе – вам же не дрова колоть. Верно, не дрова, это Пьер и сам понимает, хотя не предполагает еще, что их научная работа иногда будет мало чем отличаться от колки дров, но что делать, где-то же надо обосноваться, и Пьер отвечает директору, что он согласен на сараи. Да нет, вы посмотрите сначала, на что соглашаетесь, говорит директор: крыша протекает, пола нет – асфальт, обстановки нет – несколько старых кухонных столов, отопления нет – только плавильная печь, и потом, знает ли господин Кюри, что раньше в этом сарае медицинский факультет препарировал трупы? Нет, этого Пьер не знает, но он надеется, что тени былого не помешают их работе. Главное – чтобы не мешали живые люди. Директор понимает намек и успокаивает Пьера: сарай имеет одно несомненное преимущество – он так плох, что никто не станет возражать, если, пользуясь своей директорской властью, он передаст его Кюри в полное распоряжение.

Итак, помещение – какое-никакое – для работы есть. А сырье? Сырье, кажется, тоже есть; пока они осматривали и чистили бывшую покойницкую, из Вены приходит письмо, где сообщается, что австрийское правительство дарит тонну отходов урановой руды двум французским ученым. Если тонны окажется мало, дирекция рудников имеет указание отпустить необходимое количество на весьма льготных условиях.

Ну что ж, остается дождаться прибытия подарка из Богемии – и за работу.

Через несколько дней парижская товарная станция извещает супругов Кюри, что на их имя прибыли мешки с каким-то веществом общим весом в одну тонну. Пьер нанимает лошадей, повозку, рабочих и посылает за драгоценной посылкой. Вскоре к институту подъезжает, скрипя и покачиваясь, здоровая колымага, на которой обычно развозят уголь, и двое рабочих перетаскивают мешки с рудой в дырявый сарай. Они швыряют их на пол без всякого почтения к содержимому, ибо откуда знать им, что вместе с этой бурой тусклой рудой, похожей на дорожную пыль, с примесью хвойных игл, которые вылезают сквозь парусину, они привезли крупнейшее открытие века и Нобелевскую премию. Сарай, куда они волокут мешки, может скомпрометировать любую, самую ценную посылку.

Но Мари не замечает комизма ситуации, она думает только об одном: завтра, наконец завтра можно начать.

И назавтра они начинают. Простая, по сути, химическая операция – разделение смеси на составные части путем многоступенчатого растворения, фильтрации, осаждения, снова растворения, фильтрации и осаждения, и так вновь и вновь, пока вещества, входящие в состав руды, не окажутся разнесенными по разным посудинам, – эта операция превратилась в настоящую пытку, поскольку элемента, который они искали, было там меньше одной миллионной части. Конечно, присланной тонны не хватило; конечно, пришлось заказывать всё новые и новые тонны отходов и разделять, разделять, разделять…

Отсутствие средств не позволяло Кюри нанять рабочего хотя бы для самых тяжелых физических операций; им помогал один служитель института, да и то тайком, по вечерам, после работы. А физических операций было немало. Мари писала потом: «Мне приходилось обрабатывать в день до двадцати килограммов первичного материала, и в результате весь сарай был заставлен большими химическими сосудами с осадками и растворами; изнурительный труд переносить мешки, сосуды, переливать растворы из одного сосуда в другой, по нескольку часов подряд мешать кипящую жидкость в чугунном тазу».

Какой надо обладать верой в успех, преданностью делу, чтобы не бросить все к дьяволу, не махнуть рукой, не отказаться от непосильного для женщины труда! Но Мари не только не думала сдаваться, не только не жаловалась на свою судьбу – она была счастлива; именно здесь – в «этом дрянном, старом сарае», как она его называла, где летом жарко и душно, а зимой холодно и сыро; где в дождь протекает крыша и приходится отмечать мелом опасные участки, чтобы не поставить туда случайно аппаратуру; где вредные едкие выделения мешают дышать, заставляя открывать двери и окна, несмотря на погоду; где ей нередко приходилось проводить целые дни, не выходя, готовя примитивную еду прямо здесь же, среди пыли, хвойных игл, кислот; где она ворочала полутораметровым железным шкворнем, размешивая кипящую руду, после чего вечером замертво падала от усталости.


    Ваша оценка произведения:

Популярные книги за неделю