355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стивен Уильям Хокинг » Большое, малое и человеческий разум » Текст книги (страница 2)
Большое, малое и человеческий разум
  • Текст добавлен: 16 октября 2016, 21:04

Текст книги "Большое, малое и человеческий разум"


Автор книги: Стивен Уильям Хокинг


Соавторы: Роджер Пенроуз,Нэнси Картрайт,Абнер Шимони

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц)

Рис. 1.7. Распространение световой вспышки в пространстве-времени (а) и пространстве (б).

Такие световые конусы являются важнейшими структурами пространства-времени, и, в частности, именно они ограничивают возможности и пределы причинно-следственных связей в природе. Историю любой частицы можно изобразить линией в пространстве-времени на диаграмме указанного типа, причем эта линия должна лежать внутри светового конуса (рис. 1.8). Все сказанное просто вытекает из условия, что никакая материальная частица не может двигаться быстрее света. Поэтому никакой сигнал не может выйти за пределы светового конуса, что естественным образом ограничивает пределы действия любых причинно-следственных связей.

Рис. 1.8. Описание движения частицы в пространстве-времени специальной теории относительности

(его называют также пространством-временем Минковского или просто геометрией Минковского). Световые конусы в различных точках пространства-времени выстраиваются таким образом, что частицы могут двигаться лишь внутри световых конусов, относящихся к будущему.

Естественно, что световые конусы отличаются весьма своеобразными геометрическими свойствами. Представим себе, например, двух наблюдателей, движущихся в пространстве-времени с различной скоростью. В отличие от механики Ньютона, где «плоскости одновременных событий» совершенно одинаковы для всех наблюдателей, в теории относительности нельзя ввести абсолютную одновременность, вследствие чего каждый из этих наблюдателей будет рисовать собственные плоскости «одновременности» в пространстве-времени, как показано на рис. 1.9. Существует известный и хорошо разработанный метод преобразования таких плоскостей друг в друга (так называемые преобразования Лоренца, образующие группу Лоренца), открытие которого сыграло важную роль в истории специальной теории относительности. Речь идет о группе (линейных) преобразований пространства-времени, при которых световой конус остается инвариантным.

Рис. 1.9. Относительность понятия одновременности в специальной теории относительности Эйнштейна.

Наблюдатели 1 и 2 движутся в пространстве-времени относительно друг друга, в результате чего события, одновременные для наблюдателя 1, перестают быть одновременными для наблюдателя 2, и наоборот.

Мы можем придать группе Лоренца и несколько иную трактовку. Как уже подчеркивалось, световой конус является одной из важнейших структур пространства-времени. Представьте себя наблюдателем, рассматривающим Вселенную из какой-то точки пространства. В ваши глаза попадает свет от далеких звезд, и в соответствии с концепцией пространства-времени наблюдаемые вами события представляют собой пересечения мировых линий звезд с вашим световым конусом прошлого, как это показано на рис. 1.10. Другими словами, в вашем световом конусе прошлого звезды в некоторый момент времени образуют некий рисунок на небесной сфере (рис. 1.10, а). Предположим, что второй наблюдатель, двигаясь с большой скоростью относительно вас, именно в этот момент оказывается рядом. Он воспринимает те же звезды, однако ему кажется, что они занимают на сфере другие положения (рис. 1.10, б) – этот эффект астрономы называют аберрацией. Существует набор преобразований, позволяющий связать друг с другом изображения, воспринимаемые различными наблюдателями. В каждом из таких преобразований сфера соотносится с другой сферой, однако среди этих преобразований есть специальное, в котором точным окружностям соответствуют точные окружности, в результате чего при преобразовании сохраняются значения углов, т. е. воспринимаемые вами круглые изображения остаются круглыми и для другого наблюдателя.

Рис. 1.10. Картина звездного неба для двух различных наблюдателей,

а – наблюдатели 1 и 2 из одной и той же точки рассматривают звезды в световом конусе прошлого. Места пересечения светового конуса со звездами указаны черными точками. Световые сигналы идут от звезд к наблюдателям вдоль светового конуса. Наблюдатель 2 движется в пространстве-времени относительно наблюдателя 1 с некоторой скоростью; б – расположение звезд на небе, как его видят наблюдатели 1 и 2, когда они оказываются в одной точке пространства-времени; в – наглядное представление преобразования картины звездного неба для различных наблюдателей при использовании стереографической проекции (окружности переходят в окружности, значения углов сохраняются).

Существует прекрасная иллюстрация механизма действия таких преобразований, которая, кстати, одновременно демонстрирует исключительную элегантность и красоту математической физики при описании фундаментальных понятий и представлений. На рис. 1.10, в показана сфера, пересекаемая плоскостью по экватору. Мы можем нарисовать на поверхности этой сферы различные фигуры, а затем рассмотреть их так называемые стереографические проекции (проекции из южного полюса сферы на экваториальную плоскость), обладающие довольно необычными свойствами. Действительно, как видно из рисунка, при такой проекции не только окружности на сфере превращаются в окружности на плоскости, но сохраняются и точные значения всех углов, образуемых пересечением кривых на сфере. В гл. 2 я более подробно расскажу об этом типе проекций (см. рис. 2.4) и покажу, что с его помощью можно сопоставить все точки сферы комплексным числам (такие числа возникают при извлечении квадратного корня из отрицательных чисел), а затем перевести в точки экваториальной плоскости. Такая операция, в которую можно вовлечь все множество комплексных чисел (включая «бесконечные» значения), позволяет построить структуру, называемую сферой Римана.

Для читателя, заинтересовавшегося этой проблемой, я приведу формулу

u -> u' = (αu + ß) / (γu + δ),

описывающую преобразование (аберрации) Лоренца, которое переводит окружности в окружности и одновременно сохраняет значения всех углов. Преобразования такого типа называют преобразованиями Мёбиуса. Мне бы хотелось лишь отметить простоту и изящество этой формулы, описывающей столь сложный параметр, каким выступает в данной ситуации величина и. Совершенно удивительным кажется то, что при указанных преобразованиях в специальной теории относительности конечная формула имеет очень простой вид, в то время как соответствующие преобразования аберрации в ньютоновской механике описываются очень сложными выражениями. Как это часто бывает в физике, переход к более фундаментальным понятиям и более точным теориям приводит к упрощению математического описания, хотя на первый взгляд такой переход должен сопровождаться усложнением формального аппарата. Примером этой важной закономерности может служить разительный контраст между понятиями относительности в механике Галилея и Эйнштейна.

Специальная теория относительности во многих отношениях не только значительно проще классической механики, но и выглядит гораздо изящнее с математической точки зрения (в частности, при рассмотрении процессов в рамках теории групп). В специальной теории относительности пространство-время является плоским, а все световые конусы выстраиваются вдоль траекторий, как было показано на рис. 1.8. При переходе к более сложной общей теории относительности (теории пространства-времени с учетом гравитации) ясная физическая картина на первый взгляд «мутнеет» и теряет свою простоту, так как световые конусы оказываются разбросанными по всему пространству (рис. 1.11). Ранее я говорил, что, развивая любую теорию все глубже и глубже, мы должны приходить к более простым математическим выражениям. Представленная мною картина пока выглядит ужасающе сложной, однако если мы проявим немного терпения, то убедимся, что математическая простота и изящество теории возникнут снова.

Рис. 1.11. Искривленное пространство-время.

Напомню вам основные положения эйнштейновской теории тяготения. Прежде всего, она основана на принципе эквивалентности Галилея. На рис. 1.12 я попытался изобразить Галилея, бросающего с вершины знаменитой Пизанской башни большой и маленький камни. Независимо от того, действительно ли Галилей проводил такие эксперименты, он совершенно ясно установил, понял и сформулировал правило, что оба камня долетят до поверхности Земли за одинаковое время, если не учитывать сопротивления воздуха при падении. Если бы вы находились на одном из этих камней, то второй казался бы вам неподвижно висящим в воздухе (для более наглядной демонстрации этого факта я пририсовал телекамеру к одному из камней). В наше время эффект свободного парения очень часто демонстрируют при репортажах с космических кораблей, и недавно я сам видел британского космонавта, свободно «плавающего» в пространстве рядом с огромным космическим аппаратом (полная аналогия с большим и маленьким камнями в опытах Галилея). Именно это явление и называют принципом эквивалентности.

Рис. 1.12.

а – Галилей бросает с наклонной Пизанской башни два камня (один с телекамерой); б – астронавт и космический корабль, плавающие в пространстве как бы без воздействия гравитации.

Рассматривая гравитацию в рамках опытов со свободным падением, мы вдруг понимаем, что в этих условиях она как бы полностью исчезает. Однако эйнштейновская теория вовсе не утверждает, что тяготение исчезает, она всего лишь говорит об исчезновении силы тяжести, что означает совершенно иное явление, которое можно назвать «приливным эффектом» гравитации.

Для дальнейшего изложения мне необходимо ввести еще несколько математических понятий. Мы говорим об искривлении пространства-времени, а процессы такого типа описываются тензором, который я для удобства назову Риманом и буду обозначать заглавной буквой R в простом уравнении, которое выпишу чуть ниже. Я не буду объяснять вам, в чем состоит физический смысл тензора кривизны Римана, обозначенного R, а только отмечу, что тензоры имеют некоторое число нижних индексов, вместо которых в уравнение поставлено соответствующее число точек (внизу справа от знака тензора). Тензор кривизны R можно разложить на две составляющие (одну из которых я назову кривизной Вейля, а вторую – кривизной Риччи), что позволяет мне выписать уравнение

Риман = Вейль + Риччи

R.... = C... +R'...g..,

где формально величины С и R' являются тензорами кривизны Вейля и Риччи, a g – так называемый метрический тензор.

Кривизна Вейля является объективным показателем упомянутого выше «приливного эффекта», физическую природу которого я поясню сейчас на простом примере. С точки зрения космонавта гравитация исчезает, однако мы понимаем, что это не так. Представьте себе, например, что космонавт окружен сферическим облаком неподвижных относительно него частиц. С течением времени это облако начнет «расплываться» и деформироваться, после чего в результате очень небольшого различия сил тяготения в различных участках сферы (мне хочется особо подчеркнуть, что я могу вполне адекватно описать эффект в рамках ньютоновской механики) сферическое облако через некоторое время превратится в эллипсоид, как показано на рис. 1.13, а.

Рис. 1.13.

а – приливный эффект. Широкие стрелки показывают направление относительного ускорения частиц; б – если сферическое облако окружает какой-либо массивный объект (например, Землю), то оно испытывает в целом ускорение, направленное «внутрь».

Как я уже говорил, искажение отчасти объясняется тем, что частицы, расположенные ближе к Земле, ускоряются сильнее, чем частицы на периферии облака. Кроме того, частицы по «бокам» сферы испытывают небольшие ускорения «внутрь», что также показано на рис. 1.13, а. Обе эти причины способствуют образованию эллипсоида из первоначально сферического облака частиц. Описываемый эффект очень удачно был назван «приливным», поскольку достаточно заменить Землю в наших рассуждениях Луной, а облако частиц – мировым океаном, как мы сразу поймем, почему поверхность морей на нашей планете не представляет собой правильную сферу! В соответствии с совершенно таким же механизмом морская толща на обращенной к Луне поверхности Земли притягивается Луной чуть сильнее, чем на обратной стороне, в результате чего вдоль морской поверхности дважды в день пробегает высокая приливная водна.

Гравитационный эффект по Эйнштейну представляет собой просто другую форму описанного приливного эффекта. Он определяется, как уже отмечалось, кривизной Вейля, т. е. составляющей С... выписанного выше уравнения. Эта часть тензора кривизны соответствует процессам с «сохранением объема» (т. е. объем эллипсоида, образовавшегося в результате деформации сферы из частиц, должен в точности равняться объему исходной сферы).

Вторая составляющая, называемая кривизной Риччи, относится к эффектам, связанным с «сокращением объема». Например, если Земля будет окружена сферическим облаком частиц (как показано на рис. 1.13, б), то объем сферы с течением времени должен несколько уменьшиться, поскольку все частицы притягиваются «внутрь». Степень такого сокращения объема и описывается составляющей R'. В соответствии с эйнштейновской теорией эта кривизна определяется количеством вещества в ближайшем окружении данной точки. Иными словами, определив правильным образом плотность вещества в некоторой точке пространства, мы можем найти и величину направленного «внутрь» ускорения. При таком подходе теория Эйнштейна полностью совпадает с ньютоновской теорией тяготения.

Именно так Эйнштейн и сформулировал свою теорию гравитации – он выразил тяготение посредством приливных эффектов, являющихся мерой локального искривления пространства-времени. Представление об искривлении четырехмерного пространства-времени является важнейшим в теории относительности. Я напомню вам рис. 1.11, где схематически были показаны мировые линии частиц и их искажения. Теория Эйнштейна представляет собой чисто геометрическую схему для четырехмерного пространства-времени, причем ее математическая формулировка отличается удивительной красотой.

История открытия общей теории относительности является весьма поучительной и интересной. Эйнштейн полностью сформулировал ее в 1915 г., исходя не из экспериментальных наблюдений, а лишь из некоторых эстетических, геометрических и физических принципов и пристрастий. Основой теории стали принцип эквивалентности Галилея (примером действия которого могут служить описанные выше эксперименты с бросанием камней различного веса, рис. 1.12) и общие идеи неевклидовой геометрии, естественным образом используемые для описания пространства-времени. Об экспериментальных доказательствах теории вначале никто не задумывался, однако после ее окончательной формулировки было предложено три разных варианта проверки. Первый из них связан с известной астрономической задачей (проблема смещения перигелия Меркурия), которую никак не удавалось решить в рамках классической механики Ньютона. Общая теория относительности позволила совершенно точно предсказать величину этого смещения. Далее, из теории следовало, что траектория световых лучей должна искривляться при прохождении через мощные гравитационные поля (например, вблизи Солнца). Для проверки этой гипотезы в 1919 г. под руководством Артура Эддингтона была организована астрономическая экспедиция для наблюдения полного солнечного затмения. Результаты, полученные этой знаменитой экспедицией, соответствовали предсказаниям эйнштейновской теории (рис. 1.14, а). И наконец, третья проверка была связана с предсказанием замедления хода часов в гравитационном поле (часы у поверхности Земли должны идти чуть медленнее, чем часы на вершине башни), что неоднократно проверялось в экспериментах. Следует отметить, что все эти проверки не оказались достаточно вескими (из-за того, что наблюдаемые эффекты всегда очень слабы), а также могут быть достаточно убедительно объяснены в рамках других теорий.

Рис. 1.14.

а – прямые измерения воздействия гравитационного поля на прохождение световых лучей в соответствии с общей теорией относительности. Изображение удаленных звезд искажается из-за вейлевского искривления пространства-времени, приводящего к искривлению траекторий световых лучей в гравитационном поле Солнца. Круглые изображения звезд при этом превращаются в эллипсы; б – использование эйнштейновского эффекта искривления световых лучей в качестве практического приема астрономических наблюдений. Массу галактики, лежащей на пути светового луча, можно оценить по степени искажения изображения удаленного квазара.

Отношение к теории относительности резко изменилось в 1993 г., когда Хульзе и Тейлор получили Нобелевскую премию за исключительно интересные астрономические наблюдения, относящиеся к двойному пульсару PSR 1913+16. Этот астрономический объект (рис. 1.15, а) состоит из двух нейтронных звезд со столь большой плотностью, что масса каждой из них примерно равна массе нашего Солнца, хотя их радиус составляет всего лишь несколько километров! Нейтронные звезды вращаются вокруг общего центра тяжести по очень вытянутым эллиптическим орбитам. Одна из звезд обладает сильнейшим магнитным полем, благодаря чему является источником настолько интенсивного излучения, что на Земле (т. е. на расстоянии 30 000 световых лет) оно прекрасно регистрируется в виде серии четко определенных импульсов. Это позволило провести разнообразные и тщательные измерения, в частности, параметры орбит обеих нейтронных звезд удалось замерить с очень высокой точностью и проверить поправки, связанные с учетом общей теории относительности.

Рис. 1.15.

а – схематическое изображение двойного пульсара PSR 1913+16. Одна из нейтронных звезд является источником направленного радиоизлучения, испускаемого вдоль оси магнитного диполя (которая, кстати, не совпадает с осью вращения нейтронной звезды). Отчетливые импульсы регистрируются в те моменты времени, когда узкий луч излучения попадает в поле зрения наблюдателя. Характеристики двойной нейтронной звезды, определяемые точной регистрацией сигналов, совпадают с теми, которые предсказывает общая теория относительности; б – сравнение экспериментально измеренных значений изменения фазы сигналов излучения пульсара PSR 1913+16 с теоретическими расчетами, основанными на учете гравитационного излучения двойной нейтронной звезды (сплошная кривая).

Далее я должен особо подчеркнуть, что в общей теории относительности существует и совершенно специфический эффект, отсутствующий в ньютоновской теории тяготения и заключающийся в том, что вращающиеся относительно друг друга объекты излучают энергию в виде гравитационных волн. Эти волны похожи на световые, но в отличие от последних представляют собой не колебания электромагнитного поля, а возмущения, или «рябь», пространства-времени. Измеренная скорость потери энергии упомянутой двойной нейтронной звезды с высокой точностью совпала с теоретическими расчетами, проведенными в рамках общей теории относительности. На рис. 1.15, б представлены результаты измерения смещения орбит за 20-летний период наблюдений. Высокая надежность регистрации излучаемых сигналов и длительность измерений позволили довести точность расчета параметров орбит до10-14, что делает общую теорию относительности самой точной и проверяемой областью современной науки.

Процесс создания и проверки общей теорией относительности содержит, безусловно, и важный моральный мотив, связанный с тем, что Эйнштейн потратил на создание теории многие годы, практически не обращая внимания на проблемы ее экспериментальной проверки. Существует общераспространенное мнение, что физики ищут образы, или «паттерны», получаемых в эксперименте результатов и ставят своей целью создание красивых теорий, позволяющих описать эти результаты. Считается, что именно поэтому физики и математики предпочитают «держаться вместе». Однако в случае с общей теорией относительности ситуация выглядит совершенно иной. Вне всякой связи с экспериментальными результатами была разработана весьма изящная и элегантная математическая теория, относящаяся к основам физики. Проблема заключается как раз в том, что эта прекрасная математическая структура просто существует в Природе и присутствует в пространстве, а не является чем-то привнесенным, «навязанным» Природе извне. Одна из важнейших идей этой главы состоит в том, что Эйнштейн выявил в мире нечто, уже содержавшееся в нем. При этом обнаруженные им структуры вовсе не относятся к незначительным или маловажным разделам физики, а связаны с наиболее фундаментальными законами Природы и свойствами пространства-времени.

Сказанное возвращает нас к началу книги и рис. 1.3, связывающему мир математики с миром физических явлений. В общей теории относительности мы сталкиваемся со структурой, которая реально определяет с исключительной точностью поведение физического мира. При этом теория, описывающая фундаментальные свойства нашего мира, была получена вовсе не в результате длительных наблюдений за поведением Природы (разумеется, сказанное не означает, что я отрицаю очевидную ценность таких наблюдений). Конечно, основным критерием научной теории является не убедительность доводов, а соответствие фактам. В данном случае мы имеем дело именно с теорией, которая прекрасно согласуется с экспериментальными данными. Точность теории относительности по крайней мере вдвое (как математик я подразумеваю под точностью число знаков после запятой при надежном расчете) выше точности классической механики, т.е. ее расчеты справедливы до 10-14 , в то время как точность ньютоновской механики составляет лишь 10-7. Такое «возрастание» точности наблюдалось в классической механике за период от семнадцатого века (Ньютон знал, что точность его расчетов составляет 10-3) до наших дней (она доведена, как я уже говорил, до10-7).

Разумеется, гипотеза Эйнштейна представляет собой некую физическую теорию, и для нас очень важно установить ее связь со структурой реального мира. Я обещал, что не буду вдаваться в подробности и делать изложение «ботаническим», однако в данном случае речь идет о теории единственной известной нам Вселенной (как о целостном объекте), так что я могу углубиться в рассуждения, не опасаясь обвинений в излишней болтливости. Теория Эйнштейна предлагает нам три типа стандартной модели развития мира (рис. 1.16) в зависимости от того, какова величина одного из главных параметров теории, обозначенного буквой k. В различных работах по космологии часто используется так называемая космологическая постоянная, но я не буду ее упоминать, поскольку сам Эйнштейн считал своей основной ошибкой именно введение этой постоянной в уравнения общей теории относительности. Если же жизнь когда-нибудь заставит физиков вернуться к этой постоянной, нам придется это вытерпеть.

Рис. 1.16.

а – пространственно-временная картина расширяющейся Вселенной с евклидовыми пространственными сечениями (на рисунке указаны лишь два измерения), k = 0; б – пространственно-временная картина расширяющейся (а затем сжимающейся) Вселенной со сферическими пространственными сечениями, k = +1; в – пространственно-временная картина расширяющейся Вселенной с пространственными сечениями, описываемыми геометрией Лобачевского, k = -1; г – динамика развития трех указанных типов модели Фридмана.

Полагая космологическую постоянную равной нулю, мы получаем для трех различных значений параметра k (k = +1, 0, -1) три различные модели Вселенной (см. рис. 1.16). Разумеется, было бы правильнее учитывать также возраст и масштаб Вселенной (для этого необходимо пользоваться непрерывным, а не дискретным параметром k), однако мы ограничимся лишь этими тремя моделями, поскольку их можно легко связать с кривизной пространственных сечений Вселенной. Если сечения являются плоскими, то этому соответствует нулевая кривизна и значение параметра k = 0 (рис. 1.16, а). Если же сечения имеют положительную кривизну, то Вселенная является замкнутой и, следовательно, k = +1 (рис. 1.16, б). В этих моделях Вселенная имеет сингулярное исходное состояние, знаменующее ее рождение (знаменитый Большой Взрыв). При k = +1 Вселенная после рождения расширяется (иногда говорят «раздувается») до некоторого максимального размера, после чего начинает сжиматься и «схлопывается» в момент Большого Сжатия. При k = -1 расширение Вселенной будет продолжаться вечно (рис. 1.16, в), а случай k = 0 является промежуточным между двумя указанными. На рис. 1.16, г схематически показана зависимость радиуса Вселенной от времени, где под радиусом понимается некий характерный размер. Он может быть задан лишь при k = +1, а в двух остальных случаях Вселенная просто бесконечно расширяется.

Мне хочется подробнее рассмотреть случай с k = -1 (который, кстати сказать, труднее всего согласовать с общей картиной), представляющий интерес по двум важным причинам. Во-первых, эта модель наиболее удобна, если вы хотите трактовать результаты наблюдений по их истинному, «номинальному» значению. Дело в том, что в общей теории относительности искривление пространства обусловлено суммарным количеством вещества во Вселенной, а этого количества, по современным данным, явно недостаточно для создания Вселенной с замкнутой геометрией (разумеется, может оказаться и так, что Вселенная содержит большое количество так называемой скрытой, или темной, массы, которую мы еще просто не успели обнаружить, и тогда будет справедлива какая-то другая модель, однако, скорее всего, наша Вселенная не имеет столь большой массы и описывается параметром k = -1). Вторая причина моего интереса к этой модели связана с ее исключительной красотой и элегантностью.

На что похожи вселенные с параметром k = -1? Их пространственные сечения описываются так называемой гиперболической геометрией (геометрией Лобачевского), прекрасной иллюстрацией которой может служить одна из картин Мориса Эшера (рис. 1.17). Эшер нарисовал целую серию гравюр, озаглавленную «Предельные окружности», одна из которых и показана на рисунке. Как вы видите, художнику представляется, что Вселенная полна ангелов и чертей! Для нашего рассмотрения гораздо важнее то, что вся картина как бы выгнута по отношению к краям предельной окружности, и это искривление связано именно с попыткой художника изобразить гиперболическое пространство на плоском листе бумаги, иными словами – в привычном евклидовом пространстве. Следует осознать, что если бы мы жили в этой Вселенной, то форма и размеры всех чертей были бы одинаковы независимо от того, попали бы мы в центр или на край картины. Гравюра дает некоторое представление о том, что происходит в пространстве Лобачевского, и о тех особенностях, которые возникают при соответствующем искажении пространства.

Рис. 1.17. М. Эшер. «Предельная окружность 4» (представление геометрии Лобачевского).

Геометрия Лобачевского может показаться странной и неожиданной, но если вдуматься, то привычная нам евклидова геометрия – тоже совершенно замечательная вещь, хотя бы потому, что она дает нам прекрасные образцы взаимодействия физики и математики. Когда-то древние греки рассматривали ее не как раздел математики, а как описание окружающего мира.

Геометрия действительно описывает мир с поразительной точностью. Я говорю об очень высокой, но не абсолютной точности, поскольку, как мы уже видели, теория Эйнштейна доказала позднее, что наш мир в определенных условиях может быть «искривлен». Вопрос о возможности существования других геометрий всегда волновал ученых. Эта очень старая проблема известна под названием пятого постулата Евклида и сводится к справедливости утверждения о том, что через точку на плоскости, лежащую вне заданной прямой, можно провести только одну прямую, параллельную данной. Долгое время считалось, что это утверждение можно доказать, используя другие, более очевидные теоремы и положения евклидовой геометрии, однако позднее выяснилось, что такое доказательство невозможно, вследствие чего и возникло представление о неевклидовой геометрии.

В такой геометрии сумма углов треугольника не равна 180°. На первый взгляд кажется, что это условие значительно усложняет рассмотрение, поскольку мы привыкли к тому, что в евклидовой геометрии сумма углов любого треугольника всегда составляет именно 180° (рис. 1.18, а). Однако в неевклидовой геометрии разность между суммой углов треугольника и 180° пропорциональна площади треугольника, т. е. неожиданно выясняется, что площадь треугольника сложнее описать именно в евклидовой геометрии, где она задается сложным уравнением для всех углов и длин сторон треугольника. В неевклидовой геометрии площадь треугольника определяется замечательно простой формулой Ламберта (рис. 1.18, б). Поразительно, но Ламберт вывел свою формулу до открытия неевклидовой геометрии!

Рис. 1.18.

а – треугольник в евклидовом пространстве; б – треугольник в пространстве Лобачевского.

Очень важную роль в геометрии играют так называемые действительные (вещественные) числа, абсолютно необходимые для построений евклидовой геометрии. Такие числа ввел древнегреческий математик Евдокс в 4 веке до н.э., и они до сих пор сохраняют свое значение для создания физической картины мира. Позднее мы будем говорить и о комплексных числах, но последние также основаны на представлении о вещественных числах.

Давайте рассмотрим еще одну гравюру Эшера (рис. 1.19), которая демонстрирует особенности геометрии Лобачевского даже нагляднее, чем рис. 1.17 (поскольку на ней использованы «прямые линии», которые всегда выглядят более очевидными). На рисунке показаны дуги окружностей, пересекающие границу под прямым углом. Обитатель мира с геометрией Лобачевского воспринимал бы прямую линию как одну из этих дуг, что хорошо видно на рис. 1.19, где «по-настоящему прямыми» являются лишь линии, проходящие через центр окружности, а все остальные «прямые» в действительности представляют собой изогнутые дуги. Некоторые из этих «прямых» показаны на рис. 1.20, где я дополнительно выделил точку, не лежащую на истинной прямой (т. е. не на диаметре). Обитатель мира Лобачевского может провести через эту точку две (и даже больше) различные линии, которые не будут пересекать диаметр, т. е. в этой геометрии пятый постулат Евклида безусловно не имеет силы. Более того, измерив сумму углов треугольника на рисунке, вы можете вычислить его площадь. Надеюсь, что даже эти обрывочные сведения дают возможность почувствовать необычность и очарование мира с гиперболической геометрией.

Рис. 1.19. Гравюра М. К. Эшера «Предельная окружность 1».

Рис. 1.20. Некоторые особенности гиперболической геометрии (пространства Лобачевского), поясняющие построения гравюры «Предельная окружность 1».

Я уже говорил, что мне очень нравится гиперболическая геометрия, созданная Лобачевским. Одной из причин моего пристрастия является и то, что группой симметрий этого пространства выступает уже знакомая нам группа Лоренца, соответствующая симметрии специальной теории относительности и световых конусов, играющих в этой теории столь важную роль. На рис. 1 .21 световой конус показан более подробно. Я нарочно убрал одну из пространственных координат, чтобы продемонстрировать вам наглядную трехмерную картину. Показанный на рисунке световой конус описывается простым уравнением


    Ваша оценка произведения:

Популярные книги за неделю