Текст книги "Катастрофы: неистовая Земля"
Автор книги: Тони Уолтхэм
сообщить о нарушении
Текущая страница: 4 (всего у книги 20 страниц)
Защита от землетрясений
Прогноз землетрясений недостаточно совершенен. Он позволяет лишь предположить, где следует ожидать крупное землетрясение, и с некоторой вероятностью определить срок, когда оно произойдет. В связи с этим крайне необходимы меры защиты от причиняемого землетрясениями ущерба, которые по существу сводятся к двум рекомендациям.
Во-первых, следует избегать явно опасных районов. Поскольку полная эвакуация из таких мест, как, например, города на Калифорнийском побережье, невозможна, требуется районировать их в достаточно крупном масштабе, чтобы свести риск к минимуму.
Во-вторых, необходимо обеспечить наивысшую надежность зданий в сейсмоопасных районах. Совершенно антисейсмических зданий не существует. Но достаточно стойкое к воздействию землетрясений здание спроектировать и построить вполне возможно.
Антисейсмические свойства зданий можно выявить, основываясь на опыте прошлых землетрясений. Едва ли не самыми неудачными постройками для сейсмического района являются глинобитные и деревянные дома с тяжелыми каменными крышами, столь широко распространенные в Азии и Южной Америке. Следует избегать значительных декоративных нагрузок в верхней части зданий, в том числе парапетов на верхних этажах. Во время недавнего землетрясения в Калифорнии было установлено, что двойные гаражи на первом этаже также значительно уменьшают прочность дома. Современные железобетонные здания обычно хорошо переносят землетрясения, но еще нет соответствующих инженерных расчетов для тех случаев, когда горизонтальное ускорение может оказаться соизмеримым с ускорением свободного падения, как это наблюдалось во время землетрясения в Калифорнии в 1971.
Возводя смелые современные сооружения из бетона в сейсмических районах, архитекторы, по-видимому, должны привносить в них долю здорового консерватизма и не забывать о материале, низкое качество которого может сыграть роковую роль при землетрясении. Во время землетрясения 1930 г. в Италии причиной разрушений явилось главным образом использование при строительстве тяжелой окатанной гальки, а при землетрясении в Скопье в 1963 г. множество обрушений было вызвано плохим скреплением бетона с непромытым заполнителем. Тот факт, что здания в Скопье «расплющились», свидетельствует также о слабых железобетонных перекрытиях, лежавших на неукрепленных кирпичных стенах. Плохой фундамент – залог возможных разрушений, будь то недостаточно плотно уложенная кладка или рыхлый грунт под зданиями, как в Ниигате в 1964 г.
Если же здание сооружено из доброкачественного железобетона, имеет стальной каркас, глубокий фундамент, легкую крышу и короткие дымовые трубы, оно всегда проявит антисейсмические свойства. Множеством примеров подтверждено, что если не принимать во внимание возможность возникновения пожаров, самыми безопасными при землетрясении являются деревянные постройки – бревенчатые избы и дома с деревянным каркасом. Японцы пришли к выводу, что рифленая сталь или рулонный пропитанный битумом картон представляют собой гораздо лучший кровельный материал, чем обычная черепица.
Отель «Империал», построенный в Токио как раз перед землетрясением 1923 г., был для того времени зданием, классическим но своей сейсмостойкой конструкции: здание имело глубокий фундамент, конусообразно сужалось вверх и завершалось крышей из легкой меди; в центре отеля был сооружен декоративный пруд, который спас его от пожара, возникшего после землетрясения.
Особенно много хлопот при землетрясениях приносят старые здания. Новые дома, как правило, сооружаются в соответствии с определенными стандартами, хотя это и повышает их стоимость. Снос старых построек и замена их новыми для обеспечения безопасности представляется слишком дорогостоящим делом и требует предварительной оценки размеров ущерба, который может нанести сильное землетрясение густонаселенному городу. Даже при высококвалифицированном проектировании трудно исключить возможность появления резонанса в высотных зданиях, и медленные сейсмические волны могут случайно совпасть по периоду с собственными колебаниями постройки.
В скоростной железнодорожный путь на Хоккайдо (Япония) вмонтированы сейсмографы, и поезд автоматически остановится, если сотрясения грунта превысят определенный уровень. Даже нечетко сформулированные прогнозы землетрясений можно использовать, например, для принятия решения о понижении уровня воды в водохранилищах и увеличить тем самым сейсмоустойчи-вость участка.
К сожалению, многие пренебрегают подобными прогнозами. Возможно, в управляемом обществе дело обстоит иначе. Но в Калифорнии, например, как показали недавние исследования, предупреждение о землетрясении приведет лишь к тому, что половина из тех немногих, кто обратит на него внимание, вообще ничего не предпримет, а большинство просто начнет молиться.
С учетом всего сказанного лучшей защитой от землетрясений надо считать районирование территории и выявление различных по степени сейсмоопасности зон. При этом первостепенное значение имеет изучение геологической специфики данной местности. Хотя при большинстве землетрясений наибольшие разрушения вызываются колебанием грунта, а не общим его смещением, важнейшим делом является обнаружение активных разломов, представляющих зоны очевидной опасности. Таким образом, первоочередная задача при районировании сейсмозон заключается в том, чтобы проследить все имеющиеся разломы. Эта задача осложняется тем, что разломы обычно образуют достаточно широкие, с ответвлениями полосы; кроме того, со временем могут возникнуть новые разломы, а старые, «устойчивые» нарушения могут сместиться.
Землетрясение 1971 г. в Сан-Фернандо возникло на разломе, который считали неактивным. Следовательно, при геологическом картировании необходимо регистрировать все разломы, независимо от их активности, а затем – при заселении территории – держаться от них подальше. В настоящее время в Калифорнии запрещается строить новые здания ближе 35 м от известных разломов, за исключением небольших домов на одну семью, которые могут быть построены на расстоянии 15 м от разлома. Если же положение разлома точно не определено, стараются вынести границы здания как можно дальше за предполагаемую зону разлома. Если все-таки необходимо осуществить строительство в зоне активного разлома, прибегают к различным конструктивным ухищрениям. Так, в акведуках, подающих воду в Лос-Анджелес, которые пересекают разлом Сан-Андреас, имеются подвижные соединения. Было отрадно узнать, что недавно отказались от планов возведения атомной электростанции на этом разломе (в районе Бодега-Хед), хотя для этого и потребовался значительный нажим со стороны специалистов по охране окружающей среды.
Несомненно, что наиболее важным критерием районирования сейсмозон для прогноза землетрясений и предупреждения их последствий является учет строительных свойств грунтов. Лучшими в этом отношении являются коренные породы, а худшими – неуплотненные, насыщенные водой молодые осадочные отложения. Чем прочнее порода, тем меньше потенциальный ущерб от землетрясения. Эта связь, хотя она с трудом поддается количественному анализу, служит наилучшим ориентиром для выделения зон относительной безопасности. В неуплотненных толщах слабые наиболее подвержены разжижению алевриты и пески с зернами одинакового размера, особенно если эти рыхлые породы насыщены водой и залегают неглубоко. Установлено, что наибольшее усиление сейсмических волн наблюдается на тех участках, где рыхлые осадки залегают непосредственно на твердых коренных породах. Следовательно, при планировании расширения таких городов, как Токио и Сан-Франциско, следует учитывать распределение по площади различных типов отложений.
В качестве критериев районирования могут выступать также оценка возможности наводнений под воздействием цунами и учет опасности возникновения и масштабов оползней, связанных с движениями земной коры.
Как уже отмечалось, разлом Сан-Андреас в Калифорнии можно подразделить на активные и достаточно спокойные участки. Сан-Франциско и Лос-Анджелес расположены в потенциально опасных зонах. Но сегодня не может идти речь о перенесении зданий, а тем более городов, в другое место. Имеющиеся сведения можно использовать лишь при планировании новых застроек. Город Валдиз, разрушенный во время землетрясения на Аляске в 1964 г., был заново построен на коренных породах, тогда как раньше он располагался на рыхлых дельтовых отложениях. А вот в Манагуа (Никарагуа) избежать застройки «слабых грунтов», способствовавших разрушению города во время землетрясения 1972 г., оказалось практически невозможно. Город был восстановлен на прежнем месте. Единственная уступка природе заключалась в том, что участки, протягивающиеся вдоль пяти разломов, активизировавшихся в 1972 г., не застраивались.
Будущее
Если такое землетрясение, которое обрушилось на Сан-Франциско в 1906 г., повторится, оно может унести от двух до ста тысяч (и даже больше) человеческих жизней. Это число будет во многом зависеть от времени суток, а также от количества рухнувших плотин. Никакого сомнения в том, что в Сан-Франциско произойдет по крайней мере еще одно землетрясение, быть не может: этот город располагается на одном из самых активных в мире разломов, который, несомненно, начнет двигаться в недалеком будущем.
Что же предпринимается для предотвращения этой угрозы? Отвечу: удручающе мало. Это объясняется масштабом проблемы, трудно поддающейся контролю, а также безразличием властей. Материальный ущерб, который может быть причинен городу Сан-Франциско будущим землетрясением, составит много миллиардов долларов, даже если не учитывать те огромные дополнительные потери, которые, безусловно, будут в сфере производства. И все же правильное планирование и расчеты могли бы в значительной мере сократить эти гигантские цифры. В результате проведенных недавно исследований было установлено, что в Калифорнии можно было бы уменьшить материальные потери на 38 млрд. долл., если затратить сейчас 6 млрд. долл. на реконструкцию и переселение. Стоит ли вкладывать такие средства, чтобы минимизировать ущерб от какого-то проблематичного стихийного бедствия, которое к тому же неизвестно когда произойдет? Положив на чашу весов бесценное сокровище – человеческие жизни, мы получили бы однозначный ответ.
Геология системы разломов Сан-Андреас изучена достаточно хорошо, и мы имеем возможность точно указать опасные участки, располагающиеся вдоль линий разломов. Но никто не хочет взять на себя ответственность за принятие соответствующих мер. Существует огромный разрыв между знаниями специалистов и общественной оценкой опасности и рентабельности мероприятий по планированию. Линия активных разломов, несомненно, является зоной самой непосредственной опасности в случае любого землетрясения. В настоящее время законы штата Калифорния запрещают вести строительство вдоль линий сброса; признается, что на этих территориях следовало бы разбивать парки, площадки для гольфа или даже прокладывать шоссе (без возведения на них больших мостов). Но так было не всегда, и ошибки прошлых лет не исправлены. Почему продолжается эксплуатация многих зданий, относительно которых хорошо известно, что они построены на активных разломах? Почему в пригородных районах к западу от Сан-Франциско сохраняются жилые массивы на двух участках в пределах разлома Сан-Андреас?
Еще хуже положение в Окленде, с внутренней стороны залива Сан-Франциско. Окленд находится на разломе Хейуорд – очень активном ответвлении системы Сан-Андреас, где во время– сильного землетрясения 1868 г. наблюдались заметные подвижки. Опасно строить на разломе жилые дома, но еще опаснее возводить там здания общественного назначения. И несмотря, на это, в Окленде на полосе разлома Хейуорд расположено четырнадцать школ, две больницы и футбольный стадион студенческого городка Калифорнийского университета в"; Беркли. Опасность хорошо известна, но в силу инертности, беспечности и ряда других причин на нее не обращают внимания. То же самое наблюдается и в Анкоридже на Аляске. В отчете Геологической службы США за 1959 г. указывалось на возможную неустойчивость толщи Бутлеггер-Коув-Клей при землетрясении. Тем не менее на этих глинах в пределах плато Тернегейн-Хайтс были построены дома, а на плато Гавернмент-Хилл возведена школа. Во время землетрясения все это обрушилось. Сколько тогда было разговоров о происшедшей трагедии!
Какова же будет реакция населения, если разлом Хейуорд снова начнет двигаться под Оклендом и сотни людей погибнут под обломками двух больниц, четырнадцати школ и трибун стадиона?
Вулканы
В 4 ч пополудни 20 февраля 1943 г. крестьянин Дионисио Пулидо спокойно пахал поле неподалеку от своей деревни на западе Мексики. Вдруг земля пришла в движение, и почти мгновенно перед ним разверзлась узкая трещина длиной около 50 м. Крестьянин продолжал пахать, но час спустя из этой трещины вырвалась струя дыма, а еще через несколько минут дым стал сопровождаться резким свистящим шумом и облаками тонкой пыли. Дионисио поспешил в деревню рассказать о происходящем односельчанам. Когда они вместе с Дионисио прибежали на поле, из щели-жерла уже вылетала не только пыль, но и мелкие камни. Первый взрыв произошел в 10 ч вечера того же дня, из образовавшегося жерла летели камни и раскаленные глыбы. С ужасным грохотом и ревом вырвался столб пепла и взметнулся высоко в небо. Так родился вулкан Парикутин.
Нельзя сказать, что его появление было совершенно неожиданным. За две недели до этого дня сила подземных толчков, обычных для этой части Мексики, заметно возросла. Толчки сопровождались шумом, доносившимся из-под земли окрест деревни Парикутин. Во всем этом было что-то зловещее, предостерегающее и необъяснимое. Так продолжалось около двух недель – до начала извержения.
Как только на поверхности земли образовалось жерло, вулкан стал стремительно расти. Уже на следующее утро высота конуса вулканического пепла достигла 15 м. Через неделю она составила 120 м, а через месяц конус возвышался над полями более чем на 300 м и имел у основания ширину около полутора километров. Рост вулкана сопровождался многочисленными взрывами, слабыми и сильными землетрясениями. На землю падали вулканические бомбы, а столб пепла и пара нередко поднимался в небо более чем на полтора километра. Через четыре месяца кратер начал заполняться лавой и лавовые потоки стали изливаться из трещин по склонам шлакового конуса. Лава текла по земле со скоростью около 30 м/ч. Ее потоки разлились на расстояние до 5 км от жерла. Выбросы пепла и излияния лавы продолжались очень долго. Только через 9 лет извержения вулкана Парикутин прекратились. И как память на поле крестьянина Пулидо осталась гора пепла высотой 400 м. Лавовые потоки погребли деревню Парикутин и половину соседнего селения. На многие мили вокруг земля была покрыта тонким слоем пепла, который уничтожил всю растительность.
Извержение вулкана является, пожалуй, самым захватывающим зрелищем в природе. Извержение возникает там, где расплавленная порода или магма поднимается к поверхности земной коры. Магма образуется под воздействием высоких температур в локальных полостях на глубине, редко превышающей 120 км. К огромной массе расплавленного материала в ядре Земли она никакого отношения не имеет. Если горячая магма, поднявшись к поверхности, изливается в виде жидкой расплавленной породы, ее называют «лавой». Лава и вулканический пепел, представляющий собой обломки горных пород, – это два основных компонента любого вулкана. В остальном же различные вулканы имеют очень мало сходства. Парикутин, например, извергался в течение 9 лет, а затем его деятельность резко и полностью прекратилась, тогда как на побережье Италии довольно слабые извержения вулкана Стромболи начались еще в доисторическое время и продолжаются до сих пор. Вулканы на Гавайских островах в течение многих веков постоянно извергают огромные количества лавы, а вулкан Кракатау стал знаменит благодаря своему единственному гигантскому извержению.
Сейчас в мире насчитывается около 500 вулканов, которые можно считать действующими, поскольку они извергались в историческое время. Значительно большее число вулканов относят к недействующим, так как известно, что они не извергались уже тысячи лет. Но такой вулкан в любой момент может снова стать действующим. Вулкан Ламингтон на Новой Гвинее считали недействующим, но в 1951 г. произошло сильное его извержение. Вулканы называют потухшими в том случае, если новое извержение произойти не может, т. е. изменение геологических условий сделало некогда активный вулкан совершенно безопасным.
Вулканы существовали почти во всех частях света и за многие миллионы лет извергли на поверхность Земли огромное количество горных пород. Весь остров Исландия представляет собой продукт извержения многочисленных вулканов. В настоящее время действующие вулканы встречаются лишь на вполне определенных, сравнительно ограниченных территориях. Возможно, это и хорошо, потому что, хотя извержение вулкана и представляет фантастическое, незабываемое зрелище, но для человека, оказавшегося в неподходящем месте в неподходящее время, это зрелище может стать последним. Ежегодно жертвами извержений вулканов становится в среднем почти тысяча человек. Это число включает не только сгоревших в лавовых потоках и задохнувшихся под пепловыми дождями, но и умерших от голода вследствие гибели урожая, засыпанного слоем горячего пепла.
Природа вулканической деятельности
Лаки и Везувий – это вулканы разных типов. Они различаются по характеру извержений, по созданным ими формам рельефа и по воздействию на живущих в их окрестностях людей.
Трещина Лаки представляет собой линию вулканических жерл длиной около 25 км, ориентированную с северо-востока на юго-запад. Она находится к западу от Ватнайёкюдль – самой крупной, увенчанной ледяной шапкой горы Исландии. Трещинные вулканы обычно выделяют огромные количества лавы, и в этом отношении Лаки не является исключением. Его извержение 1783 г. было самым лавообильным в мире. Извержение Лаки, которому предшествовал ряд землетрясений и выделений газа, началось 8 июня 1783 г. Поначалу из многочисленных жерл вырывались пепел и пар. Затем через три дня из юго-западного конца трещины стала изливаться лава, а в конце июля выделение лавы началось и в северо-восточной части трещины.
Лава представляла собой жидкий базальт, огромные массы которого быстро стекали вниз по долинам. Долина реки Скафтар была доверху заполнена лавой, хотя местами ее глубина превышала 180 м. Фронт лавового потока высотой 30 м продвинулся вниз по долине почти на 60 км. Кое-где лава выплеснулась через борт долины и разлилась по прибрежной равнине широким 15-километровым потоком. Другую долину – Хвервисфльоут – поток лавы заполнил на протяжении 50 км. За шесть месяцев вулканической деятельности из трещины Лаки излилось 12 км 3базальта, покрывшего площадь 560 км 2. На своем пути лава поглотила 13 ферм. Поскольку лавовый поток редко течет настолько быстро, чтобы догнать человека, жертв, к счастью, было немного.
Однако другие страшные последствия достигли ужасающих масштабов. Реки, отклонившиеся от обычного течения под воздействием лавовых потоков, затопили огромные площади сельскохозяйственных угодий, а разогретый лавой ледниковый_лед усилил это бедствие. Выпадавший пепел засыпал и уничтожал растительность. Над островом проносились огромные облака ядовитых сернистых газов. В результате погибло более четверти миллиона овец, коров и лошадей, т. е. три четверти всего поголовья скота. В такой изолированной сельскохозяйственной стране, какой была в XVIII в. Исландия, это привело к страшному голоду. Очень суровая зима и голод унесли около 10 000 человеческих жизней. Лаки стоил Исландии пятой части ее населения.
Везувий, находящийся на юге Италии, возможно, является сейчас одним из наиболее известных вулканов. Но в 79 г. н. э. это была конусообразная гора, возвышавшаяся над Неаполитанским заливом, которая считалась потухшим вулканом. Люди, жившие в близлежащих городах и деревнях, благоденствовали; Римская империя находилась в самом расцвете своего могущества. Удобные склоны Везувия были возделаны почти до самой вершины; плодородные почвы, которые обычно развиваются на вулканическом пепле, приносили богатые урожаи. И всему этому суждено было погибнуть.
Никто не придавал серьезного значения тому, что в течение 17 лет в районе Везувия происходили различные по интенсивности землетрясения: ведь землетрясения в южной Италии бывают довольно часто, а вулкан все считали потухшим. Рано утром 24 августа 79 года н. э. над вулканическим конусом Везувия поднялось облако из пепла и пара. На этот факт вначале мало кто обратил внимание. Продолжалась нормальная жизнь. Однако спокойствие быстро покинуло население, когда из Везувия начал вылетать и подниматься в небо пепел. Сильное извержение продолжалось два дня и две ночи. Тонкий пепел и обломки горных пород, так называемые лапилли, сыпались на окружающие деревни. В воздухе было так много пепла, что солнце полностью скрылось и наступила кромешная тьма; это еще больше усилило тревогу и замешательство людей. На улицу нельзя было выйти, не прикрыв голову подушками, потому что вместе с пеплом с неба летели крупные камни. Ядовитые вулканические газы затрудняли дыхание. Накопление статического электричества в поднимающемся султане вулканического пепла вызвало сильные молнии. Не прекращались и землетрясения. Под действием цунами в Неаполитанском заливе море то отступало, то вновь обрушивалось на берег.
За сутки стихия совсем измотала людей; они устали, обессилели и решили, что наступил конец света. Тысячи из них в паническом страхе бросились прочь от Везувия на равнину или уплыли в море на лодках. Поскольку почти везде в этом районе пепел накапливался относительно медленно, большинству людей удалось спастись.
Однако совсем иначе было в Помпеях. Этот город, расположенный с подветренной стороны от вулкана, был очень быстро засыпан пеплом. К тому времени, когда пришедшие в ужас жители осознали всю серьезность своего положения, улицы уже были погребены под толстым слоем пепла, а он все падал и падал с неба. Все это происходило в абсолютной темноте, солнечный свет не мог пробить пепловое облако. Население охватила паника, многие пытались спастись бегством, но было слишком поздно. Мягкий пепел на земле, пепел, низвергающийся с неба, сернистые пары в. воздухе – это было уже слишком. Люди, обезумевшие от страха и ужаса, бежали, оступались и падали, погибая прямо на улицах, закрыв лица руками, и их мгновенно засыпал пепел. Некоторые решили остаться в домах, где пепла не было, но дома быстро заполнялись ядовитыми парами, и сотни людей погибли от удушья. Многие нашли свою смерть под развалинами домов, были раздавлены крышами, которые обрушивались под тяжестью пепла. Извержение Везувия уничтожило город. Помпеи скрылись по слоем пепла толщиной до 3 м; каждый десятый житель из 20-тысячного населения города остался лежать под его руинами.
Расположенный по другую сторону от Везувия город Геркуланум не был засыпан падающим с неба пеплом, но он тоже был обречен и исчез с лица Земли. Высоко на склонах вулкана скопились огромные количества пепла, грозящие обрушиться вниз, и когда в результате атмосферных нарушений, вызванных извержением, пошел проливной дождь, эти массы пепла размокли и начали оползать. По склонам понеслись полужидкие грязевые потоки, которые устремились вниз и полностью затопили Геркуланум. Глубина некоторых из этих потоков доходила до 15 м. На счастье, к тому времени, когда Геркуланум постигла гибель, уготовленная ему Везувием, большая часть населения успела покинуть город; там осталось всего около 50 человек.
Извержение неистовствовало двое суток. Когда же оно прекратилось, оставшееся в живых увидели, что на вершине Везувия образовалась кальдера – огромный кратер около 3 км в поперечнике. Часть стены этой кальдеры можно видеть и сейчас, это Сомма-Везувиана, к юго-западу от которой возвышается современный конус Везувия, сформировавшийся в результате нескольких последующих циклов более слабой вулканической деятельности, которая продолжается и в настоящее время. Постепенно грязевой поток над Геркуланумом затвердел, и оба города, Геркуланум и Помпеи, лежали в забвении под слоем пепла до тех пор, пока раскопки не превратили их в сегодняшнее «золотое дно» археологии.
Лаки и Везувий служат примером того, сколь разными бывают вулканы. Эти различия почти всегда обусловлены составом магмы. Магма состоит главным образом из расплава силикатов различных металлов. Общее содержание кремнезема, обычно от 50 до 70 %, оказывает значительное влияние на вязкость магмы, насыщенность ее газами, а также на скорость течения лавы. При очень высоких давлениях, которые существуют на той значительной глубине от поверхности, где образуется магма, многие газы растворяются в силикатном расплаве. Но по мере продвижения расплавленной массы вверх давление уменьшается и газы могут выделяться из магмы. Если этого не происходит, магма оказывается насыщенной пузырьками, в которых газы находятся под огромным давлением. Для богатых кремнеземом магм характерно более высокое содержание газов, а сильная вязкость таких магм обычно ограничивает утечку газа. Поэтому при богатой газами магме происходит вулканическое извержение взрывного типа с образованием значительной массы пепла.
Низким содержанием кремнезема отличаются базальтовые магмы. Изливаясь из вулканов, они образуют чрезвычайно подвижные лавы. Лаки был типичным трещинным вулканом, базальтовая магма которого породила обильные лавовые потоки. При извержении базальтовой лавы из одного «центрального» жерла она распространяется по всем направлениям. Постепенно остывая и затвердевая, лава формирует огромную коническую гору. Однако благодаря хорошей текучести базальта конус такого типа обычно бывает относительно плоским – со склонами от 2 до 10°. Характерными образованиями этого типа-служат Мауна-Лоа и другие вулканы на Гавайях, которые названы щитовыми. Они резко отличаются от хорошо известных вулканов более четкой конической формы, таких как, например, Фудзияма в Японии, откосы которых составляют около 30°. Вулканы, подобные Фудзияме, называют стратовулканами. Большая крутизна склонов этих вулканов объясняется тем, что они образованы перемежающимися слоями лавы и пепла, выброшенных из центрального жерла, причем с удалением от кратера слои выклиниваются. Состав магмы стратовулканов также обычно базальтовый, причем низкая вязкость магмы обеспечивает постоянное выделение газов и распыление пепла без особо крупных взрывов.
Вулканы третьего типа являются почти чисто взрывными; они выделяют пепел и ограниченные количества лавы. Эти вулканы могут выглядеть и как небольшие шлаковые конусы, высота которых редко превышает 60 м, и как ярко выраженные взрывные формы (например, знаменитый Кракатау). Очень высокая вязкость богатой кремнеземом риолитовой магмы вулкана Кракатау вызвала временную закупорку жерла, из которого изливалась лава. В результате давление газа стало увеличиваться и нарастало до тех пор, пока не произошел взрыв.
Любой вулкан, независимо от того извергает он лаву или пепел, всегда (если только размеры его не очень малы) таит опасность, не поддающуюся контролю человека. Колумбийское плато занимает почти половину штата Вашингтон и обширные районы в Орегоне и Айдахо на северо-западе США. Это плато образовано лавами, излившимися из трещинных вулканов 20 млн. лет назад и покрывшими площадь около 130 000 км 2. В наши дни извержение такого масштаба было бы ни с чем не сравнимым бедствием. Современные вулканы Италии в более скромых размерах наглядно демонстрируют, какую опасность представляет излияние лав. Вулкан Этна на острове Сицилия – самый крупный в Европе. Этот стратовулкан находится в настоящее время в состоянии почти непрерывной активности. В 1971 г. очередная фаза его извержений началась с того, что из главного вершинного конуса стали выделяться пепел и лава. Лава уничтожила вулканологическую обсерваторию и разрушила лучшие лыжные трассы, а также канатную дорогу. Взрывная деятельность вулкана вызвала дегазацию магмы, и наступила спокойная фаза лавообразования. Лава, истекавшая из трещины на склоне Этны, залила виноградники и фермы, разрушив Дома, дороги и мосты, но, к счастью, обошла наиболее крупные деревни.
Хотя лава, как и любая другая жидкость, обычно течет вниз по склону, она может внезапно изменить свой курс. Примером тому служат извержения Везувия. У этого вулкана, находящегося в материковой части Италии, наблюдалось несколько коротких фаз излияния лав. В 1906 г. из трещины на южном склоне горы появился лавовый поток, который частично разрушил деревню Боскотреказе. В 1872 г. группа туристов в составе 22 человек поднялась высоко по склону, чтобы поближе взглянуть на извержение вулкана. Люди были настолько захвачены этим фантастическим зрелищем, что слишком поздно заметили два лавовых потока, которые, соединившись, отрезали им все пути к отступлению. Островок, на котором они стояли, был постепенно затоплен раскаленной лавой, и вся группа погибла.
Продукты извержения, вылетающие из вулкана, часто называют вулканическим пеплом, но правильнее будет называть их тефрой. Тефра состоит из материала различных размеров: из собственно вулканического пепла, т. е. частиц, не превышающих песчинки; лапиллей – от 1 до 5 см, а также более крупных образований – вулканических бомб и глыб. Глыбы представляют собой обломки коренных пород, а вулканические бомбы – это материал, извергающийся в виде огромных «капель» жидкой лавы, которые в воздухе приобретают округлую форму и затвердевают. Лапилли и вулканический пепел могут быть такого же происхождения.
Слой тефры, даже не такой мощный, как в Помпеях, может произвести катастрофические разрушения. Одного метра пепла достаточно для уничтожения всей растительности, что, несомненно, отразится на состоянии сельского хозяйства. Совсем мало надо пепла, чтобы нанести большой вред животным; они не только лишаются пищи, но и могут жестоко пострадать, съев вместе с травой распыленные вулканические продукты. Тысячи овец погибли в Исландии в 1970 г., когда в результате извержения вулкана Гекла (Хекла) земля была покрыта пеплом, насыщенным фтором, который оказался для животных сильнодействующим ядом.
Огромные количества тефры, накапливающиеся на крутых склонах конического вулкана, представляют собой весьма неустойчивую массу, особенно при увлажнении дождями, которые часто сопровождают извержение вулкана. Мелкообломочная тефра (вулканический пепел), не успев остыть, может уже начать движение вниз по склону в виде полужидкого грязевого потока. Грязевые потоки, подобные тому, под которым погиб Геркуланум, часто наблюдаются на вулканах Индонезии, где они известны под названием лахаров. В настоящее время примеров такого рода немного, однако доисторические вулканические грязевые потоки в Йеллоустонском национальном парке (США) покрывают площадь свыше 10 000 км2.