Текст книги "Катастрофы: неистовая Земля"
Автор книги: Тони Уолтхэм
сообщить о нарушении
Текущая страница: 17 (всего у книги 20 страниц)
Обрушение и проседание над горными выработками
Обрушение выработок может быть бедственным вдвойне: для шахтеров, работающих под землей, и для людей и материальных ценностей на территории непосредственно над местом обрушения. Хотя обрушения кровли случаются часто и представляют огромную опасность, они очень редко достигают масштаба, достаточного для проседания земной поверхности. Тем не менее заброшенные шахты могут таить угрозу для строений и людей, находящихся над ними.
Обычно работу в шахтах ведут таким образом, чтобы некоторое количество породы оставалось в виде целиков для опоры кровли. Однако всегда существует искушение – перед тем как шахта будет оставлена, извлечь из нее как можно больше полезного ископаемого. Медленное течение процессов разрушения пород обеспечивает некоторый латентный период, до того как опора и кровля обрушатся.
Город Скрантон (штат Пенсильвания) в начале нашего века подвергся сильному повреждению, обусловленному добычей антрацита на глубине всего 20 м. Оставленных целиков оказалось недостаточно, и вскоре после консервации шахты кровля обвалилась, что затронуло большие площади. В городе сильно пострадали многие здания. Поскольку столбы породы подпирали кровлю через равные интервалы, главная улица города покрылась углублениями, располагающимися через 1,5 м и больше, что соответствовало расстоянию между целиками.
Слабо консолидированные породы являются плохим материалом для кровли, и это делает ее обрушение по истечении определенного времени почти неизбежным, даже если добыча велась осторожно и разумно. Кровля старых железорудных шахт в Нет-тлтоне (восточная Англия), сложенная мягкими глинами и песчаниками, к настоящему времени обрушилась, и на окрестных полях появились депрессии конической формы.
Другая крупная опасность, грозящая со стороны старых шахт, связана со способом их консервации. До начала XX века шахты редко засыпались каким-либо материалом после того, как их эксплуатация прекращалась. Вместо этого поперек верхней части шахты укладывали конструкцию из бревен и досок, которую затем покрывали почвенным слоем толщиной 30–50 см. По прошествии времени бревна под слоем почвы начинали гнить, что создавало весьма серьезную опасность. В 1892 г. в железнодорожном депо Линдэйл вблизи станции Барроуин-Фернесс (Камберленд) под локомотивом разверзлась старая рудная выработка. Машинист успел выпрыгнуть за секунду до того, как локомотив провалился. В населенном пункте Абрам близ города Уиган (Ланкашир) старая угольная шахта была заполнена и опечатана перед тем, как над ней построили железнодорожное депо. Однако заполняющий материал был уложен неудачно и со временем уплотнился; в 1945 г. покрытие шахты обрушилось и погребло 13 вагонов с углем, паровоз и машиниста. Под городом Уилкс-Барре в штате Пенсильвания находится множество старых угольных шахт, и в 1968 г. покрытие одной из них, расположенной под крупной дорожной магистралью, обрушилось; медленное растрескивание асфальта дало шоферу время спастись бегством, но его автомобиль провалился в пропасть диаметром 9 м. В окрестностях Матлока в Пеннинах на лесистых холмах имеется множество старых свинцовых выработок, и случаи падения людей в них, если их путь пролегал по сгнившему деревянному покрытию, в этой местности довольно часты.
Встает задача обнаружения этих старых шахт. Если такая шахта найдена, ее можно легко заполнить или бронировать бетоном. Бурение скважин с целью поисков старых шахт является исключительно дорогостоящей операцией, даже если надо разведать лишь небольшую площадь для застройки, поскольку малые размеры этих шахт требуют очень близкого расположения скважин друг от друга. Ограниченные размеры шахт затрудняют также их обнаружение геофизическими методами, хотя Национальное управление угольной промышленности Великобритании добилось некоторых успехов в этой области при помощи чувствительных протонных магнитометров. Эти приборы определяют различия в магнитных характеристиках между коренными породами и обломочным материалом, использованным для засыпки шахт. Однако хотя с их помощью и можно локализовать старые шахты, из-за недостаточной разрешающей способности приборов это делается не столь детально, чтобы обойтись без бурения скважин.
К сожалению, обследование и регистрация горных выработок стали в Англии обязательными только с 1872 г., поэтому сведения о более старых разработках отыскать не всегда возможно. В тех районах, где следы выработок на земной поверхности отсутствуют, лучшим источником информации о местонахождении старых шахт является опрос местного населения. В 1964 г. на улице Жаклин-Клоуз в городе Бери-Сент-Эдмендс (Суффолк) было построено несколько домов. В этом районе коренной породой является мел. Исследования местности проведено не было, хотя позже выяснилось, что двое местных жителей в юности работали в меловых шахтах, находившихся под данным участком. Однако карта шахт отсутствовала, а местных жителей никто не спрашивал. Сточные воды из домов сбрасывались в несколько поглощающих колодцов, расположенных на глубине 9—15 м. Жидкая грязь затем стекала в горные выработки, что приводило к образованию ориентированных вертикально к поверхности земли трубчатых полостей. В декабре 1968 г. подъездная дорога к дому 9 на улице Жаклин-Клоуз провалилась в одну из таких полостей диаметром 4,6 м и глубиной 1,8 м. Когда в ходе расследования выявили протяженность шахт, то дома, построенные за четыре года до этого, были признаны опасными для жизни, и людей заставили выселиться, поскольку под канализационными системами все чаще и чаще случались обрушения. Все это произошло потому, что строительная компания, планирующие организации и местные жители не контактировали друг с другом до тех пор, пока уже не стало слишком поздно.
Есть один особый тип проседания шахт, который можно предсказать. Принятые методы горизонтальной разработки, при которой галереи прокладываются между целиками, оставленными для поддерживания кровли, с экономической точки зрения нерентабельны для извлечения маломощных пластов, а таковыми является большая часть всех угольных пластов. Поэтому в современных угольных шахтах врубовые машины вынимают уголь по всей длине забоя, имеющего протяженность в десятки метров. Подвижные опоры поддерживают кровлю над забоем, пока ведется работа, затем их убирают, и происходит постепенное обрушение кровли. Этот процесс обязательно вызывает проседание поверхностной части грунта, поэтому возмещение убытков за поврежденные дороги и строения расценивается как одна из статей расходов при этом методе добычи. Многолетние наблюдения и исследования привели к тому, что теперь характер такого проседания стал понятным и, как правило, предсказуемым.
На практике метод сплошной выемки приводит в действие следующие процессы: возникновение волны проседания, которая затрагивает поверхность земли, создавая первичное напряжение; затем наклон, сопровождающийся сжатием, и, наконец, оседание до нового, более низкого уровня. Если волна проседания чересчур сильна, то возникающее напряжение может привести к тому, что стены строений изогнутся или в них образуются трещины. Наклон представляет менее серьезную проблему, так как он обычно устраняется путем саморегуляции.
Повреждение строений в городских районах, расположенных над угольными шахтами, вполне предсказуемо, а стоимость возмещения убытков вполне приемлема для горнодобывающих компаний. В тех местах, где наземные здания и сооружения очень дорогостоящие, вести под ними сплошную добычу, учитывая возможные повреждения, с экономической точки зрения бессмысленно. В этом случае для поддержания кровли в шахте можно оставлять целики угля. Размеры этих естественных подпорок определяются тем, какая порода залегает между угольным пластом и земной поверхностью. Чем глубже шахта, тем более массивными должны быть оставляемые целики. Новое английское месторождение угля в Селби, восточная часть Йоркшира, пересекается железнодорожной линией, по которой ходят скоростные поезда Лондон – Эдинбург. Можно рассчитать, что ширина полосы целиков в данном случае должна быть не менее 1,6 км. Такое количество угля стоит слишком дорого, чтобы оставлять его в шахте, поэтому в данных условиях наиболее правильным выходом будет перенесение железной дороги за границы месторождения.
На месторождении Селби столкнулись и с другой проблемой: река Уз, которая его пересекает, имеет очень небольшой уклон русла. Общая амплитуда проседания обычно оценивается как 00 % мощности извлеченного пласта или несколько меньше, если некоторое количество пустой породы было возвращено в выработку. Согласно этим расчетам, извлечение пласта Барнсли мощностью около 3 м вызовет опускание района реки Уз ниже уровня моря, что приведет к сильным наводнениям. Поэтому горнодобывающее предприятие в Селби вынуждено идти на сооружение вдоль реки дренажных систем и больших рвов, хотя это и требует дополнительных затрат.
Волна проседания может развиваться только в виде слабых изгибов в достаточно пластичных породах, таких как глины или сланцы. Более хрупкие породы, например песчаники или известняки, а также трещиноватые разности не изгибаются, а растрескиваются, и проседание происходит в виде ряда последовательных сдвигов. Если дом построен на краю двух независимо проседающих блоков породы, пусть даже степень их проседания одинакова, он будет сильно поврежден. На каменноугольных копях Сигма в Южной Африке проседание мощного трещиноватого горизонта долеритов, залегающего над угольным пластом, вызвало сильные местные повреждения.
В районах Хакнолл и Мэнсфилд на угольном месторождении в Ноттингемшире столкнулись с иными проблемами. Если здание оказывается расположенным над трещиной в известняке, оно может подвергаться повторным повреждениям. Один дом в Хакнолле пришлось совсем разрушить, так как одна из его стен сильно осела в том месте, где ее фундамент отделился по разлому от остальной части здания. Потом на этом месте был построен новый дом, на этот раз на неподвижном бетонном– ростверковом фундаменте. Предсказание движений грунта, что необходимо учитывать при планировании новых строительных работ, в данном случае з ависит от локализации крупных трещин в известняке. Обнаружение их затруднено из-за перекрывающего поверхностного слоя пластичной валунной глины, однако исследования с помощью аэрофотосъемки дали некоторый положительный результат, особенно по выявлению трещин у бортов долины, где прочность подстилающих отложений ослаблена.
Знание свойств трещиноватых пород сыграло, таким образом, ¦, важную роль в сокращении повреждений от проседания, которые '" на заре горнодобывающей промышленности случались очень часто.
Будущее
В разные времена и в разных концах света из-за неожиданного проседания грунта будут разрушаться дороги, дома и поля, гибнуть люди. Для отдельного человека вероятность такой гибели крайне незначительна, однако она все же существует. Судьба некоторых домов и дорог уже предрешена. Но будут случаи проседания и совершенно неожиданные, поскольку они действительно непредсказуемы и могут расцениваться как настоящее несчастье. Однако будут и такие ситуации, когда после проседания вдруг выяснится, что в распоряжении людей было вполне достаточно информации, чтобы избежать катастрофы или предотвратить ее. Но будет'уже слишком поздно, и людские жизни, и материальные ценности будут потеряны без всякого оправдания.
Это мрачное пророчество изречено автором потому, что, хотя методы прогноза и существуют, но многие люди считают, что не стоит тратить время на предсказание таких маловероятных событий, как катастрофическое проседание. Еще серьезнее тот факт, что люди избегают брать на себя отвественность за такие исследования, и ни один орган власти нельзя назвать обязанным отвечать за планирование, которое позволило бы полностью избежать такого рода опасностей. Проводимый Национальным управлением угольной промышленности Великобритании прогноз проседаний в настоящее время используется инженерами и сокращает вероятность возникновения опасных ситуаций. Однако никто в Англии непосредственно не отвечает за брошенные шахты и подземные полости, возникшие в результате растворения горных пород. Поэтому никто не обращает на них внимания даже тогда, когда имеются факты, требующие рассмотрения и интерпретации.
В Вентерспосте (Южная Африка) в течение многих лет ведется наблюдение за движением грунтов, связанным с карстовыми явлениями. В некоторых случаях это позволяет выявить симптомы, предвещающие неожиданное обрушение. В 1973 г. за ночь образовалась карстовая воронка; результатом были человеческие жертвы и потеря материальных ценностей. Только впоследствии выяснилось, что это обрушение можно было предсказать. Почему же данные наблюдений не были обработаны сразу после того, как они были получены? Потому, что никто не был ответственным за это?
В 1977 г. пол кухни одного из домов в городе Честерфилд (графство Дербишир) обрушился в старую горную выработку, пройденную около 100 лет назад в угольном пласте, который залегал всего в метре под поверхностью земли. Такие старые мелкие выработки не являются чем-то необычным, и когда на место катастрофы прибыли инженеры из Национального управления угольной промышленности для выполнения работ по укреплению дома, они заявили, что знали о существовании подобных выработок в данной местности и что это обрушение не было для них неожиданностью. Но тогда почему же здесь строили дома? Почему никто не проверил зарегистрированные выработки?
В 1959 г. муниципалитет города Бери-Сент-Эдмендс в графстве Суффолк отказался купить предложенный ему участок земли «из-за слухов о том, что этот район подвержен проседанию». Однако в 1964 г. тот же муниципалитет дал разрешение на строительство домов на этом участке, не сделав никаких указаний о возможной нестабильности грунта. В 1966 г. этот муниципалитет отказался выдать закладную покупателю одного из домов на улице Жаклин-Клоуз, «потому что в этом месте имеются подземные выработки». Строительная компания «Трикорд Девелопментс Ли-митед» организовала здесь бурение скважин до глубины 6 м, хотя геологи указывали, что шахты расположены на глубине не менее 12 м. Вооружившись отчетом о результатах бурения, которое, как можно догадаться, не выявило никаких шахт, муниципалитет дал разрешение на дальнейшее строительство домов. В 1967 г. на улице Жаклин-Клоуз образовалась первая карстовая воронка. Затем ход событий ускорился. Произошли многочисленные обрушения, названная строительная компания была ликвидирована, муниципалитет объявил дома непригодными для жилья, главный инженер города преждевременно ушел в отставку. Но при этом муниципалитет заявил, что не имеет права тратить общественные деньги на обеспечение жильем выселенных с улицы Жаклин-Клоуз. И несколько десятков семей продолжают платить по закладной за нежилые дома. Почему же ни муниципалитет, ни строительные компании не проверили слухов (которые оказались правдивыми) о наличии в районе старых шахт? Потому что никто серьезно не думал о проседании и никто не взял на себя ответственность за такую проверку.
Подземные аварии
В 1924 г. в высоком хребте к юго-западу от Токио велось строительство туннеля Танна. К 10 февраля 1924 г. он протянулся уже на 2100 м. Ничто не предвещало опасности, и вдруг порода кровли туннеля, располагавшегося в 150 м под землей, обрушилась, и в туннель устремился разрушительный поток из воды и грязи. Под этой волной погибло 16 рабочих, находившихся в тот момент в туннеле.
Туннель Танна стал печально заменитым, поскольку сооружался в очень слабом грунте. Сложное переслаивание пород, представленных высокопроницаемым вулканическим пеплом и глинами, разбитыми множеством разломов, было настоящим кошмаром для строителей туннеля, ведь катастрофа 1924 г. не была единственной.
Насыщение неустойчивых пород водой обычно приводит к обрушению и затоплению; эти явления наиболее опасны для людей, ведущих подземные работы. Возможно, безопасность строителей туннелей и шахтеров в большей степени, чем от чего бы то ни было, зависит от природы и свойств пород, а также от умения людей предвидеть поведение этих пород. Здесь, как и вообще в строительстве, можно решить практически все проблемы, если мы знаем, в чем они заключаются. При сооружении туннелей или проведении горных работ это означает, что мы должны знать, какая порода обнажится после проходки очередного пласта. Но точный прогноз геологических структур, залегающих на большой глубине от поверхности земли, всегда труден, а иногда почти невозможен. Поэтому в настоящее время, прежде чем построить туннель или штрек в шахте, обычно пробуривают длинные разведочные скважины вдоль оси выработки.
Самой страшной, но далеко не единственной опасностью для шахтера или проходчика туннеля является обрушение кровли. Хотя большинство пород при наличии благоприятной геологической структуры проявляет устойчивость и может удерживаться над подземными пустотами почти без всяких крепей, но обычно они не выдерживают нагрузки и обрушиваются. Еще большую опасность таит вода. Вода – это постоянная угроза при проведении подземных работ: она может затапливать горные выработки или, смешиваясь при высоком давлении с неуплотненными осадками, образовывать жидкие грязевые потоки.
Опасное воздействие подземных вод
При проходке туннелей под рекой в рыхлых, насыщенных водой осадках речного русла, когда буквально над головой находится грозный водный поток, возникает множество проблем. Впервые сооружение туннеля, пересекающего реку, было начато известным инженером Марком Брунелем и его сыном знаменитым Исам-бардом Брунелем в 1825 г. под Темзой в Лондоне. По совету геологов, которые пробурили множество разведочных скважин, проходка была начата всего на глубине 4 м под руслом реки, где, как предполагали, залегала плотная глина. Однако распределение осадков в русле реки почти всегда бывает очень сложным, н истинный их состав и строение редко можно предсказать на основании данных, полученных по разбросанным буровым скважинам. По мере того как велась проходка, на пути туннеля встречались всевозможные неуплотненные, подвижные и насыщенные водой осадки, для борьбы с которыми пришлось изобрести специальную систему защиты.
Два года спустя, когда горизонтальная выработка протянулась под рекой на 30 м, вода под давлением прорвалась через рыхлые слои, слагавшие ложе реки, и через образовавшееся отверстие устремилась в туннель. Чтобы осушить затопленный туннель, надо было запечатать отверстие в дне реки снаружи. Невероятно, но это удалось сделать, сбросив с барж мешки с глиной (несколько сотен тонн). После того как из туннеля выкачали воду, было признано, что кровля его достаточна прочна, и работы возобновились. Вода прорывалась в туннель еще раз, но, несмотря на все трудности, строительство все-таки было завершено.
Впоследствии, чтобы предотвратить проникновение речной воды через проницаемый грунт в туннель, расположенный под рекой, в него стали нагнетать под давлением сжатый воздух, и вода туда уже не поступала. Так были вырыты первые туннели под рекой Гудзон в Нью-Йорке и под рекой Клайд в Глазго. Практика показала, что в этом случае важно создать равновесие давлений, поскольку, если давление воздуха в туннеле было слишком низким, река «врывалась» в туннель, если же оно оказывалось чрезвычайно высоким, то воздух «вырывался» в реку. В обоих случаях таилась потенциальная опасность. Несомненно, самый безопасный метод проходки туннелей под реками – это сооружение их на достаточной глубине, где залегают коренные породы. Так, знаменитый туннель под рекой Мереей в Ливерпуле проходит в коренном песчанике, минуя несцементированные речные осадки. Даже в том случае, если порода консолидированная, следует опасаться, что туннель может войти в зону разломов, где породы обладают повышенной водопроницаемостью.
Туннель Сейкан, строительство которого в настоящее время ведется между островами Хонсю и Хоккайдо в Японии, является едва ли не самой дерзновенной из всех известных конструкций. Планируемая длина туннеля – 55 км; он пройдет в 135 м под морским дном в нарушенном комплексе изверженных и осадочных пород. В мае 1976 г. здесь произошла катастрофа: вода ворвалась в туннель на глубине 200 м ниже уровня моря. Первоначальный сток составил около 0,6 м3 в секунду, и вода затопила участок туннеля длиной в 3 км, прежде чем системы дренажа справились с потоком; лишь несколько недель спустя туннель был окончательно осушен.
В зоне разломов вода грозит катастрофами двух типов. Трещиноватые породы, присутствующие в этих зонах, могут играть роль каналов, по которым пойдет водоток, а тектонические глины, образовавшиеся в результате истирания пород при их движении по разлому, могут стать гидрологическими барьерами. Оба эти явления наблюдались одновременно в туннеле Сан-Хасинто в Калифорнии, где, как было установлено, порода, залегавшая над наклонными плоскостями разлома, была сильно нарушенной и высокопроницаемой, а по плоскостям разломов располагались слои водонепроницаемой жильной глинки.
Для ряда пород характерна очень высокая проницаемость, и они могут служить проводниками огромных потоков воды. Если при проходке туннелей или проведении горных работ глубоко под землей встречаются подобные породы, то они обычно бывают насыщены водой под высоким давлением. Песчаники, известняки, вулканический пепел и лава – наиболее проницаемые породы. Они характеризуются наивысшими содержаниями воды. Кроме того, слабая сцементированность песчаника может порождать дополнительные сложности. В 1959 г. при сооружении туннеля Авали в Ливане наткнулись на крутонаклонный пласт песчаника, в результате участок туннеля протяженностью в 2,5 км был затоплен и забит илом. Геологические исследования показывали присутствие песчаника, однако никаких сведений относительно свойств породы, находящейся в туннеле под давлением на глубине около 600 м, получено не было. Проводившееся в штреке туннеля искусственное дренирование при слабой сце-ментированности песчаника вызвало подпочвенную эрозию и кавитацию, что в свою очередь позволило большому количеству воды затечь в туннель. Когда, наконец, все это поняли, направление туннеля на участке более 1,5 км было изменено, чтобы он не проходил в песчанике.
Известняк – тоже высокопроницаемая порода, хотя ее свойства совершенно иные, чем у песчаника. Сам по себе известняк обычно почти водонепроницаем и все ж он пропускает огромные количества воды через имеющиеся в нем пустоты растворения. Дело усложняется еще и тем, что расположение подобных водоносных камер предсказать практически, невозможно.
Под рекой Северн был построен туннель, по которому шла железная дорога из Англии в Уэльс; этот туннель был частично проложен в каменноугольном известняке. В 1879 г. при проходке со стороны Уэльса на значительной глубине от поверхности земли была подсечена затопленная пещера в кровле известняка. Проходку, естественно, прекратили, но длительное время не могли справиться с затоплением. Оказалось, что пещера была соединена с подземным руслом реки Северн, и поэтому поступление воды в туннель продолжалось. Лишь после того, как было пройдено множество вертикальных и горизонтальных выработок, через которые велись дренирование и откачка, строительство туннеля было завершено. Аналогичные проблемы возникли и при строительстве туннеля Грехенберг в горах Юра (Швейцария), когда достигли участка, где вода пропитывала два маломощных прослоя сильно трещиноватого известняка. В одном из штреков приток воды был настолько сильным, что работы пришлось приостановить на два месяца, пока течение не ослабло.
Но не только проходчики туннелей сталкиваются с неприятными неожиданностями в кавернозных известняках. Эти породы нередко преподносят сюрпризы и горнякам при разработке месторождений полезных ископаемых. Медные рудники Морокоча в Перу и свинцовые рудники в горах Холкин в Уэльсе – вот лишь два примера месторождений, где постоянно возникают различные серьезные проблемы, связанные с опасностью затопления подземных выработок водами из известняковых пещер.
Однако самое сильное затопление произошло на крупнейшей золоторудной шахте мира в Южной Африке. Шахта Уэст-Драйфонтейн находится в самом сердце богатого месторождения золота Ранд в долине Вандерфонтейн близ Иоганнесбурга. Золото добывают из конгломератов, залегающих в мощной толще кварцитов. И кварциты, и конгломераты абсолютно водонепроницаемы. Золотоносные слои встречаются лишь на значительной глубине, между этими слоями и земной поверхностью располагается толща доломитов мощностью около 900 м; доломиты – породы трещиноватые, ячеистые, являющиеся прекрасными водоносными горизонтами. Гидрология грунтовых вод усложняется еще и присутствием вертикальных сиенитовых даек, секущих доломиты, кварциты и золоторудные тела. Дайки водонепроницаемы и представляют собой барьеры, препятствующие движению грунтовых вод.
Большинство выработок на шахте Уэст-Драйфонтейн располагается на ограниченном дайками участке, который известен под названием «блок Оберхольц». Для того чтобы сделать работы в шахте более эффективными и безопасными, этот участок был давным-давно осушен путем массированной откачки воды. В 1964 г. общая площадь шахты увеличилась к востоку в результате проходки подземных галерей в дайке и блоке Банк. Доломиты в блоке Банк обезвожены не были, но горные выработки располагали лишь в залегающих ниже доломитов водонепроницаемых кварцитах. Как и следовало ожидать, некоторое количество воды просачивалось в шахту, но ее удавалось откачивать. На шахте Уэст-Драйфонтейн имелось множество насосных установок и дренажных канав, которые отводили лишнюю воду в старые выработки, игравшие роль временных водохранилищ. Одной из задач этих мероприятий было устранить опасность внезапных прорывов воды, которые повторялись периодически.
Так продолжалось до 26 октября 1968 г. В тот день в 9 ч утра кровлю выработок блока Банк разорвала трещина, в которую устремился поток воды. Этого никто не ожидал. Сток воды из трещины составил 4,5 м3 в секунду, что в 6 раз превысило обычно существовавший здесь суммарный сток. После образования трещины объем воды, поступавшей в шахту, в полтора раза превысил общую производительность водоотлива. Когда шахта начала медленно заполняться водой, спасательные работы развернулись с поистине фантастической быстротой. Только благодаря быстрой эвакуации наверх всех работавших в шахте, а их было 13 500 человек, люди были спасены.
К счастью, вся вода устремилась в главную часть шахты: от восточного края выработки, где произошел прорыв, она поступала в две подземные галереи, откуда текла потоками глубиной около метра. Лишь после 26 суток упорного труда в ужасных условиях и благодаря смелой инженерной изобретательности в галереях удалось соорудить бетонные перемычки и наводнение было остановлено. К тому времени глубина воды в стволе шахты уже составила 750 м, но верхние горизонты и основные насосные установки были спасены. Восточный участок был еще скрыт под водой, а западный – главный – участок шахты Уэст-Драйфон-тейн уже осушили насосами, и добыча возобновилась.
При расследовании причин катастрофы установили, что вода прорвалась из водонасыщенных доломитов, перекрывавших шахту, а столь грандиозные масштабы наводнения объясняются двумя факторами – почти 700-метровым напором воды и кавернозностыо доломитов. Однако вода преодолела и кварциты мощностью около 30 м, отделявшие шахту от доломитов.
Разработка месторождения осуществлялась путем выемки золотоносных пород. При этом, естественно, нарушалась целостность пород в кровле выработок. Несмотря на то что при проходке сооружались крепи, определенные подвижки блоков породы в кровле были неизбежными. Кроме того, недалеко от места прорыва воды разрабатываемые золотоносные породы и перекрывающие их доломиты были рассечены крупным разломом, направление которого могло определять развитие каверн в доломите, локализацию зон трещин и сдвигов пород, залегающих в кровле выработок. Возможно, сыграли свою роль и слабые толчки, наблюдавшиеся в ночь перед прорывом воды. Во всяком случае, образование трещины в водонепроницаемом барьере кварцитов между насыщенным водой доломитом и шахтой вполне объяснимо.
Возникает вопрос: можно ли было предсказать это затопление? Пессимисты утверждают, что проведение горных работ под водо-насыщенным кавернозным доломитом делало катастрофу неизбежной, однако это не так. Если в кровле залегает водонепроницаемый кварцит, горные работы можно вести в течение многих лет и при этом будут наблюдаться лишь слабые протечки.
К сожалению, наука о механике пород еще не достигла того уровня, когда горным инженерам до начала возведения подземных сооружений могла бы быть предложена надежная количественная оценка всех шансов за и против. Если сопротивление отдельных пород и можно определить, то до сих пор не существует достоверного способа предсказания устойчивости тысяч трещин, которые скрыты в породах глубоко от поверхности земли. При планировании работ в шахте инженеры полагались лишь на свой опыт; было решено рискнуть, и в данном случае – напрасно. Правильное решение заключалось в отводе вод из доломитов блока Банк. Однако по предварительным расчетам специалистов эта операция казалась слишком дорогостоящей, и ее решили не осуществлять. Доломиты были осушены только после затопления шахты, поскольку добычу золота надо было продолжать и другого выхода не было.