355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стивен Уильям Хокинг » Большое, малое и человеческий разум » Текст книги (страница 5)
Большое, малое и человеческий разум
  • Текст добавлен: 16 октября 2016, 21:04

Текст книги "Большое, малое и человеческий разум"


Автор книги: Стивен Уильям Хокинг


Соавторы: Роджер Пенроуз,Нэнси Картрайт,Абнер Шимони

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 5 (всего у книги 12 страниц)

Рассмотрим, что происходит с одиночным фотоном, испущенным источником, при попадании на головную часть неисправной бомбы. На первом полупосеребренном зеркале квантовое состояние фотона расщепляется на два отдельных состояния, одно из которых соответствует фотону, пропущенному через полупосеребренное зеркало к неисправной бомбе, а второе – фотону, отраженному по направлению к неподвижному зеркалу (такая суперпозиция возможных траекторий фотона в точности совпадает с суперпозицией, рассмотренной выше для эксперимента с прохождением фотона через две щели на рис. 2.2, а также, что имеет особое значение, наблюдается при сложении спинов). Предположим, что длины траекторий между двумя полупрозрачными зеркалами совершенно одинаковы. Для определения состояния фотона в момент достижения им регистрирующих устройств необходимо сравнить траектории обеих составляющих суперпозиции состояний. Легко заметить, что траектории «взаимопогашаются» в точке В, но одна из них продолжается дальше до точки А, вследствие чего в схеме должен иногда срабатывать только детектор А, в то время как детектор В не должен ничего регистрировать во всех случаях. Это весьма похоже на интерференционную картину, наблюдаемую в экспериментах рис. 2.2, когда интенсивность облучения некоторых участков постоянно равна нулю вследствие взаимного гашения квантовых состояний в этих точках. Таким образом, при тестировании (т. е. облучении) неисправной бомбы детектор А должен срабатывать постоянно, а детектор В – столь ж е постоянно не выдавать никаких сигналов.

Рассмотрим далее ситуацию с тестированием исправной бомбы. В этом случае зеркало на бомбе перестает быть простым отражателем, а его сдвиг превращает саму бомбу в некоторое измерительное устройство, которое регистрирует одно из двух возможных событий (наличие или отсутствие падающего фотона). Если фотон проходит через полупрозрачное зеркало и попадает на зеркало детонатора, то событие регистрируется и... бомба взрывается с оглушительным «Ба-бах!!!». Тем самым мы определяем исправную бомбу, но, к сожалению, тут же теряем ее, так что нам не остается ничего иного, как установить на стенд следующую бомбу. Однако существует возможность, что при проведенном измерении (напоминаю, что измерительным прибором фактически является сама бомба) взрыва не произойдет из-за того, что фотон не попадет на зеркальце, а пройдет по другой траектории (именно эту ситуацию и обозначает термин «нуль-измерение»). В этом случае фотон попадает на второе полупрозрачное зеркало, где может быть с одинаковой вероятностью отражен или пропущен. В последнем случае он достигает точки В, где и регистрируется детектором. Таким образом, при тестировании исправной бомбы каждый случай регистрации фотона детектором В можно рассматривать как следующее событие: «бомба сработала в качестве измерительного устройства и выделила одну из двух возможных траекторий фотона». Существенно важным при этом является то, что испытываемая исправная бомба сама является измерительным устройством, участвует в процессе «компенсации» длин траекторий и позволяет зарегистрировать фотон в детекторе В даже без непосредственного взаимодействия с этим фотоном (это и есть нуль-измерение!). Ведь если фотон не прошел по одной из двух возможных траекторий, то он прошел по другой! Когда детектор В регистрирует поступление фотона, мы понимаем, что бомба сработала в качестве измерительного прибора и является исправной. Более того, каждая регистрация фотона детектором В, не сопровождающаяся взрывом, означает, что тестируемая бомба однозначно является исправной. Наша уверенность связана с тем, что фотон действительно прошел по другой траектории.

Описанный эксперимент может показаться весьма странным, однако в 1994 г. во время визита в Оксфорд Зейлингер рассказал мне, что он и его коллеги действительно провели предложенный выше эксперимент по тестированию бомб (разумеется, бомбы не были боевыми, а наши коллеги-физики не террористы). Зейлингер и его друзья (Квят, Вайнфуртер и Касевич) обнаружили еще один, более эффективный вариант решения этой задачи, при котором тестирование осуществляется вообще без расхода бомб. Я не помню, за счет каких усложнений измерительной установки им удалось этого добиться, но в целом можно констатировать, что задача о тестировании бомб фактически уже решена – при очень небольшом числе взрывов (или даже вообще без взрывов) можно гарантированно выделить из некоторого множества бомб заведомо исправную.

Давайте пока остановимся на этих рассуждениях, так как приведенные примеры, как мне кажется, уже наглядно продемонстрировали совершенно необычный характер тех квантово-механических явлений, которые я выше назвал Z-тайнами. На мой взгляд, какие-то проблемы возникают вследствие того, что некоторые люди, размышляя о таких задачах, приходят в восторг («Ах, боже мой, как изумительна квантовая механика!»). Все это совершенно правильно, и квантовая механика – действительно замечательная вещь (хотя бы потому, что она включает в себя описанные Z-тайны в качестве реальных явлений), однако те же люди далее начинают считать, что сказанное относится и к Х-тайнам, а это, на мой взгляд, совершенно ошибочно!

Вернемся к знаменитой задаче о коте Шредингера. Схема мысленного эксперимента, представленная на рис. 2.7, не совсем совпадает с первоначальным замыслом самого Шредингера, но это несущественно для общего рассмотрения. Мы вновь имеем дело с источником фотонов и полупрозрачным зеркалом, которое переводит квантовое состояние падающего фотона в некоторую суперпозицию состояний (одно, как и прежде, соответствует проходящему фотону, а второе – отраженному). При срабатывании регистрирующего устройства, расположенного на траектории пропускаемого фотона, выстрел из пистолета убивает несчастного кота. Этого кота можно рассматривать в качестве конечного измерительного устройства, т. е. считать, что мы просто переходим от квантового уровня измерения к макроскопическому (а именно, к коту, который может быть живым или мертвым). Проблема заключается в том, что если вы считаете такой переход (от квантов к коту) законным, то должны также считать, что актуальное (реальное?) состояние кота тоже представляет собой некоторую суперпозицию двух состояний (жизни и смерти). Действительно, если фотон описывается суперпозицией двух состояний (двух траекторий), а детектор – суперпозицией двух состояний (включен/выключен), то было бы естественным (и последовательным) описывать кота суперпозицией двух состояний (жизнь/смерть). Проблема была сформулирована очень давно, но найти ее удовлетворительное решение пока не удалось. Число мнений и предлагаемых решений чуть ли не превосходит число физиков, связанных с квантовой механикой (такое превышение вполне возможно, поскольку многие физики меняли свои мнения в процессе обсуждения). Мне хочется привести весьма общее мнение, высказанное однажды в приятной дружеской беседе за ужином Бобом Уолдом: «Если вы действительно верите в квантовую механику, то вы не можете относиться к ней серьезно». Это замечание представляется мне очень глубоким и верным по отношению не только к самой квантовой механике, но и к ученым, связанным с нею. Я даже попытался как-то разделить физиков, работающих в этой области, на несколько групп, как это показано на рис. 2.8. Прежде всего в соответствии со сказанным выше я разделил их на верующих и серьезных. Разумеется, вы вправе спросить, что я подразумеваю под серьезностью? Мне кажется, что серьезные люди для описания реального мира используют вектор состояний | ψ >, поскольку этот вектор является реальным. С другой стороны, те специалисты, которые действительно «верят» в квантовую механику, не считают этот подход правильным. Я попытался классифицировать по этому признаку большое число известных физиков. Насколько мне удалось выяснить, Нильс Бор и многие другие представители так называемой копенгагенской школы могут быть отнесены к «верующим». Сам Нильс Бор верил в квантовую механику, но не относился к вектору | ψ > как к серьезному описанию мира. Для него этот вектор оставался чисто мысленной конструкцией, т. е. он считал, что этот вектор является способом описания мира, но не самим миром. Именно это обстоятельство заставило Джона Белла обозначить квантовую механику аббревиатурой FAPP (For All Practical Purposes, т. е. для всех практических целей). Самому Беллу это сокращение очень нравилось (мне кажется, потому что оно имеет слегка уничижительный или обидный характер). Этот подход связан с концепцией «декогеренции», о которой я очень кратко расскажу позднее.

Рис. 2.7. Кот Шредингера.

Квантовое состояние системы представляет собой линейную суперпозицию отраженного и пропущенного фотонов. Пропущенный фотон запускает некоторое устройство, убивающее кота, вследствие чего в соответствии с U-эволюцией состояние кота представляет собой суперпозицию жизни и смерти.

Рис. 2.8.

Вы можете заметить, что многие ревностные сторонники FAPP (например, Зурек) помещены в центре диаграммы рис. 2.8. Впрочем, возможно, мне еще надо объяснить, что я подразумеваю под центром диаграммы. Дело в том, что я разделил «серьезных» физиков на разные группы. Часть из них верит в U-эволюцию, т. е. воспринимает ее в качестве единого процесса (эту точку зрения можно назвать верой в картину множественности миров). В такой картине рассматриваемый кот действительно является одновременно живым и мертвым, однако следует учитывать, что два состояния кота при этом в некотором смысле относятся к двум разным мирам или вселенным (ниже я расскажу об этом подробнее). Именно поэтому я выделил физиков, придерживающихся (придерживавшихся когда-то раньше) этой точки зрения, в особую группу и поместил ее в центре диаграммы.

Физики, которые, по моему мнению, действительно серьезно относятся к вектору состояний | ψ > (я лично вхожу в их число), верят, что процессы U и R являются реальными. При этом не только осуществляется унитарная эволюция U (до тех пор, пока система остается в каком-то смысле малой), но и происходит то, что я обозначил через R-процесс (это не точно R, но нечто ему подобное). Если вы относите себя к группе верующих, то можете выбрать для себя, по-видимому, одну из следующих точек зрения. Прежде всего вы можете считать, что никакие новые физические эффекты учитывать не следует (к этой группе я отношу де Бройля и Бома, а также некоторых очень далеких от них по идеологии физиков – Гриффитса, Гелл-Манна, Хартля, Омнеса). При таком подходе операция R играет какую-то вспомогательную роль по отношению к стандартной U-эволюции квантовой механики, однако открытия новых эффектов ожидать не стоит. И наконец, существует группа физиков (к ней отношусь и я лично), придерживающихся второй «действительно серьезной» точки зрения, которые полагают, что в будущем произойдет нечто новое, способное изменить всю структуру квантовой механики. Подходы R и U действительно противоречат друг другу – им на смену должно прийти нечто новое. Имена физиков этой группы я собрал в правом нижнем углу диаграммы.

Мне хочется чуть подробнее остановиться на роли математики и некоторых других проблемах, связанных с котом Шредингера. Давайте еще раз рассмотрим ситуацию с котом и попробуем ввести нормировку (вес состояний) при помощи комплексных чисел w и z (рис. 2.9, а). Фотон расщепляется на два состояния, поэтому, если вы серьезно относитесь к квантовой механике и верите в реальность вектора состояний, вам следует также поверить в то, что кот действительно представляет собой некоторую суперпозицию состояний, в которых он одновременно и жив, и мертв. Эти состояния (жизнь/смерть) очень удобно записать через скобки Дирака, как показано на рис. 2.9. Отметьте для себя, что в скобки Дирака коты помещаются точно так же, как обычные символы! В рассматриваемом случае кот не представляет собой целостный объект, поскольку в его описание входят пистолет, фотон и окружение, причем каждый элемент описания представляет собой произведение всех эффектов одновременно (воздух и т. п.), что вы можете представлять в виде некоторой суперпозиции (рис. 2.9, б).

Рис. 2.9.

Каким образом все это можно согласовать в рамках концепции множественности миров? Почему, собственно, рассматривая кота, мы не видим его в виде суперпозиции этих самых состояний? Физики, придерживающиеся теории множественности миров, предлагают для этой ситуации картинку, показанную на рис. 2.9, в, на которой существуют состояния и с живым, и с мертвым котом (в каждом случае со своим наблюдателем). На рис. 2.9, в я и показал такую суперпозицию, поместив в скобки Дирака кота (в двух весьма разных состояниях) и наблюдателя (я попробовал придать его лицу выражение, подобающее квантовому состоянию кота). В рамках концепции множественности миров все сходится, и мы имеем просто копии наблюдателя, однако при этом следует помнить, что обитатели этих картинок живут в «разных мирах», т.е. если вы являетесь одной из этих копий, то другая копия (из параллельного мира) наблюдает за тем, как вы реализуете имеющиеся возможности. Разумеется, вы посчитаете такой метод описания Вселенной не очень удобным и экономичным, однако я думаю, что дела обстоят значительно хуже и трудности вовсе не ограничиваются сложностью или неудобством описания.

Основная проблема состоит в том, что все сказанное фактически оказывается недостаточным для решения поставленной проблемы. Например, остается непонятным, почему наше сознание не воспринимает такие макроскопические суперпозиции. Давайте рассмотрим особый случай, когда величины w и z равны друг другу, т. е. когда состояние системы можно записать в виде некоторого простого алгебраического соотношения, изображенного на рис. 2.10, где показаны живой кот плюс мертвый кот (вместе с наблюдателем, который воспринимает живого кота), плюс наблюдатель, воспринимающий мертвого кота, плюс живой кот, минус мертвый кот вместе с наблюдателем, воспринимающим живого кота, минус наблюдатель, воспринимающий мертвого кота. Вы заявите, конечно, что все эти операции бессмысленны, поскольку они совершенно не похожи на наше восприятие действительности. А почему, собственно, такое описание является неверным? Ведь мы не знаем, что означает слово «восприятие», и не можем отрицать, что оно может подразумевать одновременное восприятие живого и мертвого кота. До тех пор, пока мы не поймем точно, что означает слово «восприятие», и не разработаем достаточно убедительную теорию, запрещающую такое смешанное восприятие (для этого нам необходимо выйти далеко за пределы теории, описанной ниже в гл. 3), предлагаемый подход не позволит нам понять восприятие столь разных состояний или их суперпозиций. Для теоретического описания необходимо иметь хотя бы какую-то теорию восприятия. Кроме того, существующая теория не может объяснить, почему для произвольных чисел w и z получаемые вероятности должны совпадать с квантовомеханическими вероятностями, определенными через квадраты модулей соответствующих величин. Следует помнить, что в конечном счете все эти вероятности должны представлять собой очень точно измеряемые величины.

Рис. 2.10.

Давайте вернемся к проблеме квантовых измерений и, в частности, к вопросу о квантовой запутанности. На рис. 2.11 приведена запись ЭПР-эксперимента в версии Бома, относящаяся, как уже отмечалось, к Z-тайнам квантовой механики. Проблема сводится к возможностям описания состояния двух частиц со спином ½, которые разлетаются в разные стороны. Полный спин системы равен нулю, поэтому, если мы вдруг узнаем, что спин одной из частиц направлен вверх, то из этого следует, что спин второй частицы направлен вниз. В этом случае квантовое состояние полной системы описывается произведением членов «вверх-здесь» и «вниз-там». Аналогично, состоянию «вниз-здесь» соответствует «вверх-там» (подразумевается, что для проекции спина частицы в состоянии «здесь» мы можем выбрать направления вверх/вниз). Для описания квантового состояния полной системы мы должны внести в рисунок знаки плюс-минус для этих положений (буквы Н и Т на рисунке означают «здесь» и «там», соответственно). В сущности, например, нам следовало бы использовать знак минус для того, чтобы полный спин пары частиц равнялся нулю при любом выборе направления проекции.

Рис. 2.11.

Предположим, что мы измеряем спиновое состояние частицы, попавшей в наш детектор «здесь», а вторая частица за это время улетела очень далеко, и точка «там» находится где-то на Луне! Пусть далее мой коллега на Луне включил детектор и измерил проекцию спина в направлении вверх/вниз. Если спин этой частицы направлен вниз, то это означает, что у первой частицы он был направлен вверх, поскольку обычно предполагается, что вектор состояний частицы представляет собой смесь равновероятных состояний (спин-вверх и спин-вниз).

Для описания систем с такими смешанными состояниями в квантовой механике применяется стандартный метод, основанный на использовании так называемой матрицы плотности. В нашем случае матрица плотности, которую должен ввести первый наблюдатель (его можно условно назвать «я/здесь»), имеет вид, показанный на рис. 2.12. Множители ½ в правой части относятся к вероятности обнаружить, что спин «здесь» направлен соответственно вверх и вниз. При этом речь идет о совершенно обычных, классических вероятностях, отражающих степень нашего незнания относительно реального состояния изучаемой частицы. Эти вероятности представляют собой, как обычно, просто действительные числа (лежащие в интервале между 0 и 1), так что комбинация на рис. 2.12 представляет собой стандартную сумму вероятностей с заданным весом, а не сложную квантовую суперпозицию с комплексными коэффициентами. Отметим еще, что величины типа | < и < | (с угловыми скобками, направленными вправо и влево), которые умножаются на соответствующие вероятности (равные ½), были введены Дираком и названы им кет-вектором и бра-вектором, соответственно. В общем случае бра-вектор представляет собой комплексно сопряженный кет-вектор.

Рис. 2.12.

Я не буду рассказывать даже в самых общих чертах о серьезнейшем математическом аппарате теории матриц плотности. Для нашего рассмотрения достаточно знать, что матрица плотности содержит всю информацию, необходимую для расчета вероятностей результатов измерений, производимых над одной частью квантовой системы, в тех случаях, когда информация о другой части квантового состояния недоступна. Например, в нашем случае полное квантовое состояние относится к паре частиц (запутанное состояние), причем предполагается, что при измерении «здесь» мы не можем ничего знать о результатах измерения «там» (на Луне) состояния частицы-партнера.

Я позволю себе немного изменить рассматриваемую ситуацию и предположу дополнительно, что мой коллега на Луне при измерении спина выбрал направление влево/вправо, а не вверх/вниз, как раньше. В этом случае запись состояний примет вид, показанный на рис. 2.13. В сущности, эта запись совпадает с записью рис. 2.11 (та же алгебраическая схема, основанная на геометрии рис. 2.4), однако в ней использованы другие обозначения состояний. В момент измерения мы еще не знаем результатов, полученных коллегой на Луне, однако ясно, что он с одинаковой вероятностью может получить для спина левое направление (в этом случае я должен получить правое направление) или правое (в этом случае я получаю левое). Матрица плотности DH, приведенная на рис. 2.13, при этом будет полностью совпадать с введенной ранее матрицей рис. 2.12. Предлагаемые рассуждения пока кажутся безупречными, поскольку представляется очевидным, что измерения, проводимые коллегой на Луне, не должны изменять вероятностей, получаемых при измерениях на Земле (в противном случае коллега мог бы передавать мне сообщения со скоростью больше скорости света; для этого он мог бы кодировать свои сообщения просто выбором направления регистрации).

Рис. 2.13.

Алгебраически легко проверить, что матрицы плотности действительно одинаковы. Не беда, если вы не знаете, о каких алгебраических приемах я говорю. Вам следует лишь помнить, что матрица плотности – наиболее совершенный аппарат для описания состояния, о части которого вы ничего не знаете. Используемые в этой матрице вероятности имеют обычный смысл, но применяются для квантовомеханического описания, при котором в неявной форме учитываются квантовые вероятности. Короче говоря, если вы ничего не знаете о происходящем «там», матрица плотности даст наилучшее описание состояния «здесь».

Однако из сказанного очень трудно заключить, что матрица плотности описывает реальность. Дело в том, что я позднее могу (или не могу) получить с Луны послание, где будет сказано о том, что мой коллега осуществил измерения состояния второй частицы и получил такие-то и такие-то результаты. Лишь после этого я буду знать о реальном состоянии моей частицы. Матрица плотности не содержит всей информации о моей частице, и я должен определять актуальное состояние связанной пары частиц. Следовательно, матрицу плотности следует рассматривать лишь в качестве средства вспомогательного, временного описания, вследствие чего ее и обозначают иногда сокращением FАРР («для всех практических целей»).

Матрицы плотности гораздо чаще применяются для описания ситуаций типа изображенной на рис. 2.14. Их намного сложнее применять для запутанных состояний, при которых что-то доступно нам и «здесь» (например, живой или мертвый кот), а что-то – коллегам «там» (на Луне или за соседним столом, это не принципиально), и лишь сочетание «здесь» и «там» может дать полное описание среды, связанной с многострадальным котом. Именно поэтому я вынужден при построении полного вектора состояний учитывать живого кота (с некоторым окружением) плюс мертвого кота (с другим окружением). Сторонники FАРР-подхода утверждают, что вы никогда не можете иметь полную информацию об окружении и поэтому всегда вынуждены пользоваться не вектором состояний, а матрицей плотности (рис. 2.15). Матрица плотности ведет себя подобно смеси вероятностей различных состояний, вследствие чего сторонники FАРР-подхода могут утверждать, что «для всех практических целей» кот либо мертв, либо жив. Это звучит совсем неплохо именно «для всех практических целей», но не дает нам картины реальности, т.е. не сообщает ничего о том, что могло бы произойти, если бы кто-то (предположим, что такие мудрые люди существуют!) подошел к вам раньше и посоветовал, как извлечь (или, точнее, выделить) информацию из окружения. В каком-то смысле описываемый подход действительно является временным – он полезен до тех пор, пока никто не умеет выделять и получать такую информацию. Однако вы можете применить к ситуации с котом рассуждения, приведенные выше для частицы в ЭПР-эксперименте. Мы уже говорили, что использование проекций спина в направлениях вверх/вниз и влево/вправо является совершенно эквивалентным. В принципе мы можем найти эти «левые» и «правые» состояния, комбинируя состояния «вверх» и «вниз» в соответствии с законами квантовой механики, что должно привести нас к тому же «запутанному» состоянию (показанному на рис. 2.13, а) и к той же самой матрице плотности (рис. 2.13, б).

Рис. 2.14.

Рис. 2.15.

Ситуация с котом и его окружением (я по-прежнему буду рассматривать только случай равных амплитуд w и z) математически описывается точно так же, как эксперимент со спином (выражение «живой кот плюс мертвый кот» играет роль «правого» спина, «живой кот минус мертвый кот» – роль «левого» спина), и мы получаем то же состояние (рис. 2.14 с w = z) и ту же матрицу плотности (рис. 2.15 с w = z). Естественно возникает вопрос, являются ли комбинации слов «живой кот плюс мертвый кот» и «живой кот минус мертвый кот» столь же точными и удобными, как привычные термины «живой кот» и «мертвый кот». Это вовсе не представляется очевидным, однако используемая математика достаточна ясна – матрица плотности для кота не изменяется (рис. 2.16), так что даже знание о характере матрицы не помогает нам выяснить вопрос о его состоянии. Другими словами, матрица плотности не содержит данных о жизни и смерти кота, и мы должны найти их где-то еще.

Рис. 2.16.

Из всего сказанного остается неясным не только поставленный вопрос о состоянии кота (является ли он живым, мертвым или пребывает в некоторой комбинации этих состояний), но даже и то, каким образом мы можем воспринимать кота живым или мертвым. Более того, в более общем случае неравных друг другу амплитуд w и z остается совершенно неясным, почему вероятности должны составлять именно |w|2 и |z|2. Мне такое описание очень не нравится, и поэтому я вновь обращусь к общей диаграмме состояния физики (рис. 2.1) и попробую улучшить ее, добавив необходимые, на мой взгляд, элементы будущего развития (рис. 2.17). Операция, обозначенная мною ранее буквой R фактически представляет собой лишь приближенную форму более важной и необходимой операции, которую следовало бы обозначить аббревиатурой OR (я подразумеваю Objective Reduction – восстановление объективной картины). Речь идет действительно о восстановлении объективности, ведь, в конце концов, объективно может происходить одно или другое событие. Именно эта часть теории представляется мне недостающей или отсутствующей, а сокращение OR представляется мне весьма удачным, поскольку оно не только записывается и звучит, как английское слово «или», но и действительно соответствует ситуации, где происходит одно ИЛИ другое.

Рис. 2.17.

Но почему возникают все эти проблемы? Моя личная точка зрения сводится к тому, что трудности связаны с какой-то ошибкой в использовании принципа суперпозиции для сильно различающихся пространственно-временных геометрий, с представлением о которых мы уже сталкивались в гл. 1. На рис. 2.18, а показаны две такие геометрии, причем я специально представил их в виде некоторой суперпозиции, характерной для обсуждения частиц и фотонов. Рассматривая суперпозиции пространственно-временных состояний, мы сразу столкнемся с массой проблем, поскольку их временные конусы могут иметь разную направленность. В сущности, мы здесь имеем дело с одной из важнейших задач квантования в общей теории относительности. Я лично убежден, что все трудности построения физических теорий связаны именно со странностями суперпозиций пространственно-временных состояний.

Рис. 2.18.

На мой взгляд, сложностей можно избежать лишь при полном отказе от создания таких суперпозиций. Так или иначе, но любая такая суперпозиция должна воплотиться в одно из возможных ИЛИ, что означает наличие некоторого события на уровне пространства-времени (рис. 2.18, б). Разумеется, вы можете возразить мне примерно следующим образом: «Все сказанное в принципе выглядит убедительным, но ведь при любой попытке объединения квантовой механики с общей теорией относительности мы должны столкнуться с этими смешными, нелепыми величинами (планковское время и планковская длина), на много порядков меньшими любых промежутков времени и пространства, с которыми приходится сталкиваться в физике (даже в физике элементарных частиц). Это совершенно не те масштабы, в которых можно описывать нечто реальное, типа людей или котов. Причем тут квантовая гравитация?» Но я убежден, что именно на этом уровне определяются фундаментальные законы всех происходящих в природе процессов.

Что связывает длину Планка (10-33 см) с процессом редукции (коллапса) квантового состояния? На рис. 2.19 приведена очень простая схема бифуркации пространства-времени, соответствующая суперпозиции двух пространственно-временных состояний, в одном из которых кот Шредингера является живым, а в другом – мертвым. При этом почему-то кажется, что эти два пространственно-временных состояния могут образовывать суперпозицию. Мы должны спросить сами себя: «Что необходимо изменить в правилах игры, если мы видим, что эти состояния стремятся стать совершенно различными?» Взгляните на рисунок еще раз и отметьте, что в некотором (кстати, вполне разумном) смысле разница этих геометрий имеет порядок планковской длины! Когда геометрии состояний начинают различаться на эту величину, нам следует задуматься самим об изменении правил и законов. Я хочу подчеркнуть, что мы имеем дело с пространствами-временами, а не только с пространствами. При «разделении пространства-времени в планковских масштабах» очень малые пространственные различия соответствуют большим временам, и наоборот, чрезвычайно большие пространственные изменения – малым временам. Основная проблема при этом состоит в том, чтобы оценить и уловить тот момент, когда разница между двумя пространствами-временами становится настолько значительной, что Природа сама отбирает какое-то одно пространство-время. Я хочу сказать, что Природа выбирает одно из возможных состояний в соответствии с некоторым, пока неизвестным нам законом.

Рис. 2.19. Как связана планковская длина (10-33 см) с задачей редукции квантовых состояний?

Очень упрощенно идея состоит в следующем: связь проявляется в том случае, когда перемещение масс между двумя состояниями, участвующими в суперпозиции, становится настолько значительным, что соответствующие пространства-времена различаются на величину порядка 10-33 см.

За какое время Природа осуществляет этот выбор? Мы можем рассмотреть некоторые совершенно определенные ситуации, для которых удовлетворяется ньютоновское приближение в теории Эйнштейна и одновременно четко определено различие двух гравитационных полей, связанных с членами квантовой суперпозиции (т. е. двух комплексных амплитуд, примерно равных по величине). Я могу предложить вам, например, следующий эксперимент. Давайте пожалеем уставшего кота и рассмотрим движение массивного шара в эксперименте, показанном на рис. 2.20. Насколько велика должна быть масса шара, сколь далеко он может отклониться и каково будет пространство-время после редукции вектора состояний? Я буду рассматривать суперпозицию двух состояний как некоторое неустойчивое состояние, немного напоминающее нестабильную частицу типа ядра урана или чего-либо похожего, способного распасться или превратиться в нечто другое, причем это превращение связано с каким-то определенным временным масштабом. Предположение о неустойчивости подразумевает какие-то неизвестные нам физические законы. Для оценки временного масштаба рассмотрим энергию Е, необходимую для мгновенного перемещения шара из одного гравитационного поля в другое. Характерный масштаб времени Т такого перехода можно найти из отношения величины ћ (постояная Планка, деленная на 2 π) к гравитационной энергии:


    Ваша оценка произведения:

Популярные книги за неделю