Текст книги "Катастрофы: неистовая Земля"
Автор книги: Тони Уолтхэм
сообщить о нарушении
Текущая страница: 15 (всего у книги 20 страниц)
Проседание в неконсолидированных осадках
Уплотнение – это естественный процесс, при котором осадки уменьшаются по объему, что чаще всего происходит вследствие давления перекрывающих осадочных слоев. Большинство осадочных пород отлагается в воде, и уплотнение – это часть процесса превращения их в твердую породу. Следует отметить, что геологи называют это уменьшение первоначального объема уплотнением, тогда как инженеры-строители называют его консолидацией. Отсюда и происходит термин «неконсолидированные осадки», обозначающий рыхлые, крошащиеся и еще не уплотненные породы. Для инженеров термин «уплотнение» относится к искусственным методам, таким как трамбовка или вибрация, вызывающим сокращение объема, называемое ими консолидацией. В последующих разделах термин «уплотнение» будет использоваться в геологическом смысле этого слова.
Экстремальный случай уплотнения касается породы растительного происхождения – торфа. Определить уплотнение торфа сложно, так как этот процесс может продолжаться миллионы лет, до тех пор пока торф в конце концов не превратится в уголь. Можно считать, что торф уплотняется более чем в 10 раз относительно своего первоначального объема. Большая часть этого сокращения связана с удалением воды, что лежит в основе уплотнения большинства осадков. Следовательно, уплотнение торфа может сильно зависеть от деятельности человека. Район Фенланд к югу от залива Уош в восточной Англии являет собой классический пример уплотнения торфа и проседания, связанного с осушением (поскольку торфяники создают очень плодородную землю). В 1848 г. в лежащий ниже торфа слой была поставлена железная труба, по положению которой можно судить о погружении поверхностных слоев. К 1932 г. земля осела более чем на 2,5 м, а мощность торфяного слоя сократилась почти на 4,5 м. Уплотнение на 56 % произошло менее чем за 100 лет. В 1848 г. нижние слои торфа уже были значительно уплотнены под влиянием веса перекрывающих пород, уплотнение продолжается и в настоящее время.
Если из торфа удалена вода, то идет дальнейшее сокращение объема, связанное с потерей материала при окислении. В маломощных слоях торфа это может в конце концов привести к непригодности их для сельскохозяйственного использования из-за недостаточной мощности. В США есть примеры проседания торфа, особенно на Флоридской низменности. Здесь уровень грунта при культивации падает примерно на 30 см за 10 лет. При этом участки максимального проседания примыкают к осушительным каналам. Дельта реки Сакраменто в Калифорнии представляет собой обширный торфяной район, который осушался в сельскохозяйственных целях. Вследствие этого местность опустилась ниже уровня моря, и при возникновении проломов в искусственных речных дамбах происходят грандиозные наводнения.
Торф является не единственным материалом, который так сильно уплотняется. Голландские инженеры при осушении земель, ранее покрытых морем, обнаружили, что глины уплотнились на 25–50 % в зависимости от размера зерен и содержания алеврита. Глины по сравнению с торфом сокращаются в объеме в меньшей степени, кроме того, это не связано с химическими изменениями. Поэтому последствия процесса легче предсказать. Собор Темпль в городе Бристоль (Англия) был построен в XIV–XV веках, когда геологические условия установки фундамента еще были неизвестны. Возведенный на влажном грунте аллювия реки Эйвон, он имел шансы устоять. Сейчас башня собора отклонена на 1 м 22 см от первоначального положения, но все еще стоит. В более просвещенные времена, т. е. недавно, в городе Ноттингем (Англия) было построено промышленное предприятие на похожем с геологической точки зрения месте – на аллювии реки Трент. Были приняты во внимание и учтены уплотнение и просадка, и сооруженные заводские корпуса осели с очень небольшими деформациями. Зато возникла дополнительная проблема – наклон флигелей, расположенных в сфере оседания, вызванного большими зданиями.
Можно рассмотреть еще случай со строительством зернового элеватора в центральной Канаде между 1911 и 1913 г. Он был возведен на тонкозернистых алевритистых глинах озерно-ледни-кового происхождения. Бетонный фундамент на ростверке размещался в котловине глубиной 3,5 м. Испытания показали, что глина на этой глубине может выдержать необходимую нагрузку. Но когда в октябре 1913 г. впервые был засыпан зерновой силос, элеватор сразу осел на 30 см и в течение 24 ч отклонился на 26° от вертикали. К счастью, бетонная конструкция не была сильно повреждена. Впоследствии обнаружилось, что под верхними достаточно прочными слоями глины на глубине около 10 м залегали более сырые и гораздо менее надежные породы. Именно эти породы не были проверены заранее и осели под нагрузкой. Потом элеватор был выпрямлен, а его фундамент помещен на глубину 16 м, где подстилающей породой служил твердый песчаник. Элеватор функционирует до сих пор.
Дельты являются районами активного осадконакопления, где проседание происходит не только в результате уплотнения самих осадков, но и вследствие других причин. Дельта реки Миссисипи в Соединенных Штатах активно изучалась, было рассчитано, что уплотнение осадков обусловливает проседание в среднем на 9 см за 100 лет. Кроме уплотнения имеет место опускание пород земной коры, связанное с нагрузкой дельтовыми осадками, оно составляет 2 см за 100 лет. Одновременно происходит повсеместное повышение уровня моря на 9,8 см за 100 лет, которое затрагивает и дельту. Амплитуды проседания приведены усредненные, и если учитывать местные вариации, зависящие от типа осадков, то перспективы положения уровня дельтовой области кажутся весьма неясными. Город Бэйлайз на Луизианской стороне дельты был оставлен жителями в 1888 г. во время эпидемии лихорадки, а через 50 лет улицы города оказались на 1 м 22 см покрытыми водой.
Тогда как удаление воды является главной причиной уплотнения одних осадков, привнос воды может вызвать сходные результаты в некоторых других осадках. Лёсс представляет собой эоловые алевритовые отложения, которые встречаются в разных концах света. Когда лёсс впервые намокает, он подвергается гидре» уплотнению, сопровождающемуся значительным сокращением объема. Если при ирригационных работах в аридных или полуаридных зонах встречается лёсс, возникают сложности. Район, расположенный к западу от города Фресно, в Центральной Калифорнийской долине, испытал обширное проседание вследствие гидроуплотнения. Ирригационные каналы поставляли в этот район воду, земля намокала, и результатом этого стала просадка на 5 м с повреждением зданий, дорог, трубопроводов, скважин и, наконец, самих каналов. В последнее время найдено решение этой проблемы: земля затопляется водой заранее, чтобы гидроуплотнение произошло до того, как канал будет построен.
Справедливо было бы отметить, что слабые просадки не являются помехой для строительства, особенно в тех случаях, когда оно ведется не в прибрежных, а во внутриконтинентальных районах. Однако проседание таит в себе серьезную опасность, если оно неоднородно для одного и того же строения, что может быть обусловлено разной степенью уплотнения грунтовых материалов. Ряд домов, построенных вдоль одной улицы в Ноттингеме (Англия) в начале XX века, – яркий пример этого явления. Через много лет после того как эти дома были возведены, одна из стен последнего дома так сильно осела, что жителям пришлось покинуть его. В поисках причины проседания исследователи обнаружили старинную карту, которая была составлена задолго цо строительства осевших домов. На ней был показан небольшой карьер, край которого лежал как раз под поврежденным домом. Позднее карьер, вероятно, был засыпан бытовыми отбросами, и на поверхности от него не осталось никаких следов. Проектировщики домов не сделали ни малейшей попытки исследовать место застройки и даже не проверили имеющиеся документы и карты. Поэтому дом, одна сторона которого стояла на твердой породе, другая – на уплотненном мусоре, был обречен.
Наклонение и повреждение строений может быть обусловлено не только разной степенью уплотненности их основания, как это было в Ноттингеме, но и другими причинами. Любое здание, построенное на мягкой и пластичной глине, находится в неустойчивом равновесии, и даже самое слабое нарушение этого равновесия повлечет за собой осадку здания. Падающая Пизанская башня, привлекающая множество туристов, фигурирует во всех работах по оседанию грунта. Древний город Пиза был построен на широкой плоской равнине, лежащей почти на уровне моря; над городом возвышаются хребты Апеннин. Хотя плоский рельеф и был благоприятен для строительства, однако рыхлые осадки, из которых сложена равнина, а также инженерно-геологические условия закладки фундамента надо считать крайне неподходящими для любой крупной постройки.
Падающая Пизанская башня представляет собой колокольню, пристроенную к собору. Главное здание собора, сооруженное в XI веке, пострадало от проседания, которое произошло вскоре после того как строительство его было закончено. Однако собор наклонился незначительно, поскольку высота и ширина его различались ненамного. Возведение колокольни началось веком позже, в 1173 г. Через несколько лет, когда были готовы три этажа, башня уже наклонилась так сильно, что архитектор остановил строительство и покинул Пизу. Поскольку вес башни теперь не возрастал, она стабилизировалась и движение прекратилось, так что в 1275 г. другой архитектор решил продолжить строительство, ликвидировав наклон добавлением лишних слоев каменной кладки по осевшей стороне, другими словами, башне был искусственно придан изгиб. Однако башня продолжала наклоняться. Ее постройка закончилась только в 1350 г., после того как за работу взялся третий архитектор и на оседающую стену было добавлено еще несколько слоев кладки. С тех пор башня непрерывно продолжает наклоняться, и на сегодняшний день она отстоит от вертикали более чем на 5 м.
Движение, которому подверглась Пизанская башня, определяется техническим термином «неравномерная осадка». Общая осадка башни составляет около 2 м; чтобы попасть в ее входную дверь, надо спуститься по ступенькам, ведущим вниз. Но 2 м – это средняя цифра. В связи с наклоном южная сторона башни осела примерно на 3 м, а северная – на 1 м. Неодинаковая осадка первоначально была связана с небольшими изменениями в подстилающих отложениях. Когда появился наклон, сдвиг центра тяжести башни создал вращающий здание момент, который возрастает с увеличением наклона. Непосредственно под поверхностью земли залегает слой алевритов и глин плиоценового возраста. Этот слой мощностью 4,6 м очень пластичен и легко поддается сжатию. Простое лабораторное испытание этих осадков на физическую прочность сразу же позволило бы предсказать их уплотнение и осадку под действием веса башни. Фундамент башни состоял всего-навсего из кольцеобразной каменной кладки диаметром около 18 м, заложенной на 1,5 м ниже уровня земной поверхности. Башня поднимается на 55 м, т. е. ее высота в 3 раза превышает ширину основания. Если такую конструкцию установить на очень мягких алеврите и глине, то наклон неизбежен.
Поверхностный слой под башней постепенно переходит в слой песка, залегающий в интервале между 4,6 и 9,2 м. Песок, в сущности, не поддается сжатию, и он гораздо менее подвижен, чем глино-алевритовые пласты. Хотя песок и не является идеальным фундаментом, он почти наверняка играет положительную роль в сдерживании скорости осадки и сохранении относительно небольшого угла наклона башни. Можно даже предполагать, что 3-метровый слой глин и алевритов, залегающий между фундаментом башни и песком, к настоящему времени стал прочнее в связи с осушением при медленном уплотнении под нагрузкой. Этим и объясняется, почему башня все еще стоит вот уже в течение 700 лет. Однако слой песка, залегающий на глубине примерно 5—10 м, содержит тонкие глинистые и алевритовые зоны, которые становятся мощнее по направлению к югу. Их сильная подверженность сжатию объясняет первоначальный наклон башни. К тому же под слоем песка залегает более мягкая пластичная глина, прослеживающаяся до глубины 40 м, где она^подстилается горизонтомплот-ных песков. Движения в глино-алевритовом, песчаном и глинистом слоях могут начаться в любой момент, и тогда наклон башни должен увеличиться.
Что же ждет знаменитую Пизанскую башню? Она вполне может быть зафиксирована в ее теперешнем положении путем подведения фундаментов и закрепления их на слое песка, лежащем на глубине 39,7 м. Уже было испробовано впрыскивание жидкого цементного раствора в подстилающие осадки, однако это не дало заметных результатов. Надо искать какое-то другое смелое решение, причем необходимо учитывать тот факт, что работать придется под такой слабоуравновешенной постройкой. Предложен ряд проектов укрепления башни. При благоприятном стечении обстоятельств они будут успешно проведены в жизнь, в противном случае Пизанская башня сможет продержаться еще примерно столетие.
Проседание при удалении грунтовых жидкостей
Уплотнение рыхлых осадков, ведущее к проседанию грунта, почти невозможно предотвратить, если нагрузка, оказываемая на материал, обусловливается крупным строением. В большинстве случаев такое уплотнение сопровождается удалением воды из пор под давлением. Песок фактически не поддается сжатию, и вода из него вытесняется с трудом. Однако если межзерновая вода откачивается из песка и соседствующих с ним глинисто-алевритовых отложений, то падение гидростатического давления может повлечь за собой значительное уплотнение и последующие сдвиги грунта. Поскольку пески, особенно их несцементированные или слабо консолидированные разновидности, представляют собой высокопродуктивные водоносные горизонты, то грунтовые воды всегда активно откачивались из них. Во многих случаях это сильно влияло на состояние земной поверхности.
В долине Сан-Хоакин в центральной Калифорнии выпадает очень мало осадков. Интенсивное сельское хозяйство в этом районе обязано своим существованием ирригационным водам, большая часть которых откачивалась из осадков, подстилающих долину. Это были пески и грубозернистые алевриты, мощность которых местами превышала 600 м. Из этих пород в течение XX века активно извлекались воды, и в результате произошло проседание грунта, затронувшее площадь в несколько сотен квадратных километров, максимальная глубина просадки составила более 8 м. При понижении артезианского напора на 6–9 м грунт оседал на 30 см. Поскольку долина Сан-Хоакин – это район сельскохозяйственных земель, такое опускание, хотя оно и сопровождалось даже образованием трещин в грунте, не повлекло за собой катастрофических последствий. Забавно, что основное повреждение в долине Сан-Хоакин было нанесено ирригационным системам, которые сами и явились его причиной. Движение грунта разрушило многие скважины (ремонт скважины обходится до 1 млн. долл. в год), и ирригационные каналы с их очень низкими перепадами постоянно надо было восстанавливать. Чтобы прокладывать каналы через осевшие районы, не затопляя их, необходимо создавать длинные насыпи. Очевидно, единственным способом борьбы с проседанием в долине Сан-Хоакин является прекращение откачки грунтовых вод. Частичная их замена водами, которые подаются с гор, позволила значительно снизить скорость проседания грунта.
Подобное проседание в городских районах, особенно в тех, которые находятся почти на уровне моря, может иметь гораздо более разрушительные последствия. Так, значительная часть Токио пострадала от проседания, происходившего со скоростью 15 см в год в связи с извлечением воды из подстилающего горизонта алевритов. Многие крупные здания Токио были построены на более глубоко залегающих слоях плотной породы, поэтому создавалось впечатление, что они поднимаются, в то время как окружающая поверхность оседает. Движение было таким сильным, что к 1961 г. площадь около 40 км 2на окраине Токио оказалась ниже уровня моря. Эти районы пришлось защищать большими и дорогостоящими дамбами.
Сходные проблемы возникают и в Китае, например в городе Шанхай. Под Шанхаем залегают неконсолидированные осадки мощностью 300 м, содержащие большое число водоносных горизонтов, из которых выкачивается вода. Общая глубина просадки в районе судостроительной верфи за период между 1921 и 1973 г. составила 2,5 м. Участившиеся здесь случаи затопления вызвали попытки сократить скорость проседания. Так, проводилась закачка воды обратно в скважины во время влажных сезонов. Это делалось для поддержания уровня грунтовых вод в период сухих сезонов, когда грунтовые воды приходится откачивать.
При извлечении грунтовых вод просадке подвергаются не только пески и алевриты. Например, в Лондоне вода интенсивно откачивалась из мела, на котором стоит город, и в результате артезианский напор упал на десятки и даже сотни метров. Падение давления поровых вод в перекрывающих мел глинах Лондон-Клей вызвало проседание около 30 см. К счастью, этого недостаточно, чтобы повлечь за собой значительные последствия.
Проседание района вокруг города Саванна (штат Джорджия) происходит вследствие откачки вод из толщ известняка. Большинство известняков, даже если они трещиноватые и содержат водоносные горизонты, достаточно прочны, чтобы выдержать любую нагрузку. Однако третичные известняки Окала под Саванной являются исключением: они очень пористые, слабо консолидированные и при уменьшении давления поровых вод уплотняются. Очень серьезному проседанию подвергся также район между городами Хьюстон и Галвестон (штат Техас), расположенный западнее Саванны. Начавшись в 1943 г., проседание к 1961 г. местами достигало полутора метров; этот процесс продолжается в настоящее время со скоростью 7,5 см в год.
Проседание чаще всего бывает связано с извлечением воды из песчаных водоносных горизонтов, но иногда оно может быть вызвано откачкой из толщ проницаемых осадков другой жидкости – нефти или каких-либо растворов. Например, город Ниигата в Японии подвергся катастрофическому проседанию и местами опустился ниже уровня моря вследствие извлечения– соляных растворов, содержащих метан. Нефть является второй по значению после воды причиной проседания. Яркий тому пример – опускание в Лос-Анджелесе.
Портовый район Лонг-Бич на юге Лос-Анджелеса расположен непосредственно над месторождениями нефти Уилмингтон, находящимися в частном владении. Из небольшого купола в толще осадков мощностью около 180 м в значительных количествах откачивались как нефть, так и вода. Результатом этого явилось образование чаши проседания эллиптической формы, имевшей в поперечнике почти 10 км и повторявшей очертания лежащей под ней геологической структуры. В центре этой чаши вертикальное опускание за период с 1928 по 1971 г. достигло 9 м. Горизонтальное движение по краям чаши местами составило 3 м. Возмещение убытков, нанесенных городу, превысило 100 млн. долл. Наиболее пострадавшей оказалась морскчя судоверфь, большая часть которой сейчас находится ниже уровня моря и окружена высокими бетонными стенами. Эти стены приходится постоянно надстраивать, иначе море зальет верфь.
К 1957 г. ситуация в районе Лонг-Бич стала настолько опасной, что Министерство юстиции США запретило эксплуатацию здесь нефтяных скважин. Был предложен проект, согласно которому следовало закачать миллионы литров воды обратно в грунт по 200 скважинам. Эта процедура должна была не только восстановить давление воды в осадках и тем самым прекратить проседание, но и увеличить напор нефти в других, еще используемых скважинах. Действительно, нагнетание воды является стандартным методом повышения продуктивности нефтяного месторождения, хотя в данном случае оно рассматривалось лишь в качестве побочного эффекта. Работы прошли настолько успешно, что к 1963 г. проседание было в значительной степени остановлено, а в некоторых местах даже скомпенсировано. Надо отметить, что положительный эффект был достигнут в относительно простой ситуации, вообще же возможность полного восстановления уровня, существовавшего до проседания, ничтожна и требует предусмо-трения многих факторов.
К сожалению, закачка воды не разрешает проблемы проседания того типа, который существует и по сей день в городах Венеция и Мехико.
Венеции – всемирно известному городу, представляющему собой настоящее произведение искусства, – угрожает реальная опасность разрушения, поскольку она постоянно опускается ниже уровня моря. Венеция была заложена более 1300 лет назад. Город находится почти в центре большой лагуны, длина которой 56 км, ширима 10 км. Лагуна' отделена от Адриатического моря длинным рядом песчаных валов, которые еще в XVIII веке были укреплены дамбами. При этом были оставлены три пролива, открывающиеся в лагуну.
Венеция давно страдает от проседания. В 1902 г. обрушилась, превратившись в груду камней, колокольня собора Святого Марка. Столь полному разрушению подверглись немногие здания, но постепенно опускается большинство строений, поскольку весь город оседает. Примерно 70 % площади города в настоящее время находится на высоте чуть больше метра над средним уровнем моря, и эта территория часто подвергается затоплению. Наводнения, называемые здесь «аква альта» («высокая вода»), обусловлены совместными действиями ветра, прилива, резких колебаний уровня Адриатического моря, осадков и пониженного атмосферного давления. Самая ужасная «аква альта» отмечалась в 1966 г., когда ущерб, нанесенный городу, был оценен в 30 млн. фунтов стерлингов. Наводнения становятся все более частыми. Если на рубеже XIX и XX веков они происходили в среднем каждые пять лет, то к 1930 г. стали повторяться ежегодно, а начиная с 1960 г. – даже трижды в год. Затопление площади Святого Марка сейчас уже надо считать событием предрешенным.
Здания Венеции были построены на деревянных сваях, погруженных в дно мелководных частей лагуны. Отложения, подстилающие лагуну, представляют собой неконсолидированные материалы четвертичного возраста мощностью около 800 м, под которыми залегают еще менее плотные осадки, датированные плиоценом. Четвертичные отложения примерно на 50 % состоят из песков, на 35 % – из алевритов и на 15 % – из алевритовых глин. При таком фундаменте в морских дельтовых условиях следует ожидать проседания. В Венеции же есть множество предпосылок для этого.
Археологические исследования показали, что проседание лагунной зоны в доисторические времена местами достигало 6 м, а с древнеримских времен составило 2–3 м. Таким образом, среднее проседание в древности равнялось примерно 1 см в год – такова скорость, ожидаемая в любом дельтовом районе, где идет аккумуляция осадков. Главная дельта реки По расположена несколько южнее Венеции, и осадконакопление в этом районе вызывает изгибание слоев коренных пород под нагрузкой аккумулированных осадков. Поскольку четвертичные отложения мощностью около 800 м имеют мелководное происхождение, опускание фундамента за этот период составило, по-видимому, также около 800 м. В то же время должно было осуществляться уплотнение осадков, однако лабораторные исследования керна скважин, пробуренных под Венецией, показали, что такое первичное уплотнение существенной роли в проседании города не играет.
В XX веке скорость проседания катастрофически возросла, как показывают следующие данные о среднем опускании в год: 1926–1942 гг. – 0,23 см; 1943–1952 гг. – 0,35 см; 1953–1961 гг. – 0,50 см. Очевидно, появились какие-то новые факторы, и самым главным из них надо считать откачку грунтовых вод. Венеция всегда снабжалась водой, извлекаемой через неглубокие скважины из многочисленных водоносных горизонтов в четвертичных отложениях. Однако с начала нашего века потребность в воде существенно возросла. Начиная с 1930 г. промышленным предприятием в городе Маргера (западнее Венеции) в подстилающих лагуну осадках было пробурено более 7000 скважин. Активная откачка понизила гидростатический напор под Маргерой более чем на 18 м, а под Венецией – более чем на 7,5 м. Наибольшее уплотнение осадков произошло в интервале между глубинами 100 и 300 м, а большинство скважин в Маргере откачивали воду из водоносных горизонтов, залегающих на глубине от 200 до 300 м. К счастью для Венеции, удаление грунтовых вод не привело к слишком сильному уплотнению осадков и проседание составляет в среднем около 1,5 см на каждый метр падения артезианского напора. Для сравнения можно отметить, что в Центральной Калифорнийской долине отмечена скорость опускания в 6 раз больше, а оседание в Мехико составляет 15 см на каждый метр падения артезианского напора.
Имеются и другие факторы, обусловливающие постоянное опускание Венеции. Большую нагрузку на осадки вызвала интенсивная застройка лагунного района, развернувшаяся в XX веке. Кроме того, начиная с 1935 г. из четвертичных отложений, залегающих под дельтой реки По, добывался природный газ, пока в 1955 г. добыча его не была запрещена из-за проседания. Однако недавно было высказано предположение, что извлечение газа вызывало проседание только в районе, расположенном гораздо южнее самой Венеции.
Ко всем известным разнообразным типам проседания суши надо добавить еще повышение уровня моря. Этот процесс, происходящий во всем мире, связан с постепенным таянием полярных льдов вследствие постоянного повышения средней температуры на Земле. Подъем уровня моря эквивалентен опусканию суши на 1,5 см в столетие.
Таким образом, опускание Венеции происходит как в результате естественных процессов, так и вследствие действия гораздо более сильного фактора – извлечения воды. Последнее влияние, безусловно, может быть предотвращено. Однако только гигантское разрушительное наводнение 1966 г. подвигнуло правительство к действиям. В 1973 г. было отпущено более 200 млн. фунтов стерлингов на защитные сооружения. Другим важным результатом действий правительства было запрещение откачивать воды из горизонтов под Маргерой. Был построен акведук, подающий воду из реки Силь, протекающей к северу от города. Благодаря этому гидростатическое давление в осадках, залегающих под Венецией, стало повышаться, а проседание зи последние несколько лет значительно сократилось, но оно не остановилось, поскольку природные процессы продолжают развиваться.
Из многих выдвинутых предложений по спасению Венеции выделяются два проекта.
Один из них заключается з том, чтобы установить огромные плавучие плотины в каналах между лагуной и Адриатическим морем. При наводнении эти плотины можно закрепить и тем самым отвратить повышение уровня воды в городе. Единственным недостатком этого проекта является резкое сокращение приливно-отливной очистки каналов Венеции, что до настоящего времени спаслло город от засорения отбросами, которые просто спускаются в каналы. Поэтому в стоимость этого проекта должны входить расходы на сооружение современной очистной системы для всего города. Надо отметить, что этот план направлен на защиту от воды, а не на предотвращение проседания, которое в будущем потребует все более частого закрытия плотин, т. е. возможной изоляции лагуны.
Другой, более смелый, проект предусматривает фактическое приподнятие всего города. В дно лагуны предлагается врыть стену глубиной около 100 м и длиной 13 км, которая полностью окружала бы город. Она должна изолировать водоносные, горизонты в песчаных осадках, залегающих непосредственно под городом, от их продолжений под остальной частью лагуны, поскольку песчаные пласты, по существу, горизонтальны и подстилаются водонепроницаемыми глинами. Затем воду следует накачивать обратно в водоносные горизонты, что повысит давление поровых вод. В результате город приподнимется, поскольку осадки снова расширятся, по крайней мере до своего прежнего объема. Правда, могут возникнуть определенные трудности; например, замедление движения грунта при трении о стену может обусловить куполообразное выгибание территории города. Однако этот план все же дает лучшее решение проблемы, чем первый, и опыт Лос-Анджелеса по закачке воды показывает, что такой проект может сработать. Если же этого не произойдет, Венеция будет медленно опускаться до тех пор, пока совсем не исчезнет под водами своей знаменитой лагуны.
Город Мехико расположен весьма живописно: он раскинулся в широкой котловине с плоским дном на 2257 м выше уровня моря и окружен горами. Котловина имеет длину более 80 км и среднюю ширину 24 км. Она пересекается множеством небольших речек. Плоская форма дна котловины обусловлена мощным слоем подстилающих осадков, представленных грубозернистыми песками, перекрытыми тонкозернистыми глинами. Геологический разрез этого района имеет следующее строение.
Нижняя пачка песков и галечников прослеживается до глубины 500 м; ее обломочный материал представлен главным образом вулканическими андезитами. Эти отложения являются высокопродуктивным водоносным горизонтом. Залегающие выше две мощные пачки верхнеплейстоценовых глин сходны между собой; они представлены бентонитами, т. е. состоят главным образом из монтмориллонита с небольшой примесью других глинистых минералов, а также глинистых алевритов. Хотя все глинистые минералы имеют некоторую способность удерживать воду благодаря слабым электрическим связям, монтмориллонит проявляет это свойство сильнее всех. При увеличении в тысячи раз под электронным микроскопом можно видеть, что кристаллическая структура монтмориллонита состоит из полых трубочек, похожих на макароны, которые и придают монтмориллониту способность абсорбировать воду.
Верхний слой глины имеет среднюю пористость 88 %, а нижний – около 82 %. Другими словами, 88 % (или 7/8) верхнего слоя мягкой глины – это вода, и только 12 % —твердый минеральный материал. Тот факт, что вода в глинистых минералах связана (хотя и очень слабо), означает, что этот материал представляет собой не просто жидкую грязь, а является очень мягким, пластичным веществом. На такой породе не следовало бы строить большой город. К сожалению, все это стало известно через много лет после того, как город Мехико был построен.
Проседание Мехико впервые было отмечено в XIX веке; в это время как раз была усилена откачка воды из скважин, пройденных в высокопродуктивных песчаных водоносных горизонтах, залегающих ниже 50-метровой отметки. К 1959 г. часть города осела на 4 м, максимальное проседание составило 7,6 м. Скорость опускания в настоящее время заметно увеличилась, поскольку город растет, а следовательно, растет и откачка воды. С 1898 по 1938 г. ежегодное проседание в среднем составляло 4 см, за следующие 10 лет оно увеличилось до 15 см, в период 1948–1952 гг. достигло 30,5 см, а местами даже превысило 60 см. К 1948 г. стало ясно, что причиной проседания Мехико является добыча воды, но еще многие годы после этого существовало более 3000 скважин, поивших растущий город и одновременно подтачивавших его фундамент.