Текст книги "Катастрофы: неистовая Земля"
Автор книги: Тони Уолтхэм
сообщить о нарушении
Текущая страница: 10 (всего у книги 20 страниц)
Как выяснилось в ходе официального расследования, степень рыхлости грунтов в отвалах у Аберфана вообще не учитывалась. Такие фразы, как «восемь лет безрассудства и халатности» и «абсурдные действия», произносившиеся при анализе катастрофы, были вполне справедливой критикой в адрес владельца отвала – Государственного управления угольной промышленности. Были нарушены практически все основные правила техники безопасности. Отвал просто разместили на том участке, который был в то время свободен, при этом геологические и гидрогеологические условия абсолютно не учитывались. Не было обращено никакого внимания на обилие источников, несмотря на то что они были хорошо заметны на поверхности, известны местным ребятишкам и фермерам и даже четко обозначены на всех опубликованных картах.
Официальные лица, на которых была возложена ответственность за создание отвалов, оказывается, не знали о том, что отвалы можно располагать лишь на хорошо дренированном грунте. На опубликованную в 1927 г. статью, в которой говорилось о возможности оползней в районах развития песчаников Бритдир и валунных глин, тоже не обратили внимания. Не придали также никакого значения отчетам, изданным в 1939 и 1965 г., в которых отмечалось, что оползень течения в Силфинидде произошел почти в таких же геолого-гидрогеологических условиях, которые наблюдаются в Аберфане. Аэрофотоснимки, сделанные в 1963 г., где хорошо была видна начавшаяся деформация склонов, тоже не возбудили опасений. Много только говорилось о необходимости принять меры противооползневой защиты, но никаких действий в этом направлении не предпринималось. Власти не придали значения и предупреждениям, в которых сообщалось об уже имевших место обрушениях отвалов в районах Силфинидда и Аберфана.
Уроки Аберфана несомненны и состоят в следующем. Прежде всего, необходимо проводить обязательные предварительные исследования для определения гидрогеологической обстановки на участках заложения отвалов. Следует также осуществлять постоянный контроль за состоянием отвалов, оценивая при этом водопроницаемость материала, слагающего отвалы, и смещения грунтов. Необходим и обязательный лабораторный анализ чувствительности пород. Не может быть никаких оправданий, если аберфанская катастрофа повторится. После 1966 г. было введено специальное законодательство, предусматривающее все перечисленные меры. Но уже ничто не сможет вернуть к жизни учеников Пантгласской начальной школы.
Контроль над оползнями и их прогноз
Для предотвращения катастроф необходимо детально исследовать участок и знать его геологические условия. Потенциально опасные зоны можно уверенно выделить, если геологические условия известны достаточно хорошо и определены структуры, где 102
Могут развиваться и, возможно, развивались в прошлом оползни. Основная проблема – установить степень опасности, т. е. вероятное время наступления катастрофы и ее масштабы. Число жертв могло бы быть гораздо меньше, если бы люди всегда старались селиться подальше от опасных зон.
Первоочередная задача при прогнозе оползней – выявить места присутствия старого обломочного оползневого материала, независимо от того образует ли он огромные скопления или изредка встречается в полуустойчивых, наблюдающихся начиная с плейстоцена солифлюкционных конусах выноса (солифлюкция – это движение насыщенного водой почвенного материала, происходящее быстрее, чем оползание грунта, но медленнее, чем течение жидкости). Визуально при наземных исследованиях оползневый материал не всегда бывает легко определить. Однако на аэрофотоснимках контуры оползневых участков и их бугристая поверхность проявляются характерным и очень четким рисунком. Этот диагностический признак весьма важен для изучения площадей, где происходят оползни, и для выявления новых потенциально оползнеопасных зон или участков. Лабораторными исследованиями можно определить сопротивление сдвигу и, следовательно, устойчивость однородных грунтов; параметры чувствительности и проницаемости изучаемых грунтов позволяют судить об их способности к разжижению.
Дело осложняется тем, что обрушение нередко происходит не в массе однородного материала, а на поверхностях раздела пород, имеющих разную плотность. Поэтому определить сопротивление сдвигу в лабораторных условиях иногда бывает затруднительно. Однако знание литологических особенностей пород, углов склонов, характера дренажа и течения подземных вод, а также опыт, накопленный при исследовании ранее произошедших оползней, – все это помогает дать полуколичественную оценку оползневой опасности любого участка. Основанные на этих параметрах районирование и выявление зон, где потенциально возможны оползни, в настоящее время с успехом используются при планировании и проведении строительных работ. Выделение участков, наименее благоприятных для застройки, позволило, например, заметно сократить урон, наносимый современным зданиям в оползневом районе Лонсестон на острове Тасмания. В районе города Санта-Моника в Калифорнии с учетом измерений физических свойств, таких как уклоны, сопротивление сдвигу и проницаемость, прогнозируются интервалы повторяемости оползней для каждой точки местности. Этот метод пригоден для неглубоких" обломочных оползней, причиной которых являются кратковременные изменения уровня подземных вод.
Еще одним методом контроля над оползнями служит постоянная регистрация движений склонов с целью предсказания любого внезапного, быстрого их обрушения. Поскольку неожиданному оползневому обрушению склона почти всегда предшествует медленное оползание, происходящее на протяжении достаточно длительного периода времени, этот метод приносит большую пользу. Особенно важно применять его в районах, где при гражданском строительстве создаются откосы, более крутые, чем естественные углы склонов, и таким образом автоматически вводится элемент неустойчивости. Масштабы этой опасности были наглядно продемонстрированы в 30-х годах нашего века, когда за три года в мире произошло 13 обрушений железнодорожных выемок, в результате которых погибло 227 человек. И хотя система постоянного контроля обходится недешево, она вполне оправдывает себя.
Методы обнаружения движений склона представляют собой комплекс исследований, включающий периодическую съемку между опорными реперами, регистрацию шумов в породах (т. е. вибраций, вызванных деформациями), измерение скорости распространения сейсмических волн с целью определения деформаций, связанных с изменением объема пород. При этом используются такие приборы, как экстензометры, инклинометры для буровых скважин, штанговые тензометры и пьезометры для грунтовых вод. Особенно полезно устанавливать инклинометры в неглубоких буровых скважинах на краях неустойчивых склонов, так как их можно вмонтировать в автоматические системы оповещения, которые приводятся в действие, как только оползание склона превышает заданный предел.
Любое ускорение движения и признаки деформаций, связанных с изменением объема, можно обычно считать симптомами надвигающегося обрушения. Но надо еще установить, когда это обрушение произойдет. На основании опыта удавалось достаточно точно предсказывать некоторые обрушения склонов в крупных открытых карьерах. Однако выполнять прогноз на участках, сложенных разнородными грунтами, трудно, если нет надежных сравнительных данных. Например, зарегистрированное движение склонов горы Маунт-Ток не дает должных количественных характеристик, чтобы можно было предусмотреть оползень на реке Вайонт. В 1969 г. в Японии проводился эксперимент по контролю движений склона. Для этого склон был специально насыщен водой, но оползень начался раньше, чем ожидалось, и в результате погибло несколько наблюдателей. Этот случай наглядно свидетельствует о том, что устойчивость склона невозможно предсказать точно. Тем не менее современный уровень знаний все-таки позволяет-'избежать повторения некоторых всемирно известных катастроф.
Строительные работы обычно влекут за собой увеличение крутизны склонов. Даже в том случае, когда строительство ведется с учетом результатов лабораторных исследований грунтов, реальные критические углы склона часто удается выявить лишь на самом объекте в естественных условиях. Устойчивость склона может быть повышена при тщательном поверхностном и подземном дренировании. В небольшом масштабе можно применять такие методы, как регулирование нагрузок на грунт, установка штанговых крепей для фиксирования трещин, инъекция цементного раствора и даже забивание свай, если это не нарушит «чувствительные» глины. В каждом конкретном случае необходима соответствующая комбинация методов. Потенциальную опасность разжижения глин удается иногда устранить, подвергнув их сжатию в условиях искусственной вибрации. Сцепление глинистых частиц может быть также усилено путем замещения натрия кальцием в их структуре. Этот метод успешно используется в настоящее время, хотя следует иметь в виду, что удаление натрия может повысить чувствительность некоторых морских глин.
Если эти средства не подходят и можно гарантировать, что внезапного крупного обрушения не произойдет, следует, очевидно, смириться с проявлениями незначительных оползней. Итальянские инженеры используют при дорожном строительстве кратковременную устойчивость некоторых природных материалов. Вместо проходки туннелей они создают выемки с крутопадающими стенами, прокладывают открытым способом будущую дорогу, а затем, когда трасса и перекрытие туннеля готовы, засыпают их сверху. Это оказывалось экономически более выгодным, чем сооружение туннеля способом подземной проходки или чем создание открытых выемок с очень пологими склонами.
Если мелкие оползни, возникающие при строительных работах, можно ликвидировать путем забивания свай или полной выемки породы, то более крупные оползни можно лишь стабилизировать при помощи одной из форм дренажа. Поверхностное дренирование осуществляется канавами, расположенными либо по периферии оползнеопасной площади, либо в одну линию непосредственно на оползневом участке. Подземное дренирование проводится путем проходки штолен или бурения горизонтальных скважин с перфорированными обсадными трубами. Однако эти виды дренирования не годятся для таких грунтов, как относительно непроницаемые глины и алевриты. Поэтому для стабилизации оползня в мокрых глинах его требуется предварительно осушить. Для этого используют метод электроосмоса, который успешно практиковался в «чувствительных» глинах Норвегии и Канады, либо нагнетают в скважины горячий воздух, что впервые было применено в Калифорнии в 1932 г. Хорошо известен также метод стабилизации оползня замораживанием. Однако замораживание ''увлажненных осадков приемлемо лишь на короткий период, его удобно использовать, например, для создания временных выработок при строительстве. Во всем мире для борьбы с оползнями наиболее широко и успешно применяются сравнительно несложные методы, дренирования. Оползень отвала в городке Пентре (долина реки Рондда, Уэльс) в 1916 г. был остановлен при помощи поверхностной и подземной систем дренажа, удалявших ежесекундно около 0,056 м3 воды.
В районе Сиез-Пойнт на севере Калифорнии в 1950 г. произошло несколько оползней в неуплотненных осадках вдоль дорожной выемки протяженностью 450 м. Оползни удалось стабилизировать с помощью пробуренной дренажной сети длиной около 2 км, а также путем искусственного уменьшения наклона выемки. Канавы, скважины и штольни дренировали оползни в Гандлове (Чехословакия), благодаря чему их движение через два месяца было остановлено. Все эти оползни были, по счастью, небольшими. Более крупные оползни, к сожалению, контролировать труднее, и инженерам-строителям почти беспрестанно приходится с ними бороться.
К востоку от Фолкстона на юго-восточном побережье Англии под высокими меловыми утесами протягивается пересеченная местность, известная под названием Уоррен. Оползни на этом участке начались несколько тысяч лет назад и продолжаются до сих пор. Оползневый участок Уоррен представляет собой зону шириной около 360 м и высотой над уровнем моря от 15 до 45 м, которая прослеживается на расстояние более 3 км вдоль побережья. Нижней границей этой воны является невысокий береговой обрыв, а другой край обращен в сторону системы Хай– Клифф – сложенных белым мелом утесов, возвышающихся на 100–120 м.
Геология района Фолкстон – Уоррен очень проста. Мощность мела в утесах Хай-Клифф составляет более 150 м. Подстилает эту толщу гольт – крепкие переуплотненные серые глины мощностью от 40 до 50 м, залегающие в свою очередь на водопроницаемых песчаниках. В разрезе встречаются также тонкие, иногда водоносные, прослои мергелей и песчаников, но они не оказывают никакого влияния на оползни в зоне Уоррен. Вся толща падает под углом около Г на северо-восток. В западной части зоны крутой меловой откос обращен в сторону материка, а в восточной части контакт мела и гольта располагается ниже уровня моря и, находясь в условиях постоянной влажности, не оказывает влияния на устойчивость пород.
В 1765 и 1800 г. в зоне Уоррен были зарегистрированы крупные оползни, однако они не причинили ущерба. Об опасности вскоре забыли и не учли ее при сооружении железнодорожной линии Фолкстон – Дувр, которая была проложена вдоль зоны Уоррен. Движение поездов по этой линии началось в 1844 г. Она может служить классическим примером того, где не следует прокладывать железную дорогу. Проектировщики просто не понимали, насколько опасен выбранный ими район, но отчасти их можно оправдать тем, что другого варианта у них не было: рельеф мела Дауне исключал всякую возможность строительства железной дороги во внутриматериковых районах, а прокладывать 6-километровый туннель, чтобы обогнуть зону Уоррен, было бы слишком долго и дорого. К настоящему времени успешные работы по борьбе с оползнями устранили необходимость постройки обходного туннеля. В 1934 г., когда возникла угроза оползня и народ пребывал в панике, распоряжение о строительстве туннеля было дано, но его проходка так и не была начата.
За два столетия в этом районе было зарегистрировано более 30 крупных оползней, причем те из них, которые произошли после 1844 г., изучались достаточно детально. В 1877 г. случился крупный оползень, вследствие чего обрушился туннель Мартелло. Поездов в туннеле, к счастью, не оказалось. Не столь удачливы были пассажиры поезда, проследовавшего по этой дороге в декабре 1915 г., тогда здесь произошел сильнейший оползень, который сбросил состав с железнодорожного пути. При этом почти вся зона Уоррен переместилась в виде одного массивного блока. Верхний уступ съехал почти вдоль всего основания системы Хай-Клифф. Железнодорожный путь сместился на 50 м в сторону моря, опустившись на 6 м. В результате подвижки донных грунтов образовался мыс, который выдается в море на 400 м. Обломки пород, упавших с утесов Хай-Клифф, засыпали часть железнодорожного пути. В полотне дороги внезапно возник уступ высотой 5 м. При этом южным краем оползневой массы был настигнут поезд и произошло крушение. Движение на линии было восстановлено лишь в 1919 г., что в известной мере вызывалось потребностями военного времени. Во время оползня 1937 г. в облицовке туннеля Мартелло образовались трещины, но ни этот оползень, ни последующий, произошедший в 1940 г., не привели к особым разрушениям железнодорожного полотна.
Оползневое движение зарождается вдоль трещин растяжения, почти параллельных фронту обрывов, где образуются изогнутые поверхности скольжения. Породы при своем движении сначала опрокидываются назад, закрывают трещину растяжения и временно сдавливают коренной массив, а затем, через некоторое время, соскальзывают.
Более широко распространены в зоне Уоррен крупные многократные вращательные оползни, развивающиеся преимущественно в гольтских глинах. Эти оползни зарождаются в зоне глин, обогащенной монтмориллонитом, для которой характерно гораздо более низкое сопротивление сдвигу, чем это наблюдается в вышележащих богатых кальцитом слоях. Происхождение оползней подтверждается наличием в керне скважин штриховатых поверхностей скольжения, приуроченных к одному из горизонтов глин, тогда как за пределами района Уоррен на том же самом уровне зеркала скольжения в глинах отсутствуют. В 1915 г. произошел оползень именно такого типа.
К третьему типу относятся гораздо более мелкие оползни вращения, развивающиеся на внешнем крае зоны Уоррен. Они вызвали смещение пород в 1937 и 1940 г. Этот тип оползней обусловлен эрозией и подмывом береговых утесов. В третичное время гольтские глины были погружены на значительную глубину, где подвергались давлению до 4000 кПа. Но и в настоящее время эффект снятия давления не наблюдается, поскольку эти породы перекрыты толщей мела. Гольтские глины, свободно перемещаясь по рыхлому, богатому монтмориллонитом горизонту в сторону своего эродированного на береговом обрыве края, порождают развитие горизонтальных плоскостей сдвига под зоной Уоррен. Движение глин также способствует раскрытию трещин в меле, по которым внешние блоки породы откалываются от главного массива. Оползанию благоприятствует временное увеличение давления поровых вод в сместившихся массах. Все вращающиеся оползни, зарегистрированные после 1844 г., произошли в период с декабря по март – в сезон наивысших пьезометрических уровней, которые в иное время располагаются ниже поверхности земли – в сместившемся меле и глине. В свободно дренируемом меле подобной связи оползней с длительными изменениями уровня воды не наблюдается. Не отмечается корреляции и с высотой поверхности воды в нижележащем песчанике, которая обычно близка к уровню моря.
Много полезной информации о естественных поверхностях оползания и гидрологии в зоне Уоррен дала всесторонняя и хорошо спланированная программа буровых исследований, которая позволила осуществить конструктивный подход к проблеме укрепления этого участка. Уже в 1896 г. было начато строительство защитных сооружений в море – бун и галечных молов. Целью этих мероприятий было свести к минимуму процессы эрозии, но особым успехом они не увенчались, поскольку не устраняли основную причину оползней. Несомненно, очень важным процессом явилось дренирование оползневых участков. Хотя дренирование начали сразу после оползня 1877 г., масштабы этих работ были недостаточны, и большую часть дренажных сооружений разрушил оползень 1915 г. В дальнейшем дренажная система была восстановлена, и число канав и штолен заметно возросло. В настоящее время вдоль зоны Уоррен штольни заложены через каждые 200 м. Штольни начинаются примерно в 7 м над уровнем моря, некоторые из них заходят под зону Уоррен более чем на 240 м. Кроме того, после 1948 г. вдоль приливно-отливной полосы были построены огромные бетонные укрепления.
Об успехе мероприятий по борьбе с оползнями можно судить по резкому сокращению числа подвижек в течение нынешнего века. Катастрофа 1915 г. послужила примером того, что может произойти, если не обращать внимания на неблагоприятные геологические условия. Более же поздние события в районе Фолкстон-Уоррен показали, как детальное изучение и знание геологии помогают успешно решать эту проблему.
Будущее
Аберфан, Вайонт, Франк, Николе – вот названия тех мест, где произошли четыре печально известных оползня, унесших 2340 человеческих жизней. Каждый оползень детально изучался, причины этих катастроф выяснены. Но послужило ли это должным уроком?
Возможно, самым известным и в некотором смысле самым ужасающим был оползень в Аберфане. Сообщение об этой катастрофе распространилось по всему миру с быстротой молнии. Последовал ряд официальных отчетов, были внесены изменения в методику изучения оползней, проведены повторные исследования. Отвалы всех шахт в Соединенных Штатах были проверены на потенциальную неустойчивость. В связи с тем что причиной катастрофы в Аберфане была насыщенность обломочного материала водой, в конце 1966 г. с особой детальностью был изучен отвал в Буффало-Крик (Западная Виргиния). Этот отвал служил плотиной, запруживающей небольшой водоем; выяснилось, что отвал относительно безопасен.
Но память человеческая, по-видимому, коротка. Три года спустя в Буффало-Крик стали сгружать пустую породу на новом участке, покрытом сырым шламом. Этот террикон достиг такой высоты, что за ним образовалось небольшое озеро. Каким бы невероятным это ни казалось, но сток из озера осуществлялся путем просачивания воды через породу отвала. 26 февраля 1972 г. на фронтальной стенке этой запруды развился крупный оползень. Вода перелилась через сохранившуюся часть отвала, быстро размыла его, и огромная волна устремилась вниз по долине. В ее водах утонуло 118 человек. Основная причина обрушения этого отвала-запруды заключалась в том, что он состоял из несцементированной, насыщенной водой породы, в связи с чем внутри отвала образовалось довольно высокое давление. Несмотря на то что характер разрушений при наводнении в Буффало-Крик был несколько иным, чем при оползне в Аберфане, причины катастрофы были практически одинаковыми. А ведь в Буффало-Крик она произошла на 6 лет позже, чем в Аберфане.
Весьма печально, что, даже зная о прошлых бедствиях, человек из-за своего безрассудства ставит под угрозу жизни своих собратьев. Уже через месяц после оползня в городке Франк, случившегося в апреле 1903 г., жители вернулись в свои дома и горные работы, послужившие причиной катастрофы, были возобновлены. Лишь 8 лет спустя, после многочисленных предупреждений об опасности шахта была окончательно закрыта. Абсолютно такой же оползень течения, как в Николе, произошел 16 лет спустя в районе Сен-Жан-Вьянней; жертвами его стало более 30 человек.
Многие склоны гор имеют сейчас такую же геологическую структуру, какая была у гор, в прошлом катастрофически обрушившихся. Уровень развития техники позволяет человеку контролировать по крайней мере некоторые потенциально опасные оползни, как это показали нам события в зоне Фолкстон-Уоррен.
Сколько же людей еще погибнут при оползнях в будущем – сотни, тысячи? Проблема отчасти заключается в следующем: хотя специальные геологические исследования помогают обнаружить многочисленные потенциальные оползни, механизм возникновения которых нам теперь уже известен, эти работы требуют значительных затрат материальных средств и времени. Но неужели человеческая жизнь не стоит этого? Сотни тысяч людей живут и трудятся под крутыми склонами гор, ничего не зная о том, что им грозит. Порой они даже убеждены, что «их» склон горы – устойчивый, и потому не предпринимают никаких мер безопасности. К сожалению, некоторые из них ошибаются. А ведь оползни нередко бывают роковыми.