412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Том Хайэм » Мир до нас: Новый взгляд на происхождение человека » Текст книги (страница 8)
Мир до нас: Новый взгляд на происхождение человека
  • Текст добавлен: 1 июля 2025, 13:50

Текст книги "Мир до нас: Новый взгляд на происхождение человека"


Автор книги: Том Хайэм


Жанры:

   

Биофизика

,
   

Химия


сообщить о нарушении

Текущая страница: 8 (всего у книги 21 страниц) [доступный отрывок для чтения: 8 страниц]

Итак, судя по всему, коллекция древних костей, принадлежавших денисовцам, пополнилась образцом из Пэнху.

Ныне маленький обломок челюсти обрел постоянное место в Национальном музее естественных наук Тайваня{149}, за что следует благодарить местного бизнесмена Теда Чена. Возможно, используя новейшие научные методы, мы сможем узнать об этом экспонате еще немало интересного.

В 2016 г. в южном зале Денисовой пещеры обрушилась часть кровли, и, разбирая завалы, археологи нашли два обломка кости теменной или боковой части человеческого черепа. Они оказались очень толстыми. Годом позже я увидел в Новосибирске сделанные с них слепки и был поражен: никогда прежде мне не доводилось держать в руках или хотя бы лицезреть такую толстую черепную кость. При помощи анализа древней ДНК было установлено, что она принадлежала денисовскому человеку; образцу дали название «Денисова 13»{150}. На сегодняшний день эти два осколка являются самыми крупными фрагментами кости денисовца, обнаруженными на данной стоянке.

С учетом трех зубов, фаланги мизинца и обломков черепа «Денисова 13» из Денисовой пещеры, а также челюсти из Сяхэ в мире насчитывается шесть костей, чья принадлежность денисовским людям установлена в точности. Мы предполагаем, что в коллекциях окаменелостей, найденных в Восточной Азии, есть и другие останки денисовцев, которые предстоит опознать. В частности, речь идет о находках из Пэнху, Суйцзияо и Сюйчана, но пока что в них не обнаружена ДНК, которая могла бы подтвердить эту гипотезу. Да, образцов очень немного, но их количество постепенно растет, и каждая найденная косточка приносит нам новое знание. В мире палеоантропологии все меняется очень быстро, и не исключено, что уже через неделю положение вещей станет совсем иным.

Если в имеющейся палеонтологической летописи найти другие кости не удастся, нужно будет изобретать новые, альтернативные подходы. В следующей главе я хочу рассказать о поразительных биоархеологических методах, роль которых в поиске крошечных фрагментов костей, пригодных для генетического анализа и датировки, постепенно расширяется и становится все более и более значимой. Один из таких обломков, об обнаружении которого я упомянул на первых страницах этой книги, произвел фурор в палеоантропологии. Это открытие я считаю одним из высших достижений в своей научной карьере.

8

Поиск иголок в стоге сена

Пожалуй, я при всем желании не смог бы отрешиться от постоянных раздумий о том, как и где искать останки денисовцев. В июле 2014 г. я со своей сотрудницей по исследованиям (и женой) Катериной Дукой прибыл в Денисову пещеру на встречу. Как обычно, я испытал радость и восторг, снова оказавшись в Алтайских горах. Я ощущал единение с природой и наслаждался прекрасными пейзажами этих мест, умиротворяющим журчанием вод Ануя, чистым и свежим воздухом и, прежде всего, уникальной, несравненной археологией и товарищеской обстановкой в экспедиции. На эти мини-конференции, проводимые через каждые три-четыре года, всегда съезжался весь цвет мировой палеоантропологии: Анатолий Деревянко, Михаил Шуньков, Сванте Паабо, Бенце Виола и другие, – а также весьма интересные, работающие в различных областях археологии и генетики студенты и исследователи, с которыми я прежде не встречался.

Мы с Катериной поселились в одном из уютных шале базового лагеря. Через несколько дней, заполненных докладами, разговорами за стаканчиком спиртного и спорами до глубокой ночи, в наших головах начала зарождаться прекрасная идея.

Мы сообразили, что главная проблема исследования Денисовой пещеры состоит в том, что 95 % костей, обнаруживаемых в ходе раскопок, раздроблены на мелкие кусочки, вероятно зубами зверей-падальщиков. Это означает, что почти в каждом случае невозможно определить не то что род или вид хозяина кости, но даже и принадлежность ее человеку или животному. Вот и лежат эти раскопанные и очищенные косточки в пыльных кладовых, сваленные в большие пластиковые мешки, и не представляют для археологии никакой ценности. И все же среди этого крошева наверняка должны иметься человеческие кости. Возможно, как это было с «Денисова 3» (фаланга мизинца) или «Денисова 5» (так называемый алтайский неандерталец), они всего лишь несколько сантиметров длиной, но они насыщены ДНК и, следовательно, важнейшей информацией о древних обитателях пещеры. Нам же остается только отобрать их. Но как это сделать?

Ответ дает новейшая, совсем недавно разработанная технология ZooMS – масс-спектрометрическая зооархеология. У разных видов животных костный коллаген немного различается последовательностью белков (или пептидов). При анализе с помощью масс-спектрометра эти пептидные последовательности представляются чем-то вроде молекулярных отпечатков пальцев, которые позволяют идентифицировать останки до уровня рода или вида путем сравнения этих «отпечатков» с другими, содержащимися в библиотеке костей известных видов. Изобретателями методики являются Мэттью Коллинз из Йоркского университета и его студент Майкл Бакли{151}. Мы с Катериной поняли, что, используя этот метод, можно провести скрининг тысяч костей, выбрать только те из них, которые содержат пептидные последовательности человека, и тем самым, если повезет, расширить удручающе маленькую коллекцию человеческих костей из денисовских раскопок.

Мы не были оптимистично настроены. Отыскать человеческие кости эпохи палеолита случается очень редко; почти все найденные кости принадлежали животным. Время от времени попадаются скелетные обломки или отдельные зубы, но этого крайне мало по сравнению с останками животных, которых люди-охотники и хищные звери заносили в пещеры. Принесет ли пользу просеивание всех этих бесчисленных осколков костей? В конце концов, в ходе небольшого застолья, которое организовал Анатолий Деревянко, когда все немного разгорячились от водки, мы завели разговор на эту тему. Анатолий и Михаил Шуньков сочли идею разумной. Сванте Паабо также был очень заинтересован ею; он сразу понял, что, учитывая высокий уровень биомолекулярной сохранности находок в Денисовой пещере, таким способом можно будет раздобыть значительно больше человеческих костей, пригодных для генетического секвенирования. Итак, нам дали зеленый свет. Анатолий заверил нас, что к следующей встрече, которая должна была состояться на конференции в Бургосе (Испания) в том же году, они с Михаилом приготовят для нас мешок костей, чтобы мы могли приступить к работе.

Что касается гоминин, то ZooMS могла рассказать нам, принадлежал ли обладатель кости к семейству гоминидов, и ничего больше[36]. Иными словами, масс-спектрометр выявит у гориллы, неандертальца, денисовца, орангутана и у нас с вами одинаковую последовательность пептидов. Для дальнейшего обнаружения различий и верной идентификации образца необходимо извлечь и секвенировать ДНК. Этот этап работы должен был обеспечить Сванте со своей прославленной исследовательской группой.

Рис. 16. Сванте Паабо (слева) и автор у входа в Денисову пещеру в 2014 г.

В тот приезд в Денисову пещеру я впервые смог обстоятельно пообщаться со Сванте. Прежде мы лишь однажды пересекались – в начале 2000-х гг., в оксфордском пабе среди большой толпы. То ли дело в Денисовой пещере, на небольших встречах участников исследования, где действительно знакомишься с коллегами и общаешься с ними. Почти 10 лет я разъезжал по раскопкам и музеям, откуда доставлял в лабораторию многочисленные образцы для датировки. Каждый раз, забирая кость неандертальца для радиоуглеродного исследования, я спрашивал у хранителей, не произвести ли им заодно и секвенирование ДНК образца, на что неизменно получал ответ: «Этим уже занимается Сванте, в Лейпциге». Я привык к подобным разочарованиям. Конечно же, дело в том, что Паабо и его группа являются специалистами по неандертальцам, а теперь еще и по денисовцам. К тому же самыми лучшими.

Сванте начал исследовать древнюю ДНК практически в одиночку, в 1980-х гг., в лаборатории Аллана Уилсона в Беркли. А сейчас возглавляемый им лейпцигский отдел Института Макса Планка является мировым лидером в области древней геномики. У этого рослого и немного неуклюжего шведа, то и дело повторяющего: «Очень круто!», замечательное чувство юмора. Мы с ним хорошо поладили и теперь приходимся друг другу не только коллегами, но и добрыми друзьями. У него блестящий ум, и все же он немного не от мира сего[37].

Отдел Сванте ежегодно устраивает семинары для обсуждения своих исследований. Однажды и я стал гостем такого семинара, проходившего в хорватском городе Пула. Было крайне поучительно наблюдать, как личные научные интересы Сванте сочетаются с устремлениями его сотрудников. Он возглавляет группу из очень талантливых, сложившихся ученых и многообещающих студентов.

Мысль об испытании ZooMS на денисовских образцах удачно совпала с получением мною крупного гранта от Европейского исследовательского совета (ERC)[38]. Даже часть от этой суммы позволяла нам обработать с помощью ZooMS несколько тысяч образцов, и потому, вернувшись в Оксфорд, мы приступили к подготовке мелких фрагментов костей для исследования. Этот первый этап длится дольше всего. Нужно отпилить от каждой косточки препарат – маленький, около 20 мг, кусочек, поместить его в пластиковую пробирку и пометить ее так же, как пластиковый пакет, в котором хранится исходный образец.

Далее следует химическая обработка.

Сначала мы извлекаем белок (коллаген), растворяя кость в разбавленной кислоте. Полученный коллаген необходимо разделить на отдельные пептиды. Это мы делали при помощи еще одного передового метода, суть которого состоит в добавлении в коллагеновый раствор фермента трипсина, с хирургической точностью разрезающего коллаген на фрагменты-пептиды. (Вообще-то, именно этим трипсин занимается в животе каждого из нас, помогая нам переваривать белки. Когда вы съедаете бифштекс, вы запускаете тот же самый процесс ферментного переваривания, который мы применяем в лаборатории для того, чтобы выбрать из находок археологов человеческие кости.) Выделив пептиды, мы добавляем химикат, который обеспечивает их затвердение и кристаллизацию, после чего многоканальной пипеткой наносим вещество на множество – сотни – стальных пластинок. Эти пластинки мы помещаем в масс-спектрометр.

С помощью лазера пептиды получают электрический заряд, и заряженные частицы движутся по короткой трубке к детектору. Чем мельче фрагмент, тем быстрее его движение, крупные же обязательно отстанут. Очень скоро массы всех частиц пептидов, имеющихся в образце, удается измерить, после чего полученное распределение сравнивают с библиотекой исследованных ранее костей, принадлежность которых точно известна, и таким образом образец идентифицируют до рода, а иногда и до вида.

Подготовительная стадия исследования весьма трудоемка – для нее нужны очень старательные работники. Мы с Катериной задумались, может ли кто-нибудь из наших студентов заинтересоваться выполнением проекта по одной из тем их диссертации. К счастью для нас, в тот год подобралась сильная когорта студентов-магистрантов, и одна из студенток, энергичная и целеустремленная австралийка Саманта Браун, решила написать магистерскую диссертацию именно об этой работе.

Сэм принялась пилить кости. Она целыми днями не показывалась из комнатушки нашей оксфордской лаборатории и к концу января приготовила 700 10-миллиграммовых препаратов. В середине февраля 2015 г. она побывала на стажировке в манчестерской лаборатории Майка Бакли, где занималась анализом образцов и училась идентифицировать пептидные последовательности.

Через неделю спектральный анализ показал, что кости, которые мы успели исследовать, принадлежали медведю, корове, оленю, собаке, лисице, козе, лошади, гиене, мамонту, мыши, кролику, северному оленю, шерстистому носорогу и овце. А вот гоминидов не попадалось. Первая проба оказалась неудачной. Я запретил себе думать о том, что фактически мы ищем иголку в стоге сена – ну то есть в груде костей. Результата не было, но мы все же попытались. Я чувствовал, что пора освободить Сэм от этого задания. Она проделала большую работу и получила определенные данные, но попасть в яблочко, на что мы так надеялись, ей не удалось.

Мы встретились с Сэм, чтобы обсудить ее достижения. Я сказал, что она собрала солидный массив материалов об идентифицированных костях животных, который, пожалуй, послужит отличной базой для диссертации. Так что она может отдохнуть и не спеша составить тезисы к положенному сроку.

Рис. 17. Схема использования метода ZooMS для выявления человеческих костей

Но тут Сэм проявила твердость характера. Она отказалась и заявила, что не желает бросать работу, а хочет продолжить ее и обработать максимальное число образцов, среди которых все же может попасться кость гоминина. Ну можно?..

Средства пока что позволяли – так почему бы и нет? Единственная проблема состояла в том, что у нас закончились образцы, и поэтому мы отправили Сэм в Россию. Через несколько дней она вернулась оттуда с еще одним большим мешком костных обломков, любезно предоставленных нашими русскими коллегами, и снова скрылась в своей «мастерской». Через три недели были напилены, промаркированы и готовы к исследованию 1308 препаратов.

К тому времени Сэм уже заслужила репутацию настойчивой и дотошной работницы. Окружающие шутили, что она совсем переселилась в лабораторию и только пилит, и пилит, и пилит кости. Она же уверяла, что работа очень увлекательна, несмотря на однообразие. Я очень, очень надеялся на успех. Хотя бы одну косточку – этого будет более чем достаточно. И неважно, окажется она большой или совсем крошечной, лишь бы продемонстрировать действенность метода.

Взяв с собой 780 образцов, Сэм снова уехала в Манчестер для работы с масс-спектрометром. К сожалению, там была какая-то проблема с компьютером; Сэм вернулась в Оксфорд, так и не узнав результаты. Впрочем, Майк пообещал передать нам спектры, как только всё наладят. Через день, в пятницу 19 июня, под вечер, он просматривал полученные данные перед тем, как отправить их нам, и заметил в одном из спектров что-то необычное – там будто бы присутствовали пять уникальных пептидных маркеров, присущих гоминидам. Да, это был гоминин! Майк трижды перепроверил данные и в 20:09 послал мне электронное письмо, начинавшееся со слов: «Успех! Один из 780 образцов – тот, что нам нужен!». А дальше прямо сообщил мне радостную весть: мы нашли кость гоминина!

Мой ответ, отправленный минутой позже, в 20:10, содержал лишь эмоции, испытанные мною в тот момент:

ЧТО?????

ОФИГЕТЬ!!

ВОТ ЖЕ ОФИГЕТЬ!!

ПРАВДА?????????

(ПОПЫТКА УСПОКОИТЬСЯ)…

ОХ Ё-Ё-Ё-Ё-Ё-Ё-Ё…

Прошу прощения за столь цветистый язык, но в науке случаются такие мгновения, когда из-за переизбытка возбуждения и радости слов просто не остается. Мы все же нашли кость гоминина!

Я немедленно позвонил Сэм на мобильный, чтобы поделиться новостью.

Она не ответила.

Я звонил еще и еще.

«Телефон выключен или находится вне зоны обслуживания».

(Позже выяснилось, что Сэм отправилась на вечеринку и не заметила, что ее телефон разрядился.) Проклятье! Придется ждать. Я спустился на первый этаж и сообщил новость Катерине. От радости мы принялись танцевать на кухне и открыли бутылку вина.

Наутро Сэм наконец-то прочитала поток ликующих сообщений, которые я послал ей, и даже тяжелейшее похмелье не смогло омрачить ее восторга. Мы достигли поставленной цели, нашли гоминина среди тысяч образцов!

И в понедельник мы с Сэм, с трудом дождавшись 9 утра, принялись с великим усердием перебирать пакетики с костями в поисках того образца, от которого был отпилен кусочек, давший спектр гоминина. Он имел индекс DC1227. Сэм искала среди сотен пакетиков нужную метку, а я снимал этот процесс на видеокамеру. Через несколько минут образец был найден.

Он оказался крохотным.

С владевшим нами волнением смешалось легкое разочарование. Приложив столько усилий для того, чтобы отыскать эту косточку, мы оба – безусловно, оптимисты – только сейчас задумались над тем, что же делать с нею дальше. Как выяснилось, фрагмент был обнаружен в слое 12 восточного зала Денисовой пещеры. Это значило, что ему, почти наверняка, более 60 000 лет. Необходимо было обращаться с косточкой крайне осторожно и поменьше крутить ее в руках: как-никак, мы собирались извлечь из нее ДНК. Тем не менее мы взвесили образец – он потянул на 1,68 г. Косточка оказалась плотнее, чем можно было предположить с первого взгляда. Из этого следовало, что в ней вполне могли сохраниться биомолекулы коллагена и ДНК.

Я так разволновался, что той ночью никак не мог заснуть и все время ловил себя на мысли, что не верю в случившееся.

Мы решили подвергнуть образец томографическому сканированию, для чего нужно было отправиться в лабораторию, расположенную в сельской части Оксфордшира. Косточку мы держали в желтом пластиковом футляре с ручкой и прочными зажимами. В электронном письме я сообщил Сэм назначенное время и добавил: «Сэм, пожалуйста, не забудь образец (и его специальный футляр)!»

На что она ответила: «Я никогда и нигде не забуду Денни (да, я дала ему имя)!»

«У меня такое ощущение, словно DC1227 слегка простыл, – сказала она как-то позднее. – Мы будто бы нашли нового друга…»

Пожалуй, так оно и есть. И с того дня эта косточка именуется «Денни» и никак иначе.

Выяснилось, что компьютерная томография может сыграть ключевую роль в изучении косточки и того, кому она принадлежала.

Теперь предстояло заняться генетической последовательностью косточки. Сэм с футляром (в котором находился «Денни») улетела в Лейпциг, где в Институте Макса Планка от образца осторожно отделили 30,9 мг костной ткани, чтобы извлечь ДНК и для начала секвенировать мтДНК.

Еще один кусочек кости мы предназначили для радиоуглеродного датирования и измерения содержания изотопов углерода и азота. Мы надеялись, что кость, обнаруженная в 12-м слое, окажется не старше 50 000 лет – максимального возраста, доступного для радиоуглеродного метода. При этом нам хотелось точно знать, что она не намного моложе, и потому мы пожертвовали еще кусочек на извлечение коллагена для дополнительной датировки. Через несколько недель то, в чем мы были почти уверены, подтвердилось: кость старше 49 900 лет, а вот насколько – неизвестно.

Пока мы ожидали результатов, Journal of Archaeological Science опубликовал статью на эту же тему{152}. К счастью для нас, ее авторам не удалось идентифицировать ни одной кости гоминина. Мы хотели первыми доказать действенность метода и выпустить статью, и проигрыш в этой гонке стал бы для нас тяжким разочарованием. Несомненно, наши коллеги-соперники думали точно так же.

9 сентября нам сообщили, что митохондриальная ДНК «Денни» содержит последовательность, присущую неандертальцам! Генетики Института Макса Планка сумели почти полностью восстановить митохондриальный геном. Мы нашли неандертальца или, согласно более осторожной формулировке, используемой группой Сванте, «гоминина с неандерталоподобной мтДНК». Помню, что, несмотря на всю нашу радость, Сэм немного упала духом: мы ведь всерьез надеялись, что гоминин, которому принадлежала косточка, окажется денисовцем. Неандерталец – это замечательно, но денисовец был бы во много раз круче. Все, кому мы рассказывали о полученных результатах, – и коллеги, и друзья из непрофессионального круга – искренне удивлялись существованию такой технологии, как ZooMS, способной выделить из тысяч костей крохотную человеческую косточку, принадлежавшую кому-то, жившему десятки тысяч лет назад.

Пришло время опубликовать результаты. «Денни» получил официальное обозначение «Денисова 11». В декабре 2015 г. мы направили статью в Scientific Reports, где она была отрецензирована и вышла в свет 29 марта 2016 г.{153} Публикацию я решил дополнить пресс-релизом о косточке и о том, как она была найдена. Мне казалось, что это необыкновенно захватывающая история, которая будет интересна очень многим. Я считал проделанную работу истинным прорывом, демонстрирующим могущество биоархеологических методов в выявлении крошечных окаменелостей.

Статья осталась незамеченной. На нее мельком откликнулись несколько газет (ни одной крупной) и ни одно из авторитетных научных изданий. Ни один журналист не обратился к нам за интервью, не пожелал обсудить статью. Ну, не беда…

Тем временем «Денни» подвергся извлечению ядерной ДНК (Вивиан Слон провела эту работу на соискание докторской степени). Труд был колоссальным, и несколько месяцев мы ничего не знали о ходе исследования. В мае 2017 г. мы с Катериной побывали в Германии и заглянули в Институт Макса Планка, чтобы выпить кофе с сотрудниками и узнать, как обстоят дела. Ученые сказали, что работа продвигается хорошо и уже есть первые результаты, но они нуждаются в проверке. Когда же я поинтересовался подробностями, с нас сначала взяли обещание молчать, и лишь потом сообщили, что исследование показало в ДНК неожиданно высокий уровень смешения и что часть генома имеет сходство с денисовским геномом, а часть – с неандертальским. По их словам, соотношение было примерно равным, и, судя по имевшимся данным, мы имели дело с так называемым генетическим гибридом F1, или гибридом первого поколения. Истолковать это можно было лишь одним способом: отец «Денни» был денисовцем, а мать – неандерталкой.

Очень жаль, что в тот момент, когда я это услышал, никто не снимал меня на видео: думаю, что я застыл с выпученными глазами и отпавшей челюстью. Впрочем, все мы были поражены. Я размышлял о том, как такое могло произойти. Нет, это наверняка накладка, путаница, какое-то загрязнение или еще какая-нибудь ошибка. Позже извлечение ДНК повторяли несколько раз. И результат оставался неизменным. В это просто не верилось. Конечно же, мы поведали «тайну» Сэм: очень может быть, что она отыскала не неандертальца, а его гибрид с денисовским человеком!

Впоследствии геном «Денни» был секвенирован со средним покрытием 2,6X. Выяснилось, что это женщина. Чтобы разобраться в генеалогии, ее геном сравнили с проработанными с высоким покрытием геномами неандертальца («Денисова 5») и денисовца («Денисова 3»), а также, для контроля, с африканским геномом (мбути), в котором не должно было содержаться ДНК ни одной из этих групп. Исследование показало, что в 38,6 % точек ядерный геном «Денни» соответствовал неандертальскому геному, а в 42,3 % ее аллели совпадали с денисовским геномом. Итак, с генетической точки зрения соотношение ДНК обоих видов было примерно равным. Это со всей определенностью указывало на то, что мы имеем дело с F1 – отпрыском двух различных человеческих групп в первом поколении.

Сравнив толщину кортикального слоя кости со значениями для других гоминин при помощи компьютерной томографии, мы смогли определить, что кость, вероятнее всего, принадлежала девочке не младше 13 лет.

Итак, нашими усилиями крохотная, всего 2 см длиной, косточка обросла плотью.

Статья с изложением результатов была опубликована в онлайн-версии журнала Nature 22 августа 2018 г., а через пару недель – в бумажном выпуске журнала как заглавная статья{154}. Немецкая художница Аннетт Гюнцель сделала для обложки прекрасную иллюстрацию, где были изображены две переплетенные руки, одна голубая, другая красная, символизировавшие гоминин разных видов, которые были родителями «Денни». На заднем плане была карта Евразии. По кистям рук и предплечьям, как татуировка, тянулись пряди двойной спирали ДНК.

На сей раз статьей заинтересовались во всем мире. Ее упоминали все и вся. «Денни» оказалась одной из главных научных сенсаций года. Nature включил Вивиан в топ-10 людей науки за 2018 г. Генетик Понтус Скоглунд назвала «Денни» «пожалуй, самой восхитительной особой из всех, чей геном когда-либо был секвенирован»{155}.

Как же прекрасно делать открытие и делиться им! Это волшебное чувство! Каждый раз, когда я думаю об этой истории, на глаза мне наворачиваются слезы. Поверьте, это правда.

Перед тем как перейти к другой теме, я хочу упомянуть еще о трех частностях, затрагивающих «Денни». Первая заключается в том, что обнаружение именно этой особи, являющейся представителем генетического скрещивания двух различных видов человеческого рода, – это редчайшая, возможно, неповторимая удача. Появление таких людей, как «Денни», не могло быть распространенным явлением, в противном случае геномы неандертальцев и денисовцев были бы не различными, а одинаковыми. Впрочем, популяционная история неандертальцев и денисовцев знает и другие случаи их межвидового скрещивания. О том, что перенос генов от популяции алтайских неандертальцев к денисовцам действительно случался, мы знаем с 2014 г.{156} Итак, согласно генетическим данным, две популяции жили порознь, но, как мне кажется, могли скрещиваться при встречах. Конечно, не исключено, что мы найдем и другие примеры интербридинга и потомства от них в первом и втором поколении, но мне это видится маловероятным. Нам просто очень повезло{157}.

Однако второе поразительное открытие, сделанное в геноме «Денни», наводит на новые размышления о межвидовом скрещивании и его частоте. В пяти позициях ее ядерного генома обнаружились участки чисто неандертальской предоминантной ДНК, а это говорит о том, что и у отца «Денни», денисовца, сотнями поколений ранее имелся предок (или предки) неандерталец. Но это еще не все. Неандертальская часть ДНК сообщает много интересного о родословной матери «Денни», в частности о том, что она происходила не из той популяции неандертальцев, к которой принадлежали неандертальские предки отца «Денни». Выяснилось, что она куда ближе к жившим 50 000 лет назад неандертальцам из хорватской пещеры Виндия, нежели к неандертальцам Денисовой пещеры. Отсюда следует предположение, что либо западные неандертальцы мигрировали на Алтай, либо, наоборот, неандертальцы с востока пришли в Европу и вытеснили местных сородичей. Таким образом, генетика дает нам представление о крупномасштабных перемещениях, которые осуществлялись на протяжении длительного времени и затрагивали все популяции неандертальцев.

Напоследок хочу сказать пару слов о человеческих останках.

Я уже давно занимаюсь научной работой и за это время подверг исследованию на радиоуглерод и стабильные изотопы сотни и сотни препаратов, которые извлекал из человеческих костей. Не один десяток лет я гордился тем, что не имел эмоциональной привязанности к ним, был далеким и отчужденным и не воспринимал как личности тех древних людей, останки которых изучал. И мне было совершенно неважно, сколько лет назад жил каждый из них – 100, или 1000, или 10 000, потому что для меня все это всегда сводилось к науке и не касалось конкретных личностей. Я работал с костными тканями Ричарда III, Джона Меррика («Человека-слона»), египетских фараонов, с болотными телами и мумиями, со святыми и жертвами убийц; при этом я всегда сохранял отстраненное почтение к тем реально жившим людям, останки которых я исследовал. Но «Денни» изменила меня. Возможно, причиной тут были и непрерывная напряженная работа, и те взлеты и падения, что сопровождали исследование, но после того, как я узнал, что представляла собой хозяйка этого образца, она стала для меня чем-то бóльшим, нежели просто научный объект, и мое отношение к ней сделалось более личным.

Сейчас, когда я пишу эти строки в своем служебном кабинете, последний маленький кусочек, оставшийся от «Денни», лежит прямо передо мною, в пластиковом пакетике и маленьком желтом футляре, и, возможно, именно поэтому я ощущаю ее присутствие сильнее, чем в любых других обстоятельствах. До недавнего времени о «Денни» никто ничего не знал, как и почти что обо всех древних людях, чьи останки обнаружили археологи, пожалуй, крохотная косточка – это все, что от нее осталось. Но мы смогли мало-помалу вернуть ее к дневному свету, вдохнуть в нее жизнь и воссоздать аспекты ее существования. Я думаю, что, поведав миру историю этой девочки, мы почтили ее память. И, как итог всему, «Денни»-образец, «Денни»-кость превратилась в «Денни»-личность.

9

Наука о «когда»

«Все, что относится к древним языческим временам, скрывается в густом тумане, уплывая от нас в неизмеримую даль. Нам известно, что язычество старше христианства, но насколько – на годы, на века или даже на тысячелетия, – это уже область догадок или в лучшем случае гипотез».

Так писал в 1806 г. датский антиквар и философ Расмус Ниеруп. Как работник научной лаборатории, которая в буквальном смысле способна датировать события прошлого, я часто думаю, как восхитился бы Ниеруп, доведись ему узнать, насколько изменилось положение дел с тех пор, когда он сетовал на невозможность осмыслить временную составляющую человеческой истории. Как чудесно было бы перенести его на машине времени из 1806 г. в наши дни, показать ему нашу лабораторию и объяснить, что она делает.

Чтобы встроить «Денни» и другие человеческие останки из Денисовой пещеры и прочих мест в нужную историческую ретроспективу, необходимо с достаточной точностью определить, когда они жили. Хронология превыше всего. Без средств, позволяющих упорядочить былое, просто невозможно установить, что и когда произошло – все пропадает в том самом тумане, на который досадовал Ниеруп. Мы уже слышали о датировании предметов с других археологических стоянок, где, вероятно, были найдены денисовцы, – Сюйчана, Сяхэ, Суйцзияо. Но как же обстоят дела с возрастом находок из самой Денисовой пещеры?

До марта 1949 г. археологам приходилось полагаться на так называемую относительную датировку. Этот метод первоначально применялся в Восточном Средиземноморье, преимущественно к историческим памятникам Египта. Сравнивая гончарные и иные изделия с аналогичными предметами известного периода, можно было сделать вывод о возрасте подобных находок из других районов Восточного Средиземноморья. Относительная датировка имела серьезные географические и временные ограничения. Постепенно эта сравнительная методика широко распространилась по Европе, но так и оставалась не абсолютной, а относительной.

Наконец 4 марта 1949 г. в журнале Science была опубликована статья о проблемах сейсмологии, знаменовавшая собой большие перемены в подходе к датировке предметов прошлого{158}. Уиллард Либби, ученый из Чикагского университета, ранее участвовавший в Манхэттенском проекте по созданию первого в мире ядерного оружия, описал новый метод, который мог позволить археологам всего мира осуществлять независимую датировку археологических образцов. Правда, этот метод можно было применять лишь к тем веществам, которые некогда присутствовали в живых организмах. Но ведь и это очень много: датировке поддавались дерево и древесный уголь, раковины моллюсков и кости. Открытие повлекло за собой революцию в археологии и целом ряде других наук, а Либби в 1960 г. получил за него Нобелевскую премию по химии.


    Ваша оценка произведения:

Популярные книги за неделю